## ВВЕДЕНИЕ В ЯДЕРНУЮ ФИЗИКУ

- 1. Предмет «Ядерная физика».
- 2. Основные свойства атомных ядер.
- 3. Модели атомных ядер.
- 4. Радиоактивность.
- 5. Взаимодействие излучения с веществом.
- 6. Ядерные реакции. Законы сохранения в ядерных реакциях.
- 7. Взаимодействие ионизирующего излучения с веществом. Тяжелые зараженные и легкие заряженные частицы. Гамма-кванты.
- 8. Деление ядер.

## 1. ПРЕДМЕТ «ЯДЕРНАЯ ФИЗИКА».

1.1. Объекты микромира (с которого как правило начинается изучение ЯФ). Частица, античастица, виртуальная частица, аннигиляция, нуклид, ядро, изотоп ...(знать определения).

## Пример 1:

Квантом гравитационного взаимодействия является:

- - гамма-квант
- - мезон
- гравитон
- лептон
- - бозон
- 1.2. Свойства нуклонов, стабильных ядер и их взаимодействий (фундаментальные взаимодействия).

Элементарные частицы, фундаментальные частицы, переносчики взаимодействия.

#### Пример 2:

Верно/неверно

По современным представлениям вещество нашей Вселенной построено из фундаментальных частиц, число типов которых невелико и которые взаимодействуют между собой посредством четырех видов сил (взаимодействий): гравитационное, слабое, электромагнитное и сильное (ядерное) взаимодействия.

По современным представлениям вещество нашей Вселенной построено из виртуальных частиц, число типов которых невелико (электроны, кварки, глюоны, фотоны и бозонов Хиггса — Стандартная Модель) и которые взаимодействуют между собой посредством четырех видов сил (взаимодействий): гравитационное, слабое, электромагнитное и сильное (ядерное) взаимодействия.

ВИРТУАЛЬНЫЕ ЧАСТИЦЫ, частицы, которые непосредственно не наблюдаются, поскольку существуют чрезвычайно короткое время.

# 1.3. «Новая физика»: специальная теория относительности и квантовая теория.

Посмотрите общие положения этих теорий. Большинство вопросов по этому разделу - это тип верно/неверно.

#### Для задач:

- 1. Соотношению Эйнштейна, каждому значению массы в кг соответствует определенное количество энергии в Дж  $E = mc^2$ .
- 2. Соотношение СТО, связывающее E, m и импульс свободной частицы p:  $E^2 = p^2 c^2 + m^2 c^4$ .
- 3. Полная энергия релятивистской частицы:

$$E = T + mc^2 = \frac{mc^2}{\sqrt{1 - v^2/c^2}}.$$

- 4. Соотношение де Бройля:  $\hat{\chi}_{p} = \hbar$ . Луи де Бройль выдвигает гипотезу, согласно которой каждой частице с импульсом р можно поставить в соответствие некоторую волну с длиной  $\lambda$ , частотой v и волновым числом  $k = 2\pi/\lambda$ .
- 5. Соотношение неопределенности Гейзенберга:

$$\Delta x \cdot \Delta p \ge \hbar$$
.  $\Delta E \cdot \Delta t \ge \hbar$ .

Это соотношение показывает, что в квантовой механике утрачивается привычное представление о траектории. Согласно принципу неопределенности у частицы не могут быть одновременно точно измерены положение и скорость (импульс).

## 2. ОСНОВНЫЕ СВОЙСТВА АТОМНЫХ ЯДЕР.

- 2.1. Модели атомов: Атом Бора, Томсона.
- 2.2. Опыт Резерфорда.
- 2.3. Структура атомов, ядер и нуклонов.
- 2.4. Основные определения физики атомного ядра.

#### Пример:

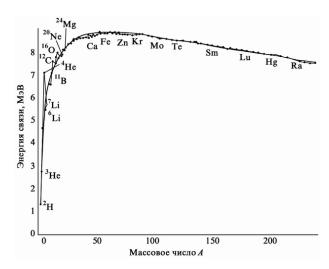
Какая часть атома вносит основной вклад в рассеяние альфа-частиц в опытах Резерфорда?

