Министерство образования Российской Федерации Томский политехнический университет Филиал ТПУ в г. Юрге

	УТВІ	ЕРЖДАЮ
	Зав. каф	редрой ТМС
	Д. Т. Н,	профессор
	(С. И. Петрушин
**	**	2000 г.

ИЗМЕРЕНИЕ ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

Методические указания к выполнению лабораторной работы по курсу "Гидравлика и гидропривод" для студентов дневной и вечерней форм обучения всех специальностей

Измерение гидростатического давления: Методические указания к выполнению лабораторной работы по курсу "Гидравлика и гидропривод" для студентов дневной и вечерней форм обучения всех специальностей. - Юрга: ИПЛ ЮФ ТПУ, 1999. - 8 с.

Составитель Рецензент ассистент А. В. Воробьев Н. А. Попиральчик

Мето	дические	указания	рассмотрены	И	рекомендованы	К	изданию	методиче-
ским	семинаром	и кафедрь	и "Технология	M	ашиностроения"			
"	"	_ 2000 г.						

Зав. кафедрой профессор, д. т. н.

С. И. Петрушин

Измерение гидростатического давления.

Цель работы: приобретение навыков по измерению гидростатического давления жидкостными приборами.

Общие сведения

Гидростатическим давлением называют отношение нормальной сжимающей силы ΔF к площади элементарной поверхности ΔS , на которую действует данная сила.

$$P = \frac{\Delta F}{\Delta S}.$$
 (1)

В зависимости от базы и направления отсчета различают абсолютное, манометрическое и вакуумметрическое давления.

Абсолютное давление отсчитывается от абсолютного вакуума и определяется в любой точке покоящейся жидкости по основному уравнению гидростатики:

$$P = P_0 + \gamma h, \tag{2}$$

где $\,P_{0}\,$ - давление на свободной поверхности жидкости;

γ - удельный вес жидкости;

 $\gamma = \rho g$;

h - глубина погружения рассматриваемой точки.

Из уравнения (2) следует, что абсолютное гидростатическое давление P в точке покоящейся жидкости равно сумме внешнего давления и давления, вызванного силой тяжести столба жидкости, расположенной над рассматриваемой точкой.

За начало отсчета может быть принято и атмосферное давление P_a , которое создается силой тяжести воздуха атмосферы. Если абсолютное давление больше атмосферного, то избыток над атмосферным называют манометрическим (избыточным) давлением, которое измеряют манометрами

$$P_{M} = P - P_{a}, \tag{3}$$

а если абсолютное давление меньше атмосферного, то имеет место разрежение, или вакуум. За величину разрежения принимается недостаток до атмосферного давления, которое называется вакуумметрическим давлением и измеряется вакуумметрами.

$$P_{\rm B} = P_{\rm a} - P. \tag{4}$$

Атмосферное, манометрическое и вакуумметрическое давления измеряют приборами, называемыми соответственно барометрами, манометрами и вакуумметрами. По принципу действия и типу рабочего элемента приборы подразделяют на жидкостные, механические и электрические.

Жидкостные приборы исторически стали применяться первыми. Их действие основано на принципе уравновешивания измеряемого давления P силой тяжести столба жидкости высотой h в приборе

$$P = \gamma h, \tag{5}$$

где γ - удельный вес жидкости в приборе.

Поэтому величина давления может быть выражена высотой столба жидкости h с заданным удельным весом γ (мм вод. ст., мм рт. ст.), а также в паскалях (Па = H/m^2), килограммах силы на квадратный сантиметр (технических атмосферах (ат)), барах.

1 мм вод. ст. = 9,806 Па;
1 мм рт. ст. = 133,3 Па;
1 кгс/см² = 1 ат = 98066,5 Па
$$\approx 10^5$$
 Па;
1 бар = 10 H/см² = 100000 Па.

Преимуществом жидкостных приборов является простота конструкции и высокая точность, но они удобны только для измерения небольших давлений; при высоких давлениях трубка пьезометра получается чрезмерно длинной, что осложняет измерения.

