РАСЧЕТ ТЕХНОЛОГИЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ ПРИ ЕЕ ПЕРЕДАЧЕ ПО ЭЛЕКТРИЧЕСКИМ СЕТЯМ

1. Структура технологических потерь электроэнергии при ее передаче по электрическим сетям

Технологические потери электроэнергии (ТПЭ) при ее передаче по электрическим сетям включают в себя технические потери в линиях и оборудовании электрических сетей, обусловленные физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования, с учетом расхода электроэнергии на собственные нужды подстанций и потери, обусловленные допустимыми погрешностями системы учета электроэнергии. Объем технологических потерь электроэнергии при ее передаче по электрическим сетям рассчитывается в соответствии с Методикой расчета технологических потерь электроэнергии при ее передаче по электрическим сетям в базовом периоде.

Технические потери электроэнергии в электрических сетях, возникающие при ее передаче, состоят из потерь, не зависящих от величины передаваемой мощности (нагрузки) – условно- постоянных потерь, и потерь, объем которых зависит от величины передаваемой мощности (нагрузки) – нагрузочных (переменных) потерь.

Потери, обусловленные допустимыми погрешностями системы учета, определяются в соответствии с методикой их определения.

Расход электроэнергии на собственные нужды определяется в соответствии с приборами учета.

Технологические потери электроэнергии при ее передаче по электрическим сетям рассчитываются раздельно по составляющим: условно-постоянные, нагрузочные и потери, обусловленные допустимыми погрешностями системы учета.

Определение технологических потерь электроэнергии в электрических сетях в целом и по уровням напряжения осуществляется в следующем

порядке:

- 1. Определяется на каждом уровне напряжения сети отпуск электроэнергии в сеть (с учетом приема электроэнергии из сети смежного напряжения);
- 2. Определяются условно-постоянные потери электроэнергии в целом и по уровням напряжения;
- 3. Определяются нагрузочные потери электроэнергии в целом и по уровням напряжения;
- 4. Определяются потери электроэнергии, обусловленные допустимыми погрешностями системы учета электроэнергии, в целом и по уровням напряжения.
- 2. Методика расчета технических потерь электроэнергии при ее передаче по электрическим сетям в базовом периоде
- 2.1 Методы расчета условно-постоянных потерь электроэнергии (не зависящих от тока (мощности) нагрузки)

Условно-постоянные потери электроэнергии включают:

- 1. Потери на холостой ход силовых трансформаторов (автотрансформаторов);
- 2. Потери на корону в воздушных линиях (ВЛ) 220 кВ и выше;
- 3. Потери в синхронных компенсаторах, батареях статических конденсаторов, статических тиристорных компенсаторах (СТК), шунтирующих реакторах (ШР);
- 4. Потери в соединительных проводах и сборных шинах распределительных устройств подстанций (СППС);
- 5. Потери в системе учета электроэнергии: трансформаторах тока (ТТ), трансформаторах напряжения (ТН), счетчиках и соединительных проводах;
- 6. Потери в вентильных разрядниках, ограничителях перенапряжений;
- 7. Потери в устройствах присоединений высокочастотной связи (ВЧ связи);
- 8. Потери в изоляции кабелей;
- 9. Потери от токов утечки по изоляторам ВЛ;
- 10. Расход электроэнергии на собственные нужды (СН) подстанций (ПС);

11. Расход электроэнергии на плавку гололеда.

Потери электроэнергии холостого хода в <u>одном</u> силовом трансформаторе (автотрансформаторе) определяются на основе приведенных в паспортных данных оборудования потерь мощности холостого хода (XX) по формуле:

$$\Delta W_{x} = \Delta P_{x} \cdot T_{\text{BKJL}} \cdot \left(\frac{U_{i}}{U_{\text{HOM}}}\right)^{2}, \tag{1}$$

где $T_{\text{вкл.}}$ - число часов работы трансформатора (автотрансформатора) в i-том режиме, ч;

 U_i - напряжение на высшей стороне трансформатора (автотрансформатора) в i-том режиме, кВ;

 $U_{\text{ном}}$ - номинальное напряжение высшей обмотки трансформатора (автотрансформатора), кВ.