- атомное ядро
- нуклон
- протон
- нейтрон.

## 3. МОДЕЛИ АТОМНЫХ ЯДЕР.

## 3.1. Свойства стабильных и радиоактивных ядер.

Стабильные и радиоактивные ядра. Их характеристики.


## 3.2. Ядерные реакции, энергетический баланс ядерной реакции.

Ядерные реакции, энергия ядерной реакции, экзотермические и эндотермические ядерные реакции.

## 3.3. Энергия связи.

Зависимость удельной энергии связи от массового числа.

$$\Delta E_{\rm cB} = \Delta m \cdot c^2 = Z m_{\rm H} + (A - Z) m_n - M (A, Z)$$



Зависимость средней энергии связи на нуклон от массового числа А.

# 3.4. Капельная модель. Полуэмпирическая формула Вейцзеккера.

Согласно капельной модели атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью ( $\sim 10^{17} \, {\rm kr/m}^3$ ). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности процесс деления тяжелых ядер.

$$\Delta E_{_{\mathrm{CB}}} = 15,75A - 17,8A^{2/3} - 0,71\frac{Z^2}{A^{^{1/3}}} - 94,8\frac{\left(\frac{A}{2} - Z\right)^2}{A} + \frac{34}{A^{^{3/4}}}\delta.$$

Свойства ядерных сил, способы определения размеров ядер. Основная классификация моделей ядер и зачем эти модели создавались.

Дополнительно знать определения: Волновая функция, квантовые числа, ур-ие Шредингера, корпускулярные и волновые свойства объектов микромира.

#### Пример:

Сопоставьте величину ядерных сил, действующих внутри ядра между двумя протонами (Fpp), двумя нейтронами (Fnn), протоном и нейтроном (Fpn)

1) 
$$(Fpp) < (Fnn) < (Fpn)$$

$$2) (Fpp) = (Fnn) > (Fpn)$$

## 4. РАДИОАКТИВНОСТЬ

4.1. Радиоактивные ядра. Радиоактивность.

Что такое радиоактивность, основной закон радиоактивного распада, простой и сложный распад. Виды излучения.

4.2. Активность радионуклида. Единицы измерения.

Активность – определение. Знать, как активность образца связана с потоком частиц испускаемым образцом.

4.3. Радиация, радиометрия, радиоактивный распад, туннельный эффект (определения).

Дополнительно – метастабильный уровень, потенциальный барьер, радиационный фон, трек. Стабильные и радиоактивные ядра – основной критерий.

# 5. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

- 5.1. Виды излучения (определения).
- 5.2. Аннигиляция, ионизация, сцинтилляция, поток частиц, плотность потока частиц и т.п. (определения).

В основное вопросы типа верно/верно.

# 6. ЯДЕРНЫЕ РЕАКЦИИ. ЗАКОНЫ СОХРАНЕНИЯ В ЯДЕРНЫХ РЕАКЦИЯХ

6.1. Ядерная реакция. Энергия реакции. Экзотермические и эндотермические реакции.

Определения и основные соотношения позволяющие рассчитать, потенциальный барьер и порог реакции:

Кулоновский барьер:

$$B_{\rm K} = \frac{zZe^2}{R} = \frac{zZe^2}{1.4 \cdot 10^{-13} \left( A_1^{1/3} + A_2^{1/3} \right)} \approx \frac{Z \cdot z}{A_1^{1/3} + A_2^{1/3}},$$

Центробежный барьер:

$$B_l = \frac{\hbar^2 l(l+1)}{2\mu R^2} \approx \frac{10l(l+1)}{A_1 A_2^{2/3}},$$

Проницаемость кулоновского барьера:

$$D = e^{-2C_l} = e^{-2\sqrt{\frac{2\mu}{\hbar}} \int_{R}^{T_e} \sqrt{V(r) - E} dr},$$

$$C_l = g\left(\frac{1}{\sqrt{x}} \left(\arccos\left(\sqrt{x}\right)\right) - \sqrt{1 - x}\right).$$

$$x = \frac{E}{B_l} = 0, 2.$$

$$g = \sqrt{\frac{2zZe^2R\mu}{\hbar^2}} = 1, 9.$$

## Пример:

Для реакции  $^{19}$  F( $\alpha$ , n) $^{22}$ Na найти энергию реакции (МэВ).

