

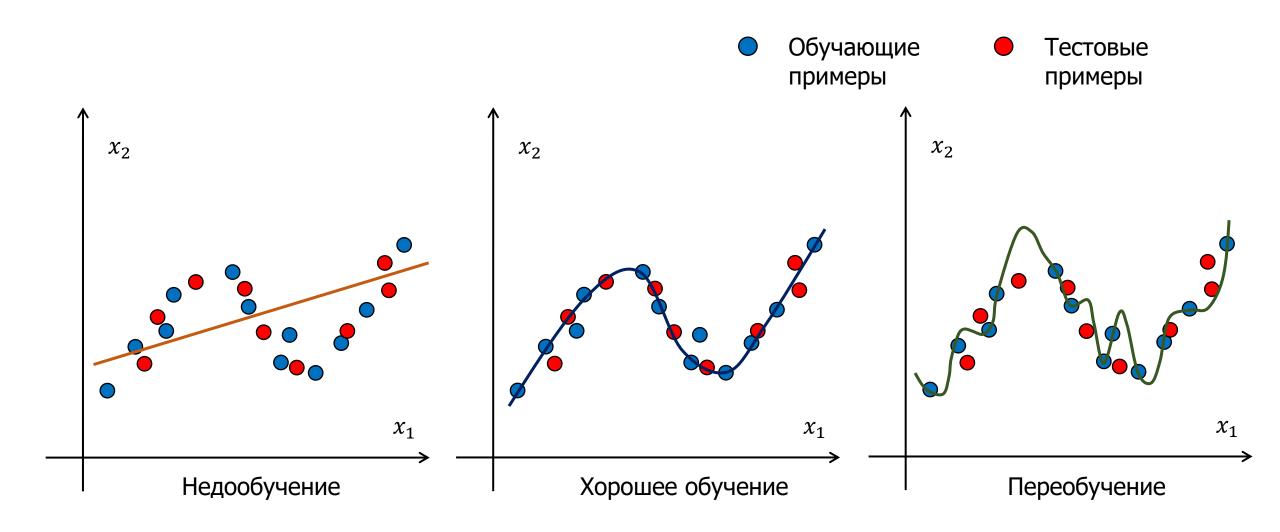
# Обучение регрессоров

Сергей Владимирович Аксёнов,

Доцент отделения информационных технологий ИШИТР,

Томский политехнический университет

# Плохое и хорошее обучение



## Метрики -1

1. Средняя квадр. Ошибка (СКО):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2$$

2. Квадрат СКО:

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2$$

3. Относит. квадр. ошибка (ОКО):

$$RSE = \frac{\sum_{i=1}^{n} (y_i - \tilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

4. Корень ОКО:

$$RRSE = \sqrt{RSE} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

 $y_i$  - Истинные значения

 $\widetilde{y_i}$  - Предсказанное значение

 $\bar{y}$  - Среднее значение

## Метрики-2

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widetilde{y}_i|$$

$$RAE = \frac{\sum_{i=1}^{n} |y_i - \widetilde{y}_i|}{\sum_{i=1}^{n} |y_i - \overline{y}|}$$

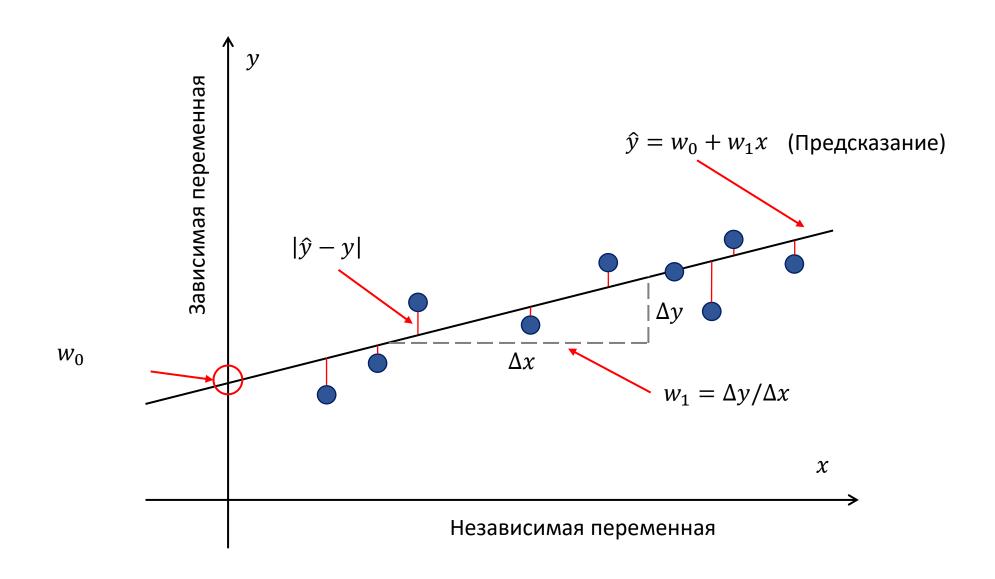
$$R2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \tilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