Напряжение на трансформаторе (автотрансформаторе) определяется с помощью <u>измерений</u> или с помощью <u>расчета установившегося режима</u> сети в соответствии с законами электротехники.

Допускается для силовых трансформаторов (автотрансформаторов) потери мощности XX определять с учетом их технического состояния и срока службы путем измерений этих потерь методами, применяемыми на заводах-изготовителях при установлении паспортных данных трансформаторов (автотрансформаторов). При этом в обосновывающие целесообразно материалы включать официально заверенные В установленном порядке протоколы измерений потерь мощности XX.

Потери электроэнергии в ШР определяются по формуле (1) на основе приведенных в паспортных данных оборудования потерь мощности ${}^{\triangle}P_{\rm p}.$ Допускается определять потери в ШР на основе данных таблицы 1.

Потери электроэнергии в сборных шинах распределительных устройств подстанций определяются на основе данных таблицы 1.

Таблица 1 Потери электроэнергии в ШР, соединительных проводах и сборных шинах распределительных устройств подстанций (СППС)

Вид	Удельные потери электроэнергии при напряжении, кВ											
оборудования	6	10	15	20	35	60	110	154	220	330	500	750
ШР, тыс.	84	84	74	65	36	35	32	31	29	26	20	19
кВт.ч/МВ•А в												
год												
СППС, тыс.	1,3	1,3	1,3	1,3	3	6	11	18	31	99	415	737
кВт.ч на ПС в												
год												

Примечание - Значения потерь, приведенные в таблице, соответствуют году с числом дней 365. При расчете потерь в високосном году применяется коэффициент k = 366/365.

Потери электроэнергии в соединительных проводах и сборных шинах распределительных устройств ТП 6-20/0,4 кВ не рассчитываются.

Если при определении нормативных технологических потерь электроэнергии выполнялись расчеты потерь электроэнергии шинопроводах подстанций, потери электроэнергии соединительных проводах сборных распределительных устройств И шинах не рассчитываются.

Потери электроэнергии в синхронном компенсаторе (СК) или генераторе, переведенном в режим СК, определяются по формуле (2):

$$\Delta W_{\rm CK} = \left(0, 4 + 0, 1\beta_{\mathcal{Q}}^2\right) \cdot \Delta P_{\rm HOM} \cdot T_{\rm BKJ.}, \tag{2}$$

где β_{Q} - коэффициент максимальной нагрузки СК в базовом периоде;

 $^{\triangle}P_{\text{ном}}$ - потери мощности в режиме номинальной загрузки СК в соответствии с паспортными данными, кВт.

Допускается определять потери в СК на основе данных таблицы 2.

Потери электроэнергии в синхронных компенсаторах

Вид	Потери электроэнергии, тыс. кВт.ч в год, при номинальной										
оборудов	мощности СК, МВ·А										
ания	5	7,5	10	15	30	50	100	160	320		
СК	400 540 675 970 1570 2160 3645 4725 10260										

Примечания:

- 1. При мощности СК, отличной от приведенной в таблице, потери электроэнергии определяются с помощью линейной интерполяции.
- 2. Значения потерь, приведенные в таблице, соответствуют году с числом дней 365. При расчете потерь в високосном году применяется коэффициент k = 366/365.

Потери электроэнергии в статических компенсирующих устройствах - батареях статических конденсаторов (БСК) и статических тиристорных компенсаторах (СТК) определяются по формуле:

$$\Delta W_{\rm KY} = \Delta P_{\rm KY} \cdot S_{\rm KY} \cdot T_{\rm BKJ.}, (3)$$

где ${}^{\triangle}P_{\mathrm{KY}}$ - удельные потери мощности в соответствии с паспортными данными КУ, кВт/квар;

 $S_{\rm KY}$ - мощность КУ (для СТК принимается по емкостной составляющей), квар.

При отсутствии паспортных данных оборудования значение $\triangle P_{\rm KY}$ принимается равным: для БСК - 0,003 кВт/квар, для СТК - 0,006 кВт/квар.