1)-1

2)1,92

3)-1,92

4)2,1

- 6.2. Эффективное сечение ядерной реакции. Единицы измерения.
- 6.3. Законы сохранения в ядерных реакциях.

# 7. ВЗАИМОДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

- 7.1. Тяжелые зараженные и легкие заряженные частицы.
- 7.2. Гамма-кванты.
- 7.3. Виды ионизирующих излучений, дозиметрическая аппаратура.

В основном все вопросы типа: верно/верно.

И определения, которые вам нужно посмотреть в учебниках по дозиметрии: Гамм-излучение, ионизирующее излучение, тормозное или корпускулярное.

#### Пример:

Верно/неверно

Рентгеновское излучение – фотонное излучение, состоящее из тормозного и (или) характеристического излучений.

Рентгеновское излучение – фотонное излучение, состоящее из тормозного излучений.

Рентгеновское излучение – фотонное излучение, состоящее из характеристического излучений.

Рентгеновское излучение – фотонное излучение, состоящее из тормозного и характеристического излучений.

## 8. ДЕЛЕНИЕ ЯДЕР

- 8.1. Активная зона, ядерный реактор (реакторная установка), системы управления и защиты, энергоблок, атомная станция (определения).
- 8.2. Ядерная и термоядерная энергия (определения).
- 8.3. Условия осуществления и управления ядерной реакцией.

- 8.4. Критическая масса, коэффициент размножения нейтронов (определения).
- 8.5. Самоподдерживающаяся цепная ядерная реакция (определения).
- 8.6. Ядерный делящийся материал, ядерное топливо, ядерное горючее (определения).

Вопросы этого раздела в основном состоят из вопросов типа верно/верно.

## Пример 1:

верно/неверно

Коэффициент размножения – главный показатель, характеризующий цепную ядерную реакцию; определяется как отношение числа нейтронов данного поколения к числу нейтронов предыдущего поколения.

Коэффициент размножения – главный показатель, характеризующий цепную ядерную реакцию; определяется как отношение числа запаздывающих нейтронов данного поколения к числу запаздывающих нейтронов предыдущего поколения.

#### Пример 2:

верно/неверно

Самоподдерживающаяся цепная ядерная реакция (сцр) – управляемая цепная ядерная реакция, которая характеризуется Кэфф ≥1.

Самоподдерживающаяся цепная ядерная реакция (сцр) – управляемая термоядерная реакция, которая характеризуется Кэфф ≥1.

# ПРИМЕРЫ ТИПОВЫХ ЗАДАЧ:

- 1. Энергия гамма-кванта, испускаемого атомом при его переходе с одного энергетического уровня на другой определяется выражением  $(E_1 E_2)$ .
- 2. Ядро В<sup>10</sup> из возбужденного состояния с энергией 0,72 МэВ распадается путем испускания у-квантов с периодом полураспада  $T_{1/2} = 6,7 \cdot 10^{-10}$  с. Оценить неопределенность в энергии  $\Delta E$  ( \_\_\_\_\_\*10<sup>-7</sup> эВ) испущенного у-кванта (решение).

*Решение:* известно, что между энергией данного состояния и его временем жизни имеет место соотношение Гейзенберга.

$$\Delta E \cdot \Delta t \approx \hbar$$
.

где  $\Delta E$  — ширина соответствующего уровня энергии (неопределенность в энергии);  $\Delta t$  — время жизни возбужденного состояния.

