ОСНОВЫ ФИЗ. ЗАЩИТЫ И ЯДЕРНОЙ БЕЗОПАСНОСТИ

Содержание лекции:

- 1. Основы физ. защиты и ядерной безопасности.
- 2. Эффективное сечение ядерной реакции.
- 3. Типы ядерных реакций.
- 4. Взаимодействие нейтронов с ядрами.

1. Основы физ. защиты и ядерной безопасности.

• Благодаря действию ядерных сил две частицы (два ядра или ядро и частица) при сближении до расстояний порядка 10E—13см вступают между собой в интенсивное ядерное взаимодействие, приводящее к преобразованию ядра.

• Этот процесс называется ядерной реакцией.

• Символьное обозначение ядерных реакций:

$$a_1 + a_2 \rightarrow b_1 + b_2 + \dots + b_n$$
,
 $a + X \rightarrow Y + b$,
 $X(\alpha, b)Y$.

Каналы ядерных реакций:

$$^{1}n+^{235}U\rightarrow$$

$$\begin{cases} FP \ (fission \ products) \ -- \ деление, \\ ^{236}U+\gamma \ -- \ радиационный захват, \\ ... \end{cases}$$

Реакции идущие через образование составного ядра:

Нейтронные сечения

σсотр – сечение образования составного (компаунд);

 $\sigma s = \sigma_p + \sigma_r + \sigma_{in}$ — сечение рассеяния;

 $\sigma_{el} = \sigma_p + \sigma_r$ — сечение упругого рассеяния.

 σ_p — сечение потенциального рассеяния;

 σ_r — сечение резонансного рассеяния;

 σ_{in} — сечение неупругое рассеяния;

 $\sigma a = \sigma f + \sigma \gamma$ — сечение поглощения;

$$\sigma_{tot} = \sigma_s + \sigma_a$$
.

$$D = a \exp(-b\sqrt{E^*})$$

где D — среднее расстояние между уровнями энергии, МэВ;

 E^* – энергия возбуждения ядра, МэВ; a, b – коэффициенты постоянные для данного ядра.

Рис. 1. Схема энергетических уровней ядра

• Соотношение Гейзенберга:

$$\Delta E = \hbar / \Delta t$$

• Время жизни:

$$\tau = \hbar / \Gamma$$

• Вероятность распада:

$$\omega_i = \lambda_i = \frac{\Gamma_i}{\hbar}.$$
 $\omega = \sum_i \lambda_i = \sum_i \frac{\Gamma_i}{\hbar}.$

$$\sigma_{i} \sim \sigma^{*}(c) \cdot \omega_{i}/\omega = \sigma^{*}(c) \cdot \Gamma_{i}/\Gamma$$

2. Эффективное сечение ядерной реакции

• Эффективное сечение σ_{эфф} ядерной реакции — величина, характеризующая процесс протекания реакции.

$$\sigma = \pi R^2 + \pi r^2$$

$$\sigma_{tot} = \sum \sigma_i$$

Рис. 2. Эффективное поперечное микроскопическое сечение взаимодействия частицы с ядром

Реакции идущие через образование составного ядра:

$$a + X \rightarrow C^* \rightarrow Y + b$$
 $\sigma_{ip} = \pi \lambda_i^2 \sum_{l=0}^{l_c} (2l+1)e^{-2C_l} \cdot \frac{\Gamma_p}{\Gamma}$

$$\sigma_i(c) = \pi \lambda_i^2 \sum_{l=0}^{l_c} (2l+1)e^{-2C_l}$$
 — сечение образования составного ядра.

$$\xi = e^{-2Cl}$$
 – коэффициент прилипания, который

определяется прозрачностью центробежного и кулоновского барьеров. ____

$$C_{l} = \sqrt{\frac{2\mu}{\hbar}} \int_{r_{l}}^{r_{2}} \sqrt{V(r) - E} dr$$

- Произведение $\Sigma = \sigma N$ называют макроскопическим эффективным сечением, 1/см.
- Характеризует вероятность совершения реакции в 1 cm 3 одним нейтроном, имеющим скорость v.
- Макроскопические эффективное сечение гомогенной смеси:

$$\sum_{\mathbf{c}_{\mathbf{M}}} = \sum_{i} \sum_{i} \qquad N_{i} = c_{i} N_{A} \rho_{c_{\mathcal{M}}} / \mu_{i}$$

где сі - массовая концентрация в долях.