Потери электроэнергии в вентильных разрядниках, ограничителях перенапряжений, устройствах присоединения ВЧ связи, измерительных трансформаторах напряжения, электрических счетчиках 0,22-0,66 кВ принимаются в соответствии с данными заводов-изготовителей оборудования. При отсутствии данных завода-изготовителя расчетные потери принимаются в соответствии с таблицей 3.

Потери электроэнергии в вентильных разрядниках (PB), ограничителях перенапряжений (ОПН), измерительных трансформаторах тока (ТТ) и напряжения (ТН) и устройствах присоединения ВЧ связи (УПВЧ)

Класс	Потери электроэнергии, тыс. кВт.ч в год, при номинальной									
напряжения,	мощности СК, МВ А									
кВ	PB	ОПН ТТ		TH	УПВЧ					
6	0,009	0,001	0,08	1,54	0,01					
10	0,021	0,001	0,1	1,9	0,01					
15	0,033	0,002	0,15	2,35	0,01					
20	0,047	0,004	0,2	2,7	0,02					
35	0,091	0,013	0,4	3,6	0,02					
110	0,6	0,22	1,1	11	0,22					
154	1,05	0,4	1,5	11,8	0,3					
220	1,59	0,74	2,2	13,1	0,43					
330	3,32	1,8	3,3	18,4	2,12					
500	4,93	3,94	5	28,9	3,24					
750	4,31	8,54	7,5	58,8	4,93					

Примечания:

- 1. Потери электроэнергии в УПВЧ даны на одну фазу, для остального оборудования на три фазы.
- 2. Потери в трех однофазных ТН принимаются равными потерям в одном трехфазном ТН.
- 3. Потери электроэнергии в ТТ напряжением 0,4 кВ принимаются равными 0,05 тыс. кВт.ч/год.
- 4. Значения потерь, приведенные в таблице, соответствуют году с числом дней 365. При расчете потерь в високосном году применяется коэффициент k = 366/365.
- 5. Потери электроэнергии в ТТ и ТН включают потери в счетчиках,

входящих в состав измерительных комплексов.

Потери электроэнергии в электрических счетчиках прямого включения 0,22 - 0,66 кВ принимаются в соответствии со следующими данными, кВт.ч в год на один счетчик:

однофазный, индукционный - 18,4;

трехфазный, индукционный - 92,0;

однофазный, электронный - 21,9;

трехфазный, электронный - 73,6.

Потери электроэнергии на корону определяются на основе данных об удельных потерях мощности, приведенных в таблице 4, и о продолжительностях видов погоды в течение расчетного периода. При этом к периодам хорошей погоды (для целей расчета потерь на корону) относят погоду с влажностью менее 100% и гололед; к периодам влажной погоды – дождь, мокрый снег, туман.

Таблица 4 Удельные потери мощности на корону

Напряжение	Суммарное Удельные потери мощности на корону,								
ВЛ, тип	сечение	кВт/км, при видах погоды							
опоры, число	проводов в	хорошая	сухой	влажная	изморозь				
и сечение	фазе, мм ²	снег							
проводов в									
фазе									
750-5x240	1200	3,9	15,5	55,0	115,0				
750-4x600	2400	4,6	17,5	65,0	130,0				
500-3x400	1200	2,4	9,1	30,2	79,2				
500-8x300	2400	0,1	0,5	1,5	4,5				
330-2x400	800	0,8	3,3	11,0	33,5				
220ст-1х300	300	0,3	1,5	5,4	16,5				
220ст/2-	300	0,3	1,4	5	15,4				

1x300	300	0,4	2	8,1	24,5
220жб-1х300	300	0,4	1,8	6,7	20,5
220жб/2-	1500	0,02	0,05	0,27	0,98
1x300					
220-3x500					
154-1x185	185	0,12	0,35	1,2	4,2
154/2-1x185	185	0,09	0,26	0,87	3,06
110ст-1х120	120	0,013	0,04	0,17	0,69
110ст/2-	120	0,008	0,025	0,13	0,47
1x120	120	0,018	0,06	0,3	1,1
110жб-1х120	120	0,01	0,035	0,17	0,61
110жб/2-					
1x120					