Из соотношения Гейзенберга получим значение для  $\Delta E$ :

$$\Delta E \approx \frac{\hbar}{\tau} = \frac{\hbar \cdot \ln 2}{T_{1/2}} = \frac{0.66 \cdot 10^{-15} \, \text{3B} \cdot \text{c} \cdot 0.69}{6.7 \cdot 10^{-10} \, \text{c}} \approx 7 \cdot 10^{-10} \, \text{3B}.$$

Ответ:  $\Delta E \approx 7 \cdot 10^{-10}$  эВ.

3. Рассчитать длины волн (в единицах Ферми) протона и электрона с кинетической энергией T = 10 MэB.

Решение: в соответствии с соотношением де Бройля импульс частицы и ее длина волны связаны соотношением:

$$\lambda p = \hbar$$
.

Так как протон нерелятивистский  $\left(T_{_{p}}\ll m_{_{p}}c^{2}\right)$ , то импульс частицы равен:

$$p = \sqrt{2mT_p}.$$

Тогла

$$\lambda \approx \frac{\hbar}{p} = \frac{\hbar c}{pc} = \frac{\hbar c}{\sqrt{2mTc^2}}.$$

Учитывая, что  $\hbar c = 197 \text{ МэВ} \cdot \Phi \text{м}$ , получим

$$\hat{\lambda}_p = \frac{197 \text{M} \cdot 3 \text{B} \cdot \Phi_{\text{M}}}{\sqrt{2 \cdot 938,3 \text{M} \cdot 3 \text{B} \cdot 10 \text{M} \cdot 3 \text{B}}} \approx 1,4^{\Phi_{\text{M}}}.$$

Полная энергия релятивистской частицы равна:

$$E = T + m \cdot c^2.$$

Электрон релятивистский. Учитывая, что  $T_{\rm e}\gg m_{\rm e}c^2$ , из последнего соотношения получим выражение для импульса: E=T=pc.

Тогда выражение для длины волны примет вид:

$$\hat{\lambda}_e \approx \frac{\hbar}{p_e} = \frac{\hbar c}{T_e} = \frac{197 \text{ M} \cdot \text{B} \cdot \Phi_{\text{M}}}{10 \text{ M} \cdot \text{B}} \approx 20 \text{ }\Phi_{\text{M}}.$$

Ответ:  $\lambda_e \approx 20 \, \Phi_{\rm M}$ .

- 4. Длина волны фотона =  $3.10^{-11}$ см. Вычислить импульс  $p_v$  ( МэВ/с) фотона.
- 5. Какая энергия (МВт \*час) соответствует 1 грамму вещества?

Решение: Воспользуемся соотношением Эйнштейна, каждому значению массы в кг соответствует определенное количество энергии в Дж.

$$E = mc^2$$
.

Ответ:  $E = 9 \cdot 10^{13}$  Дж = 5,6 ⋅  $10^{26}$  МэВ = 25000 МВт ⋅ час.

- 6. Сколько энергии (\_\_\_\_\_\*10<sup>17</sup>Дж) выделят при аннигиляции 1 кг вещества и 1 кг антивещества.
  - Решается аналогично предыдущей задачи.
- 7. Используя постоянную Авогадро  $N_A$ =6,022·1023 моль<sup>-1</sup> определить массу нейтрального атома <sup>238</sup>U (\_\_\_\_\_\*10<sup>-27</sup> кг).

#### Решение.

Число молекул (атомов) в одном моле вещества называется постоянной Авогадро  $N_A$ =6,022 ·  $10^{23}$  моль $^{-1}$ . Согласно определению масса атома M(A, Z) связана с молярной массой  $\mu$  и постоянной Авогадро  $N_A$  следующим соотношением:

$$M(A, Z) = \frac{\mu}{N_A}$$
, КГ.

- 8. Естественный уран представляет собой смесь трех изотопов, а именно:  $_{92}U^{238}$ ,  $_{92}U^{235}$ и  $_{92}U^{234}$ . Относительные атомные массы этих элементов соответственно равны:  $A_{r1}$ =238,051,  $A_{r2}$ =235,044 и  $A_{r1}$ =234,041. Вычислить относительную атомную массу элемента урана, если процентное содержание этих изотопов в естественной смеси равно: 99,28 %, 0,714 %, 0,006 %.
- 9. Бор представляет собой смесь двух изотопов с относительными атомными массами 10,013 и 11,009. Сколько % каждого из этих изотопов содержится в естественном боре? Относительная атомная масса элемента бора равна 10,811 (решение).