- При гетерогенном расположении материалов необходимо учитывать объемную долю, занятую данным веществом ω_i .
- Ядерная концентрация каждого i-го компонента умножают на ω_i :

$$N_i = N_{0i}\omega_i \qquad \sum_{i=1}^n \omega_i = 1$$

Рис. 3. Спектр нейтронов деления ядер актиноидов.

Рис. 4. Схема замедления и диффузии нейтронов в размножающей среде

Табл. 1. Значения $t_{\text{зам}}$ и $t_{\text{диф}}$ для некоторых замедляющих сред

Замедлитель	<i>t</i> _{зам} , с	<i>t</i> _{диф.} с
H ₂ O	$6,70 \cdot 10^{-6}$	$2,1\cdot 10^{-4}$
$\mathrm{D}_2\mathrm{O}$	$4,80 \cdot 10^{-5}$	0,138
¹² C	1,49·10 ⁻⁴	0,015

• Тепловые нейтроны – 5·10⁻³ ... 0,625 эВ

$$S(E) = \frac{1}{n_0} \cdot \frac{dn}{dE} = \frac{2\pi}{(\pi kT)^{3/2}} \sqrt{E} e^{-\frac{E}{kT}},$$

$$E_{\rm cp} = \frac{1}{n_0} \int_0^\infty E \cdot n(E) \cdot dE = \frac{3}{2} k T_{\rm H\Gamma}. \quad E_{\rm HB} = k T_{\rm H.\Gamma}.$$

$$E_{\rm T} = (0.025 - 0.5) \text{ sB}.$$

• Тепловые нейтроны — 5·10⁻³ ... 0,625 эВ В водных урановых размножающих растворах:

 $T_{\text{\tiny H.\Gamma.}} \sim T \left(1 + 1, 8 \cdot \frac{\Sigma_a}{\Sigma_S} \right).$

Для размножающих систем с другими соединениями (кислотные или щелочные):

$$T_{\scriptscriptstyle exttt{H.f.}} \sim T \Bigg(1 + 0,91 \cdot rac{A \Sigma_a}{\Sigma_{\scriptscriptstyle S}} \Bigg).$$

• Тепловые нейтроны — 5·10⁻³ ... 0,625 эВ

$$\sigma_{n,\gamma} \sim 1/\upsilon$$

$$\sigma = g_W \cdot \sigma_0$$
 $g_W = \frac{2}{\sqrt{\pi}\sigma_0 E_T^2} \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{E_T}\right) dE.$

• Промежуточные нейтроны – $0,625...10^4$ эВ Спектр Ферми –

$$\Phi(E)\sim 1/E$$

Характеристики спектра Ферми засвистят от замедляющих свойств замедлителя.

Рис. 5. Зависимость микросечения радиационного захвата нейтронов Cd от кинетической энергии нейтрона

Рис. 6. Зависимость микросечения реакции деления от энергии налетающего нейтрона для различных нуклидов

Рис. 7. Зависимость сечения захвата (поглощения) и сечения деления ²³⁵U нейтронами от их энергии.

Рис. 8. Зависимость нейтронного сеченияв заимодействия от энергии нейтрона

• Формула Брейта-Вигнера:

$$\sigma_i(E) = \sigma_{0i}(E_{0i})(\Gamma_i/2)^2(E_{0i}/E_i)^{1/2}/((E_i - E_{0i})^2 + (\Gamma_i/2)^2),$$

• где σ_{0i} — максимальное значение сечения резонанса i-го актиноида; Γ_i — полуширина резонанса i-го актиноида; E_{0i} — энергия максимума резонанса i-го актиноида.