Примечания

- 1. Вариант 500-8х300 соответствует ВЛ 500 кВ, построенной в габаритах 1150 кВ, вариант 220-3х500 ВЛ 220 кВ, построенной в габаритах 500 кВ.
- 2. Варианты 220/2-1х300, 154/2-1х185 и 110/2-1х120 соответствуют двухцепным ВЛ. Потери во всех случаях приведены в расчете на одну цепь.
- 3. Индексы "ст" и "жб" обозначают стальные и железобетонные опоры.
- 4. Для линий на деревянных опорах применяют данные, приведенные в таблице для линий на стальных опорах.

Потери электроэнергии от токов утечки по изоляторам воздушных линий определяются на основе данных об удельных потерях мощности, приведенных в таблице 5, и о продолжительностях видов погоды в течение расчетного периода.

По влиянию на токи утечки виды погоды объединяются в 3 группы: 1 группа — хорошая погода с влажностью менее 90%, сухой снег, изморозь, гололед; 2 группа — дождь, мокрый снег, роса, хорошая погода с влажностью 90% и более; 3 группа — туман.

Таблица 5 Удельные потери мощности от токов утечки по изоляторам ВЛ

Групп-	Удельные потери мощности от токов утечки по изоляторам, кВт/км, на ВЛ											
па	напряжением, кВ											
пого-	6	6 10 15 20 35 110 154 220 330 500 750										
ды												
1	0,011	0,017	0,025	0,033	0,035	0,055	0,063	0,069	0,103	0,156	0,235	
2	0,094	0,153	0,227	0,302	0,324	0,510	0,587	0,637	0,953	1,440	2,160	
3	0,154	0,255	0,376	0,507	0,543	0,850	0,978	1,061	1,587	2,400	3,600	

Расход электроэнергии СН подстанций определяется на основе приборов учета, установленных на высшей стороне трансформаторов собственных нужд (ТСН). При установке прибора учета на низшей стороне ТСН потери электроэнергии в ТСН добавляются к показанию счетчика.

В случае отсутствия приборов учета электроэнергии на СН ПС 10(6)/0,4 кВ удельный расход электроэнергии (кВт.ч/кВ·А) определяется по результатам энергетического обследования.

2.2 Методы расчета нагрузочных потерь электроэнергии

Нагрузочные потери электроэнергии включают в себя потери в:

- 1. продольной ветви схемы замещения воздушных и кабельных линий;
- 2. продольной ветви схемы замещения трансформаторов (автотрансформаторов);
- 3. шинопроводах;
- 4. токоограничивающих реакторах.

2.2.1 Методы расчета нагрузочных потерь электроэнергии в отдельных элементах электрических сетей

Нагрузочные потери электроэнергии в каждом элементе электрических сетей могут быть рассчитаны одним из двух методов в зависимости от информационной обеспеченности (методы представлены в порядке понижения точности получаемых результатов расчета):

- 1. оперативных расчетов;
- 2. средних нагрузок.

Метод оперативных расчетов

Нагрузочные потери электроэнергии в ВЛ, КЛ, шинопроводе или двухобмоточном трансформаторе за базовый период определяются по формуле (3):

$$\Delta W_{nj} = 3 \cdot R \cdot \sum_{j=1}^{m} \left(I_{j}^{2} \cdot \Delta_{t_{j}} \right) \cdot 10^{-3} = R \cdot \sum_{j=1}^{m} \left(\frac{P_{j}^{2} + Q_{j}^{2}}{U_{j}^{2}} \cdot \Delta_{t_{j}} \right) \cdot 10^{-3}, \quad \text{kBt- 4}$$
(3)

где R — активное сопротивление ВЛ, КЛ, шинопровода или двухобмоточного трансформатора, Ом;

 I_j — токовая загрузка ВЛ, КЛ, шинопровода или двухобмоточного трансформатора, принимаемая на интервале времени Δt_i неизменной, А;