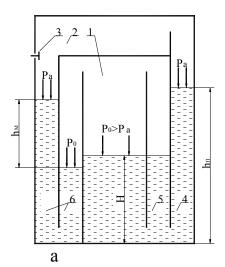
В механических приборах измеряемое давление вызывает деформацию чувствительного элемента (трубка или мембрана), которая с помощью специальных механизмов преобразуется и передается на указатель. Такие приборы компактны и имеют большой диапазон измеряемых давлений.

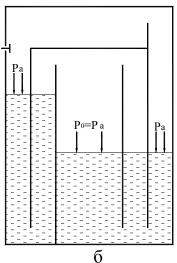
В электрических приборах воспринимаемое чувствительным элементом давление преобразуется в электрический сигнал. Сигнал регистрируется показывающим (вольтметр, амперметр) или пишущим (самописец, осциллограф) приборами. В последнем случае можно фиксировать давление при быстропротекающих процессах.

Описание установки

Установка включает в себя резервуар 1, частично заполненный жидкостью, и полость 2, сообщаемую через клапан 3 с атмосферой (рис. 1а). Для измерения давления и уровня жидкости в резервуаре 1 служат жидкостные приборы 4, 5 и 6. Они представляют собой прозрачные вертикальные каналы со шкалами, размеченными в единицах длины.

Пьезометр 4 сообщается верхним концом через полость 2 и клапан 3 с атмосферой, а нижним - с резервуаром 1. Им определяется манометрическое давление $P = \gamma h_{\pi}$ на дне резервуара.


Уровнемер 5 соединен обоими концами с резервуаром и служит для измерения уровня жидкости H в нем.


Мановакуумметр 6 представляет собой \bigcup - образный канал, частично заполненный жидкостью. Правым коленом он подключен к резервуару, а левым - к полости 2 и предназначен для определения манометрического $P_{\rm M} = \gamma h_{\rm M}$ (рис. 1a) или вакуумметрического $P_{\rm B} = \gamma h_{\rm B}$ (рис. 1b) давлений над свободной поверхностью жидкости в резервуаре 1. Давление в резервуаре можно изменять путем наклона устройства.

При повороте устройства в его плоскости на 180° (рис. 1г) канал 5 остается уровнемером, колено мановакуумметра 6 преобразуется в пьезометр 7, а пьезометр 4 - в обратный пьезометр 8, служащий для определения вакуума $P_{_B} = \gamma h_{_B}$ над свободной поверхностью жидкости в резервуаре 1.

Порядок выполнения работы

- 1. В резервуаре 1 над жидкостью создать давление выше атмосферного $(P_0 > P_a)$, о чем свидетельствует превышение уровня жидкости в пьезометре 4 над уровнем в резервуаре и прямой перепад давлений в мановакуумметре 6 (см. рис. 1a). Для этого устройство поставить на правую боковую поверхность, а затем поворотом его против часовой стрелки отлить часть жидкости из левого колена мановакуумметра 6 в резервуар 1.
- 2. Кратковременно открыть клапан 3 и снять показания пьезометра. уровнемера и мановакуумметра.
- 3. Вычислить абсолютное давление на дне резервуара через показания пьезометра, а затем через величины, измеренные мановакуумметром и уровнемером. Для оценки сопоставимости результатов определения абсолютного давления на дне резервуара двумя путями найти относительную погрешность δP .

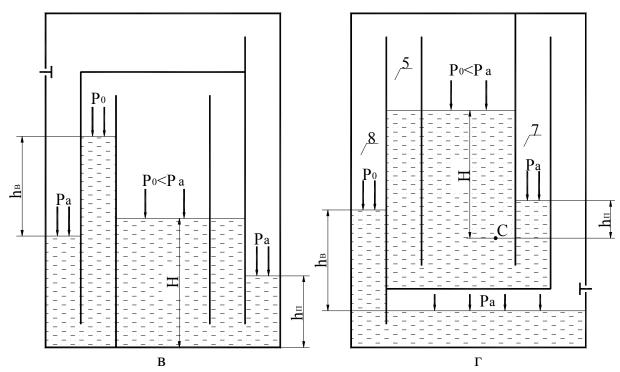


Рис. 1. Схема экспериментальной установки при проведении соответственно опыта а, б, в и г

4. Над жидкостью в резервуаре 1 установить атмосферное давление $(P_0 = P_a)$, для чего получить совпадение уровней жидкости в мановакуумметре переливом в него части жидкости из резервуара путем наклона устройства вправо (см. рис. 1б). Затем выполнить операции по п.п. 2 и 3.