Взаимодействие нейтронов с веществом

$$\Phi(x) = \Phi(0) \cdot \exp(-\sigma Nx),$$

здесь $\Phi(x)$ – плотность потока нейтронов в веществе на расстоянии x от границы.

Рис. 9. Взаимодействие нейтронов с веществом

Взаимодействие нейтронов с веществом

$$T(\sigma, t) = e^{-nt \cdot \sigma}$$

$$\langle T \rangle = \sum_{k} a_k e^{-nt \cdot \sigma_k},$$

где a_k и σ_k — подгрупповые параметры.

- Быстрые нейтроны 10⁴ эВ ... 10 МэВ
- Характеристики спектра Уатта:

$$E_{\text{\tiny HB}} = 0.71 \text{ M}_{\text{\tiny 2}B}$$
 $E_{\text{\tiny cp}} = 2.0 \text{ M}_{\text{\tiny 2}B}$

$$\sigma_{n,\gamma} \sim 1/E^m, \ \sigma_{tot}(E) \approx 2\pi (R + \lambda_n)^2,$$

где m изменяется в пределах 1,0 < m < 1,6 и увеличивается с ростом E.

1. Тонкая мишень (d << R).

$$Y = n\sigma R$$
,

где Y — выход реакции; n — концентрация ядер мишени, яд/см³; σ —эффективное сечение реакции, см²; R — пробег частицы в веществе, см.

$$Y = 1 - \exp(-\sigma Nx)$$
 - толстая мишень.

Рис. 10. x – глубина, на которой рассматривается взаимодействие подающих частиц с ядрами мишени, R – пробег частицы в веществе, d – толщина мишени.

2. Толстая мишень (d>R).

В тонком слое dx, находящемся на глубине x, выход равен:

$$dY = \sigma(x)ndx$$
,

Глубина мишени равна пробегу бомбардирующих частиц R, следовательно:

$$Y = n \int_{0}^{R} \sigma(x) dx.$$

Сечение реакций σ (E):

$$Y(E) = n \int_{E_0}^{0} \frac{\sigma(E)}{\frac{dE}{dx}} dE = n \int_{0}^{E_0} \frac{\sigma(E)}{\frac{dE}{dx}} dE = n \int_{0}^{E_0} \frac{\sigma(E) dE}{\left|\frac{dE}{dx}\right|}.$$

$$\frac{dY}{dE} = n \cdot \frac{\sigma(E)}{\left| \frac{dE}{dx} \right|}, \qquad \sigma(E) = \frac{1}{n} \cdot \frac{dY}{dE} \cdot \left| \frac{dE}{dx} \right|.$$

EXPERIMENTAL NUCLEAR REACTION DATA (EXFOR)

EXPERIMENTAL NUCLEAR REACTION DATA (EXFOR)

6-C-13(A,N)8-0-16 EXFOR Request: 1964/1, 2009-Mar-27 18:58:45

Выводы:

- 1. Взаимодействие нейтронов с ядрами составляют самый обширный класс ядерных взаимодействий, так как нейтроны входят в состав любого ядра, в котором они прочно связаны ядерными силами.
- 2. Первичную классификацию взаимодействий нейтрона с ядром сводят к двум процессам: упругому рассеянию в поле ядерных сил, либо к захвату нейтрона ядром с образованием составного ядра.
- 3. Протекание той или иной реакции процесс вероятностный и характеризуется микро- и макро сечениями.

Выводы (продолжение):

- 4. Сечения зависят от энергии нейтронов. Формально нейтроны делятся на 3 три группы: тепловые, резонансные и быстрые нейтроны.
- 5. Энергетическая зависимость сечения от энергии для каждой группы имеет свой определенный вид.
- 6. Сечения нейтронных реакции в резонансной области сложным образом зависят от энергии нейтронов.