 $y_i$  - Истинные значения

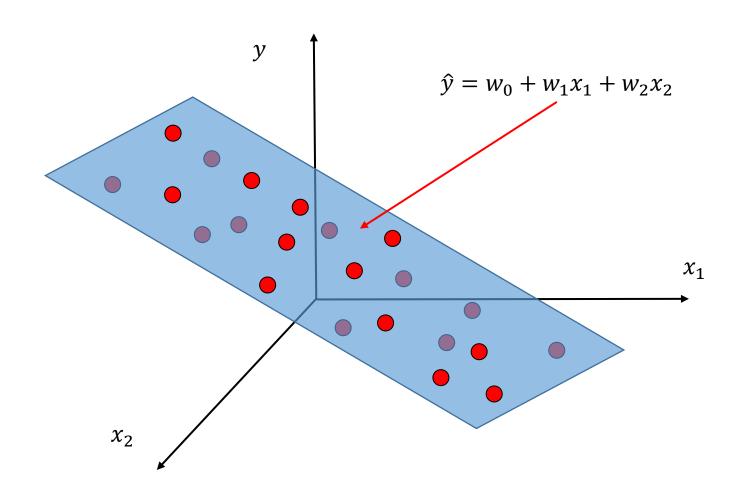
 $\widetilde{y_i}$  - Предсказанное значение

 $\bar{y}$  - Среднее значение

# Линейная регрессия: один признак



# Линейная регрессия: два признака



# Линейные корреляции

|                     | Цемент | Супер-пластификатор | Вода  | Прочность<br>бетона |
|---------------------|--------|---------------------|-------|---------------------|
| Цемент              | 1      | 0.09                | -0.08 | 0.5                 |
| Супер-пластификатор | 0.09   | 1                   | -0.66 | 0.37                |
| Вода                | -0.08  | -0.66               | 1     | -0.29               |
| Прочность бетона    | 0.5    | 0.37                | -0.29 | 1                   |

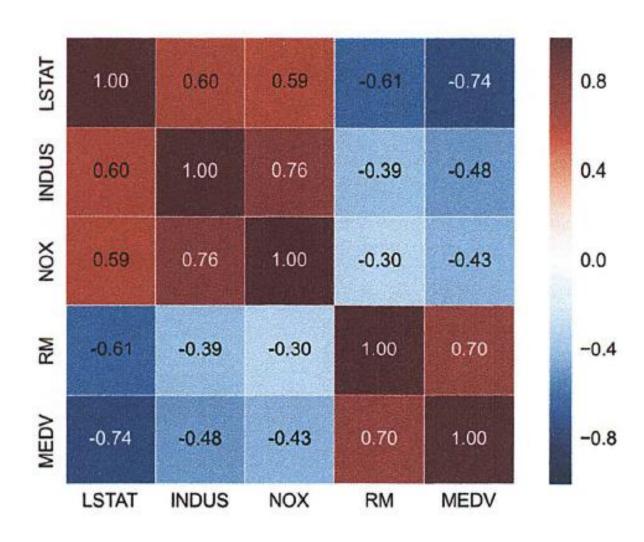
Коэффициент корреляции Пирсона:

$$r = \frac{\sum_{i=1}^{n} \left[ (a_i - \overline{a}) \left( b_i - \overline{b} \right) \right]}{\sqrt{\sum_{i=1}^{n} (a_i - \overline{a})^2} \cdot \sqrt{\sum_{i=1}^{n} (b_i - \overline{b})^2}}$$

a, b — Признаки

 $\overline{a}$ ,  $\overline{b}$  – Выборочное среднее для a,b

# Тепловая карта



## Регуляризация в регрессионных моделях

#### Гребневая регрессия:

$$J(w)_{Ridge} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda ||w||_2^2$$