Решение: Согласно определению, относительная атомная масса смеси определяется соотношением:

$$A_{r1} \cdot \omega_1 + A_{r2} \cdot \omega_2 + ... = A_{r}$$
. (1)

Используя соотношение (1) и то, что  $\omega_1 + \omega_2 = 1$  получим следующую систему из двух уравнений:

$$A_{r1} \cdot \omega_1 + A_{r2} \cdot \omega_2 = A_r$$
  
$$\omega_1 + \omega_2 = 1$$

Из решения данной системы следует, что  $\omega_1$ =79,8%;  $\omega_2$ =20,2%

- 10. Чему равна энергия взаимодействия двух нейтронов на расстоянии 10<sup>-10</sup> см (10<sup>52</sup> Дж). Нужно выяснить какие силы или какое взаимодействие на данном расстояние действует и исходя из этого решить задачу.
- 11. Радиус первой боровской орбиты электрона в атоме водорода равен 0,5\*10<sup>-10</sup>м, второй, третьей и четвертой соответственно в 4, 9 и 16 раз больше. На какой орбите скорость электрона наибольшая? (на 1-й).

Решение: Записать ур-ие движения заряженной частицы вокруг положительно заряженного ядра.

- 12. Энергия ионизации атома кислорода равна 16,5 эВ. Найдите максимальную длину волны ионизирующего излучения (нм). h = 4,1\*10<sup>-15</sup> эВ\*с (75 нм).
- 13. С помощью формулы Вайцзеккера рассчитать энергию (МэВ) отделения нейтронов (МэВ) для Са<sup>38</sup> (18.4).
- 13.1. С помощью формулы Вайцзеккера рассчитать энергию отделения нейтронов (МэВ) для Са<sup>40</sup> (15.7).
- 13.2. С помощью формулы Вайцзеккера рассчитать энергию отделения нейтронов (МэВ) для Са<sup>48</sup> (8.1)
- 14. Массы нейтрона и протона в энергетических единицах равны соответственно  $m_{\rm n}$  = 939,6 МэВ и  $m_{\rm p}$  = 938,3 МэВ. Определить массу ядра  ${\rm H}^2$  в энергетических единицах (МэВ), если энергия связи дейтрона  ${\rm E}_{\rm cs}({\rm A=2,Z=1})$  =2,2 МэВ (1875,7).

$$\Delta E_{_{\mathrm{CB}}} = \Delta m \cdot c^2 = Zm_{_{\mathrm{H}}} + (A - Z)m_{_{D}} - M(A, Z)$$

- 15. Эмпирическая зависимость радиуса ядра R от числа нуклонов A (A > 10)  $R \approx r_0 A^{1/3}$ . Параметр  $r_0 \approx 1,23 \cdot 10^{-13}$  см = 1.23 Фм приблизительно одинаков для всех ядер. Оценить радиус  $U^{238}$  (в единицах Ферми).
- 16. Чему равна масса нейтрона в энергетических единицах (МэВ)?

Будет ряд задач в которых нужно найти массы протона, электрона или дейтрона, массу 1 а.е.м.

17. Активность  $^{65}$ Zn  $A_{Zn}$  = 1 ГБк. Для этого радионуклида  $\beta^+$ -частицы испускаются в 1,46 % случаях распада. Сколько бетта-частиц (\_\_\_\_10 $^7$   $\beta^+$ -частиц/с) будет испускать этот радионуклид (Ответ-решение).

Решение: этот радионуклид активностью  $A_{\rm Zn}$  = 1 ГБк будет испускать 1,4 · 10<sup>7</sup> β<sup>+</sup>-частиц/с.