Программное обеспечение: Internet Explorer 5.0 и выше. — Режим

СПЕЦИАЛЬНОЕ ОБРАЩЕНИЕ С ЯДЕРНЫМИ МАТЕРИАЛАМИ

Сегодня: среда, 25 июня

2014 г.

Содержание лекции:

- 1. ЯДЕРНАЯ И РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ.
- 2. ПАРАМЕТРЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ.
- 3. ВЫХОД НЕЙТРОНОВ ПО КАНАЛУ СПОНТАННОГО ДЕЛЕНИЯ.
- 4. ВЫХОД НЕЙТРОНОВ В (α,n)-РЕАКЦИЯХ.

ЯДЕРНАЯ И РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Ядерная безопасность — свойства системы (ядерного объекта), обуславливающие невозможность ядерной аварии.

Радиационная безопасность — защищенность от прямого облучения всеми видами ионизирующего излучения.

ЯДЕРНАЯ И РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Нейтронно-физический расчет

- 1. Расчет нуклидного состава ОЯТ.
- 2. Нуклидный состав топлива и специальное обращения с ядерными материалами.
- 3. Расчет источников излучения в ОЯТ.
- 4. Расчет микро- и макросечений и связанных ними функционалов ($k_{9\phi\phi}$, поток и др.).

1. Расчет нуклидного состава топлива.

Накопление и убыль концентраций N_i нуклидов В ОЯТ решается посредством системы дифференциальных уравнений вида:

$$\frac{dN_i}{dt} = -\omega_i N_i + \sum_{j=i+1}^{I} \omega_{ji} N_{ji}$$
 (*)

где $\omega_i = \lambda_i + \sigma_i \Phi$, $\omega_{ji} = \lambda_{ji} + \sigma_{ji} \Phi$, $\Phi - э \phi \phi$ ективная плотность потока нейтронов.

1. Расчет нуклидного состава топлива

(продолжение).

Двухкомпонентное представление скорости реакций в твэл таких реакторов следующее:

$$\sigma_i = g_i^w \sigma_i^0 + \gamma I_i$$
, cm²,

 σ_i^0 — сечение взаимодействия при энергии

$$E_0 = 0.0253 \text{ 3B, cm}^2;$$

 g_i^w — фактор Вескотта;

 I_i — эффективней резонансный интеграл от граничной энергии $E_{rp} = 0.5$ эВ, см²;

γ – жесткость спектра нейтронов.

1. Расчет нуклидного состава топлива (продолжение).

Резонансное поглощение определяется резонансным интегралом вида:

$$I_i = \int_{E_{ro}}^{\infty} \sigma_i(E) \frac{dE}{E}.$$

Жесткость спектра нейтронов может быть найдена следующим образом:

$$\gamma = \frac{v_f \sum_{i} \sigma_{fi} N_i}{\sum_{i} \xi_i N_i \sigma_{si}},$$

1. Расчет нуклидного состава топлива (продолжение).

Эффективная плотность потока тепловых нейтронов в активной зоне ядерного реактора:

$$\Phi = \frac{\overline{N}}{E_f \sum_i \sigma_{fi} N_i \cdot V}$$
, нейтр./(см²·с)

Система дифференциальных уравнений (*)

$$\frac{dN_{i}}{dt} = -\omega_{i}N_{i} + \sum_{j=i+1}^{I} \omega_{ji}N_{ji}$$

в общем случае нелинейна, так как скорости реакций зависят от реакторного спектра нейтронов, который в свою очередь зависти от числа ядер N_i .

1. Расчет нуклидного состава топлива

(продолжение)

Схема ядерно-физических процессов, происходящих в топливе на основе композиций: ²³²Th —²³³U — ²³⁵U—²³⁸U —²³⁹Pu

$$\frac{dN_{i}}{dt} = -\omega_{i}N_{i} + \sum_{j=i+1}^{I} \omega_{ji}N_{ji}$$

2. Нуклидный состав топлива и специальное обращения с ядерными материалами.