 $P_{j},\,Q_{j}$ — значения активной и реактивной мощности ВЛ, КЛ, шинопровода или двухобмоточного трансформатора, принимаемые на интервале времени $^{\triangle}t_{j}$ неизменными, МВт, Мвар, соответственно;

 U_j — значение напряжения на ВЛ, КЛ, шинопровода или двухобмоточного трансформатора, принятое на интервале Δt_i неизменным, кВ;

 $^{\triangle}t_{j}$ — интервал времени, в течение которого нагрузка элемента сети с сопротивлением R принимается неизменной;

m — количество интервалов времени $^{\triangle}t_{j}$ в базовом периоде.

Нагрузочные потери электроэнергии в автотрансформаторе (трехобмоточном трансформаторе) за базовый период определяются по формуле (4):

$$\Delta W_{\text{HAT(T)}} = \sum_{j=1}^{m} 3 \cdot \left(I_{\text{AT(T)B}}^{2} \cdot R_{\text{AT(T)B}} + I_{\text{AT(T)C}}^{2} \cdot R_{\text{AT(T)C}} + I_{\text{AT(T)H}}^{2} \cdot R_{\text{AT(T)H}} \right) \cdot \Delta t_{j} \cdot 10^{-3}$$

$$= \sum_{j=1}^{m} \left(\frac{P_{\text{AT(T)B}}^{2} + Q_{\text{AT(T)B}}^{2}}{U_{\text{BHOM}}^{2}} \cdot R_{\text{AT(T)B}} + \frac{P_{\text{AT(T)C}}^{2} + Q_{\text{AT(T)C}}^{2}}{U_{\text{BHOM}}^{2}} \cdot R_{\text{AT(T)H}} + \frac{P_{\text{AT(T)H}}^{2} + Q_{\text{AT(T)H}}^{2}}{U_{\text{BHOM}}^{2}} \cdot R_{\text{AT(T)H}} \right) \cdot \Delta t_{j} \cdot 10^{-3}, \quad \text{KBT-} \mathbf{Y} \tag{4}$$

где $P_{\text{AT(TP)B}}$, $P_{\text{AT(TP)C}}$, $P_{\text{AT(TP)H}}$, $Q_{\text{AT(TP)B}}$, $Q_{\text{AT(TP)B}}$, $Q_{\text{AT(TP)B}}$, $I_{\text{AT(TP)B}}$, $I_{\text{AT(TP)C}}$, $I_{\text{AT(TP)H}}$ — значения активной и реактивной мощностей, токовых нагрузок по обмоткам автотрансформатора (трехобмоточного трансформатора),

принимаемые на интервале $^{\triangle}t_{j}$ неизменными, МВт, Мвар, А, соответственно; $U_{\text{вном}}$ — значение напряжения высшей обмотки автотрансформатора (трехобмоточного трансформатора) на интервале времени $^{\triangle}t_{j}$, кВ.

Нагрузочные потери электроэнергии в токоограничивающем реакторе за базовый период определяются по формуле (5):

$$\Delta W_{\text{HTOP}} = 3 \cdot \Delta P_{\text{HTOP}} \sum_{j=1}^{m} \left(\frac{I_j}{I_H} \right)^2 \cdot \Delta t_j \cdot 10^{-3}, \quad \text{KBT-Y} \quad (5)$$

где ${}^{\triangle}P_{\text{нТОР}}$ — значение потерь активной мощности в фазе реактора при его номинальном токе, кВт;

 $I_{\rm H}$ — значение номинального тока, A;

Ij — значение рабочего тока, принимаемого на интервале Δt_i неизменным, А.

Метод средних нагрузок

Нагрузочные потери электроэнергии в ВЛ, КЛ, шинопроводе или двухобмоточном трансформаторе за базовый период определяются по формуле (6):

$$\Delta W_{\rm H} = k_k \cdot \Delta P_{\rm cp} \cdot T \cdot k_{\rm \phi}^2$$
, кВт-ч (6)

где ${}^{\triangle}P_{\rm cp}$ — потери мощности в ВЛ, КЛ, шинопроводе или двухобмоточном трансформаторе при средних за базовый период нагрузках, кВт;

 k_{ϕ} – коэффициент формы графика за базовый период, о.е.;

 k_{κ} – коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки (принимается равным 0,99), о.е.;

T – число часов в базовом периоде, ч.