L2: 
$$\lambda ||w||_2^2 = \lambda \sum_{j=1}^m w_j^2$$

#### Метод Lasso:

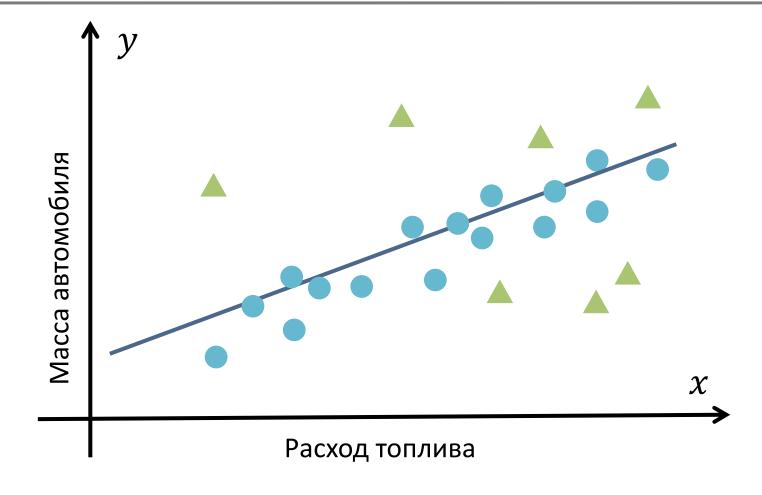
$$J(w)_{Lasso} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda ||w||_1$$

$$L1: \lambda ||w||_1 = \lambda \sum_{j=1}^{m} |w_j|$$

#### Метод эластичной сети:

$$J(w)_{Elastic\_Net} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$$

# Учет выбросов. RANSAC



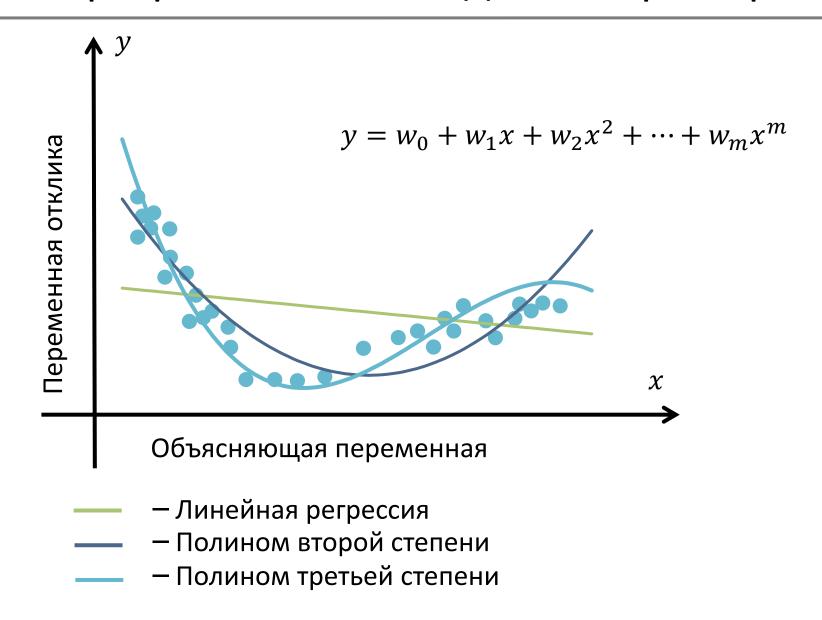
- Объекты, использующиеся при получении модели
- Выбросы, не влияющие на модель

# Полиномиальная регрессия

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$$

| Примеры:                            | Начальный набор: | Новый набор:                                                       |
|-------------------------------------|------------------|--------------------------------------------------------------------|
| Квадратичная регрессия (Степень=2): | $\boldsymbol{x}$ | $x, x^2$                                                           |
| Кубическая регрессия (Степень=3):   | $\boldsymbol{x}$ | $x, x^2, x^3$                                                      |
| Квадратичная регрессия (Степень=2): | $x_{1}, x_{2}$   | $x_1, x_2, x_1 x_2, x_1^2, x_2^2$                                  |
| Кубическая регрессия (Степень=3):   | $x_1, x_2$       | $x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1x_2^2, x_2x_1^2, x_1^3, x_2^3$ |

# Сравнение регрессионных моделей. Пример



### Регрессия с помощью дерева

Прирост информации, использующийся для бинарного расщепления:

$$IG(D_p, x) = I(D_p) - \frac{N_{left}}{N_p}I(D_{left}) - \frac{N_{right}}{N_p}I(D_{right})$$

Мера неоднородности (энтропия) для регрессии:

$$I(t) = MSE(t) - \frac{1}{N_t} \sum_{i \in D_t}^{n} (y^{(i)} - \hat{y}_t)^2$$

Предсказанное целевое значение для узла дерева:

$$\hat{y}_t = \frac{1}{N} \sum_{i \in D_t} y^{(i)}$$

 $m{D}_p, m{D}_{left}, m{D}_{right}$  — Набор образцов в родительском, левом и правом дочерних узлах после расщепления

 $N_p$ ,  $N_{left}$ ,  $N_{right}$  – Количество образцов в узлах

# Пример регрессии с помощью дерева