- 1. Численный метод Рунге-Кутта в отечественной программе ТВС-М.
- 2. Аналитическое решения дифференциальных уравнений в программе Origen-Arp (SCALE 5/0).
- 3. В Физико-энергетическом институт разработана программа WIMS, предназначенная для нейтроннофизического расчета реакторов типа ВВЭР.
- 4. Специалистами Лос-Аламосской лабораторией разработаны ППП MONTEBURNS (MCNP-5, Origen-S и Origen-Arp).

ВЫХОД НЕЙТРОНОВ ПО КАНАЛУ СПОНТАННОГО ДЕЛЕНИЯ

3. Расчет источников излучения в ОЯТ.

3.1. Выход нейтронов по каналу спонтанного деления:

$$Q_i^{sf} = m_i \cdot q_i^{sf} \cdot v_i^{sf}$$
, нейтр./с $m(Z) \sim \alpha \cdot Z^{4,85}$, г/т

Рис. 11. Спектр нейтронов спонтанного деления ядер актиноидов

ВЫХОД НЕЙТРОНОВ В (α,n)-РЕАКЦИЯХ

3. Расчет источников излучения в ОЯТ

3.2. Особенности (α,п)-реакции:

$$\overline{E} = \frac{\int_{0}^{E_{\text{max}}} E \cdot S(E) dE}{\int_{0}^{E_{\text{max}}} S(E) dE}.$$

Рис. 12. Спектр нейтронного излучения облученной двуокиси плутония

ВЫХОД НЕЙТРОНОВ В (α,n)-РЕАКЦИЯХ

3.2. Особенности (α,n)-реакции:

Рис. 13. Спектры нейтронов облученного штатного топлива теплового водоводяного реактора.

Рис. 14. Спектр нейтронного излучения облученной двуокиси плутония.

ВЫХОД НЕЙТРОНОВ В (α,Ν)-РЕАКЦИЯХ

3. Расчет источников излучения в ОЯТ

3.2. Особенности (α,п)-реакции:

$$\alpha + {}_{Z}X^{A} \longrightarrow_{Z+2} C^{*A+4} \longrightarrow n + {}_{Z+2}Y^{A+3} + Q$$

$$B_K \approx \frac{Z \cdot z}{A_1^{1/3} + A_2^{1/3}}, \text{M\niB.}$$

$$Q = (m_{\alpha} + M_X - \underline{m}_n - M_Y) \cdot \mathbf{c}^2.$$

$$E_{\alpha,n}^{\text{nop}} \ge |Q| \frac{M_X + m_\alpha}{M_X}.$$

ВЫХОД НЕИТРОНОВ В (α, N) -

3. Расчет источников излучения в ОЯТ

3.3. *Выход нейтронов* в результате (α,n) -реакции:

$$Q_i^{\alpha,n}(E) = m_i q_i^{\alpha,n}(E)$$
, нейтр./с,

 m_i — масса α -активного актиноида, Γ ;

 $q_i^{\alpha,n}(E)$ — удельный выход нейтронов, нейтр./(с·г).

$$q_i^{\alpha,\mathrm{n}}(E) = q_i^{\alpha} \cdot n_j \int_{B_j}^{E_i} \frac{\sigma_j^{\alpha,\mathrm{n}}(E)}{f_{\mathrm{coeg}}(E)} dE$$
, нейтр./(с·г)

f(E) = (-dE/dx) — ионизационные потери энергии α частицы на атомах i-го соединения, МэВ/см.

выход нейтронов в (α,N)-реакциях

3. Расчет источников излучения в ОЯТ

3.3. При расчете сечения (α,n)-реакций можно воспользоваться

моделью:

$$\sigma_j^{\alpha,n}(E_i) = \frac{1}{N_j} \cdot \frac{dY_j(E)}{dE} \cdot |f_j(E)|, \text{cm}^2.$$

 $dY_j(E)/dE$ — производная от полуэмпирической функции Y(E), МэВ $^{-1}$.