Коэффициент формы графика определяется по формуле (7):

$$k_{\phi}^2 = \frac{1 + 2k_3}{3k_3}$$
, o.e. (7)

где k3 — коэффициент заполнения графика определяется по формуле (8):

$$k_{\phi}^2 = \frac{1 + 2k_3}{3k_3}$$
, o.e. (8)

При отсутствии данных о коэффициенте заполнения графика нагрузки допускается принять его = 0.5.

2.2.2 Методы расчета нагрузочных потерь электроэнергии в электрической сети в целом

Нагрузочные потери электроэнергии в электрической сети в целом за Т часов (Д дней) могут быть рассчитаны одним из пяти методов в зависимости от объема имеющейся информации о схемах и нагрузках сетей (методы расположены в порядке снижения точности расчета):

- 1. оперативных расчетов;
- 2. расчетных суток;
- 3. средних нагрузок;
- 4. числа часов наибольших потерь мощности;
- 5. оценки потерь по обобщенной информации о схемах и нагрузках сети.

Потери мощности в сети при использовании методов 1-4 рассчитываются на основе заданной схемы сети и нагрузок ее элементов, определенных с помощью измерений или с помощью расчета нагрузок элементов электрической сети в соответствии с законами электротехники.

Потери электроэнергии по методам 2-4 могут рассчитываться за каждый месяц расчетного периода с учетом схемы сети, соответствующей данному месяцу. Допускается рассчитывать потери за расчетные интервалы, включающие в себя несколько месяцев, схемы сетей в которых могут рассматриваться как неизменные. Потери электроэнергии за базовый период определяют как сумму потерь, рассчитанных для входящих в базовый период расчетных интервалов.

Метод средних нагрузок состоит в расчете потерь электроэнергии по формуле (9):

$$\Delta W_{\rm H} = k_{\rm I} \cdot k_k \cdot \Delta P_{\rm cp} \cdot T \cdot k_{\rm \phi}^2, \quad \text{кBT-Ч} \quad (9)$$

где ${}^{\vartriangle}P_{\rm cp}$ — потери мощности в сети при средних за расчетный интервал нагрузках узлов, кВт;

 k_{π} — коэффициент, учитывающий влияние потерь в арматуре ВЛ и принимаемый равным 1,02 для линий напряжением 110 кВ и выше и равным 1,0 для линий напряжением ниже 110 кВ;

T – продолжительность расчетного интервала, ч.

Метод числа часов наибольших потерь мощности

Если нагрузочные потери электрической энергии вычисляются на основе определенных при расчете электрического режима зимнего максимума суммарных потерь активной мощности в продольных и поперечных ветвях схемы электрических сетей, то расчеты проводятся на основе обобщенных данных о схемах электрических сетей с использованием общих формул, поэтому относятся к группе оценочных расчетов.

Расчет нагрузочных потерь электрической энергии производится по формуле (10):

$$\sum \Delta W_{H} = \sum \Delta P_{H} \cdot \tau_{H}$$
, MBT×ч (10)

где $^{\triangle}P$ нi — потери мощности в продольной ветви схемы i-того элемента в режиме максимальных нагрузок;

 $\tau_{h\delta}$ – время наибольших потерь.

Время наибольших потерь — это время, за которое при работе с наибольшей нагрузкой потери электрической энергии были бы те же, что и при работе по действительному графику нагрузки. Для графиков пиковой формы величина времени наибольших потерь определяется по эмпирической формуле (11):

$$\tau_{\text{H}\delta} = \left(0.124 + \frac{T_{\text{H}\delta}}{10000}\right)^2 \cdot 8760, \text{ y } (11)$$

где $T_{\rm H6}$ – число часов использования наибольшей нагрузки.