18. Для реакции  $^{19}$ F( $\alpha$ , n) $^{22}$ Na найти энергию реакции (MэB)  $\frac{(-1,92)}{(-1,92)}$ 

$$Q = (m_a + M_v - m_v - M_v) \cdot c^2.$$

Если Q > 0, то реакция называется экзотермической и сопровождается выделением

Если Q > 0, то реакция называется *экзотермической* и сопровождается выделением кинетической энергией за счет уменьшения потенциальной энергией покоя. Экзотермические реакции  $(\alpha, n)$  идут при любой энергии  $\alpha$ -частиц благодаря *туннельному эффекту*, проникая через потенциальный барьер ядра  ${}_{Z}X^{A}$ . Реакции  $(\alpha, n)$ -реакции экзотермичны лишь для следующих семи нуклидов:  ${}^{9}$ Be,  ${}^{10}$ B,  ${}^{11}$ B,  ${}^{13}$ C,  ${}^{17}$ O,  ${}^{25}$ Mg,  ${}^{26}$ Mg.

Во всех остальных случаях энергия  $\alpha$ -частиц  $E_{\alpha}$  должна превосходить некоторую величину  $E_{\alpha,\mathrm{n}}^{\mathrm{nop}},$  называемою порогом реакции и вычисляемую по формуле:

$$E_{\alpha,n}^{\text{nop}} \geq |Q| \frac{M_X + m_\alpha}{M_X}.$$

Для реакции  $^{18}$ O( $\alpha$ , n) $^{21}$ Ne, Q=-0.7 MэВ и  $E_{\alpha,n}^{\text{пор}}=0.855$  МэВ, а для реакции  $^{19}$ F( $\alpha$ , n) $^{22}$ Na, Q=-1.92 МэВ и  $E_{\alpha,n}^{\text{пор}}=2.33$  МэВ. Первая реакция используется для аналитического контроля урана и плутония в водных или щелочных растворах. Вторая реакция для контроля урана и плутония во фторидных соединениях.

#### Пример:

1)F-19

На каком изотопе фтора ( $\alpha$ , n)-реакция используется для аналитического контроля урана и плутония во фторидных соединениях.

2)F-20

3)F-21

4)F-22

- 19. Распад покоящихся ядер <sub>84</sub>Po<sup>210</sup> происходит из основного и сопровождается испусканием двух групп  $\alpha$ -частиц: основной с энергией  $E_{\alpha 1} = 5,30 \, \text{МэВ}$  и слабой (по интенсивности) с энергией  $E_{\alpha 2} = 4,50$  МэВ. Найти энергию ү-квантов (МэВ), испускаемых дочерними ядрами (0,82).
- 20. Изотоп углерода  ${}_{6}C^{11}$  претерпевает позитронный распад. Найти энергию  $\beta^{+}$ -распада (M<sub>3</sub>B) (0,931).
- 21. Ядро уран-238 взаимодействует с нейтроном с образованием изотопа, который испытывает последовательно 2 бета-распада, в какое ядро превращается этот изотоп.

Будет задача на альфа-распад, аналогичные задачи с торием-232.

- 22. Активность препарата <sup>32</sup>Р равна 2 мкКи. Сколько весит (\_\_\_\_\_·10<sup>-12</sup> г) такой препарат?
- 23. Определить проницаемость кулоновского барьера ядра  $_{13} {\rm Al}^{27}$  по отношению к протону с кинетической энергией 1 МэВ.

Решение: Проницаемость определим из соотношения:

$$D = e^{-2C_l} = e^{-2\sqrt{\frac{2\mu}{\hbar}} \int_R^{r_e} \sqrt{V(r) - E} dr}$$

где потенциальная энергия, согласно условию задачи включает в себя только кулоновский барьер, имеет вид:

$$V(r) = \frac{zZe^2}{r}$$
 M  $V(r_e) - E = 0$ ;  $B_l = V(R)$ .