ВЫХОД НЕЙТРОНОВ В (α,N)-РЕАКЦИЯХ

3. Расчет источников излучения

в ОЯТ

3.3. Выход нейтронов в результате (α,п)-реакции:

$$q_i^{\alpha,\mathrm{n}}(E) = q_i^{\alpha} \cdot n_j \int_{B_j}^{E_i} \frac{\sigma_j^{\alpha,\mathrm{n}}(E)}{f_{\mathrm{coeg}}(E)} dE$$
, нейтр./(с·г)

$$E_{i} = \frac{\sum_{i=1}^{n} E_{\alpha_{i}} \cdot n_{\alpha_{i}}}{\sum_{i=1}^{n} n_{\alpha_{i}}}, \text{M3B} \qquad \int = n_{j} \int_{B_{j}}^{E_{i}} \frac{\sigma_{j}^{\alpha, n}(E)}{f_{\text{coeg}}(E)} dE.$$

где n — полное число энергетических групп α -частиц; $E_{\alpha i}$ — средняя энергия α -частиц i-ой группы, МэВ; $n_{\alpha i}$ — квантовый выход (среднее число α -частиц с энергией E_i , приходящихся на один акт распада ядра) α -частиц i-ой группы, (Бк·с) $^{-1}$.

ВЫХОД НЕЙТРОНОВ В (α,N)-РЕАКЦИЯХ

3.3. Радиационные характеристики некоторых радионуклидов и их соединений

Нуклид	$E_i^{lpha},$ МэВ	$q_{i}^{lpha}, \ lpha/\mathrm{c}/\Gamma$	$q_i^{sf}, sf/c/\Gamma$	$Q_i^{sf}, ext{H/c/}\Gamma$	$q_i^{lpha, \mathbf{n}}(\mathrm{MeO2})/$ $\omega_i, \mathrm{H/c/\Gamma}$	$q_i^{\alpha, \mathbf{n}}(\text{MeN})/\omega_i, _{\mathrm{H/c/\Gamma}}$
235U	4,34	8,002·104	5,601·10 ⁻⁶	1,348·10 ⁻⁵	4,588·10 ⁻⁴	3,839·10 ⁻⁵
²³⁸ Pu	5,49	6,342·10 ¹¹	1,205·10 ³	$2,808\cdot10^3$	1,337·10 ⁴	9,430·10²
²³⁹ Pu	5,15	2,297·109	$7,122 \cdot 10^{-3}$	2,047·10 ⁻²	3,400·10	2,476
²⁴⁰ Pu	5,16	8,403·109	4,790·10²	1,030·10³	1,247·10²	9,192
²⁴² Pu	4,89	1,459·108	8,023·10²	$1,709 \cdot 10^3$	1,608	0,123
²⁴² Cm	6,10	1,226·10 ¹⁴	7,604·106	1,772·10 ⁷	4,650·10 ⁶	3,031·10 ⁵
²⁴⁴ Cm	5,80	2,998·10 ¹²	4,107·106	1,109·107	8,483·10 ⁴	5,740·10 ³

РАСЧЕТ МИКРО- И МАКРОСЕЧЕНИЙ И СВЯЗАННЫХ НИМИ ФУНКЦИОНАЛОВ

(*К*эфф, ПОТОК)

Беденко, Сергей Владимирович. Основы учета и контроля делящихся материалов в производстве [Электронный ресурс]: учебное пособие / С. В. Беденко, И. В. Шаманин; Национальный исследовательский Томский политехнический университет (ТПУ). — 1 компьютерный файл (pdf; 3.4 MB). — Томск: Изд-во ТПУ, 2011. — Заглавие с титульного экрана. — Электронная версия печатной публикации. — Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader. — Схема доступа:

http://www.lib.tpu.ru/fulltext2/m/2012/m259.pdf