Решение для  $C_1$  можно получить положив параметр y = 0 (так как рассматривается только кулоновский барьер) в общем выражении для С<sub>і</sub>:

$$C_1 = g \left( \frac{1}{\sqrt{x}} \left( \arccos\left(\sqrt{x}\right) \right) - \sqrt{1-x} \right)$$

Радиус ядра равен:

$$R = 1.4 \cdot 10^{-13} \cdot A^{1/3} = 1.4 \cdot 10^{-13} \cdot 27^{1/3} = 4.2 \cdot 10^{-13} \text{ cm}.$$

Согласно условию задачи необходимо найти проницаемость кулоновского барьера, поэтому высота барьера будет определяться соотношением:

$$B_l = B_K \approx \frac{Z \cdot z}{A^{1/3}} = 4,3 \text{ M}_3B.$$

Приведенная масса системы, равна:

$$\mu = \frac{m_p \cdot M_{Al}}{m_p + M_{Al}} \approx m_p \cdot$$

Величины, входящие в интеграл С соответственно равны:

$$g = \sqrt{\frac{2zZe^2R\mu}{\hbar^2}} = 1.9$$

$$x = \frac{E}{B_l} = 0.2$$

Подставляя найденные значения в выражение для С, получим:

$$C_1 = 2.6$$

 $C_{l}=2,6.$  Проницаемость кулоновского барьера ядра  $^{27}Al$  по отношению к протону с кинетической энергией 1 МэВ, равна:

$$D = e^{-2C_l} = e^{-5.2} \approx 0.005$$
.

24. Точечный радиоактивный источник 60Со находится в центре свинцового сферического контейнера с толщиной стенок x = 1 см и наружным радиусом R = 20 см. Определить максимальную активность Amax (\_\_\_\_\_10<sup>6</sup> Бк) источника, который можно хранить в контейнере, если допустимая плотность потока Фдоп у-квантов при выходе из контейнера

равна 8 ·  $10^6$  1/(с · м2). Принять, что при каждом акте распада ядра 60Co испускается n = 2 у-квантов, средняя энергия которых  $E_Y = 1,25$  M3B (3,8).

25. Сколько нейтронов будет в размножающей системе (\_\_\_\_10<sup>5</sup>) в 100-м поколении, если процесс деления начинается с 1000-го нейтрона, к∞=1,05 (решение).

Решение. В идеализированной надкритической размножающей системе, то есть в системе бесконечных размеров, в которой отсутствует поглощение и утечка нейтронов, количество нейтронов в каждом новом поколении растет в соответствии с геометрической прогрессией:

$$N_n = N_1 \cdot q^{n-1},$$

rge 
$$n = 100$$
,  $N_1 = 1000$ ,  $q = k_{\infty} = n_2 / n_1 = 1,05$ .

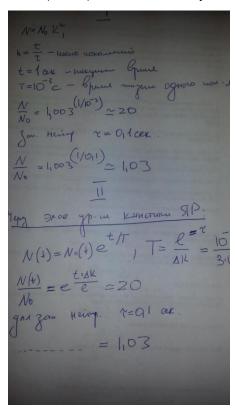
Тогда, для n=100 получим:

$$N_{100} = 1000 \cdot 1,05^{99} = 1,25 \cdot 10^5.$$

26.

27.

28.


29. Определить количество делений и поглощений (\_\_\_\_\_\*10<sup>8</sup>1/м³/c) без делений за 1 с в размножающей среде с U-235, где  $n = 10^{12}$  нейтр./м³, а концентрация горючего –  $N^5$ =5·10<sup>24</sup> м³. Энергия тепловых нейтронов  $E_{TH} = 0,025$  эВ, сечение деления при этой энергии, сечение радиационного захвата – известны (Решение-ответ).

Аналогичные задачи найдете в книге Владимирова В.И. «Физика ЯР»

30. Сколько нужно разделить и «сжечь» урана-235 (\_\_\_\_гр.), чтобы получить энергию 1МВт\*сут в тепловом ректоре (1,05; 1,23).

Аналогичные задачи найдете в книге Владимирова В.И. «Физика ЯР»

31. Во сколько возрастет плотность нейтронов в размножающей системе за 1 с при кэфф = 1,003 (Ответ). Этаже задача с учетом запаздывающих нейтронов.