Таблица

Наименование	Обозначения,	Условия опыта			ı
величин	формулы	a	б	В	Γ
1	2	3	4	5	6
1. Пьезометрическая высота, м	${ m h}_{\Pi}$				
2. Уровень жидкости в резер-	Н				
вуаре, м					
3. Манометрическая высота, м	h_{M}				
4. Вакуумметрическая высота,	$h_{\rm B}$				
M	2				
5. Манометрическое давление	$P_{M} = \gamma h_{\Pi}$				
на дне резервуара, кПа	141 7 11				
6. Абсолютное давление на дне	$P = P_a + P_M$				
резервуара, кПа	u M				
7. Манометрическое давление в	$P_{0M} = \gamma h_{M}$				
резервуаре над жидкостью, кПа	OWI • IVI				

Продолжение таблицы

1	2	3	4	5	6
8. Вакуумметрическое давление	$P_{0_B} = \gamma h_B$				
в резервуаре над жидкостью,	OB . B				
кПа					
9. Абсолютное давление в ре-	$P_0 = P_a + P_{0M}$				
зервуаре над жидкостью, кПа	$P_0 = P_a - P_{0B}$				
10. Абсолютное давление на	$P' = P_0 + \gamma H$				
дне резервуара, кПа	Ŭ				
11. Относительная погрешность	$\delta P = 100(P - P') / P$				
результатов определения дав-					
ления на дне резервуара, %					

Примечание. Измерить атмосферное давление барометром или принять $P_a=98,\!1\,\kappa\Pi a$, а удельный вес воды $\gamma=9,\!81\,\kappa H\,/\,m^3$.

5. Над свободной поверхностью жидкости в резервуаре 1 создать вакуум $(P_0 < P_a)$, когда уровень жидкости в пьезометре 4 становится ниже, чем в резервуаре, а на мановакуумметре 6 появляется обратный перепад (см. рис. 1в).

Для этого поставить устройство на левую боковую поверхность, а затем наклоном вправо отлить часть жидкости из резервуара в мановакуумметр. Далее выполнить операции по п.п. 2 и 3.

6. Повернуть устройство в его плоскости по часовой стрелке на 180° (см. рис. 1г) и определить манометрическое или вакуумметрическое давление в заданной преподавателем точке С через показания пьезометра 7, а затем с целью проверки найти его через показания обратного пьезометра 8 и уровнемера 5. В процессе проведения опытов и обработки экспериментальных данных заполнить таблицу.

Техника безопасности

При выполнении лабораторной работы необходимо соблюдать общие правила техники безопасности при работе в лаборатории гидравлики.

Содержание отчета

В отчете должны содержаться:

- 1. Цель работы;
- 2. Схемы установки при проведении опытов;
- 3. Таблица с результатами опыта
- 4. Выводы по работе.

Контрольные вопросы

- 1. Дайте определение гидростатического давления.
- 2. Что называется удельным весом жидкости?
- 3. Разновидности приборов для определения давления.
- 4. Конструкция жидкостных приборов для определения давления.
- 5. Как определить гидростатическое давление в точке покоящейся жидкости?
- 6. В каких единицах измеряется давление? Соотношение между единицами измерения давления.

Литература

- 1. Башта Т. М. Гидравлика. М.: Машиностроение, 1970. 504 с.
- 2. Большаков В. А., Попов В. Н. Гидравлика. Общий курс: Учебник для вузов. К.: Выща шк. Головное изд-во, 1989. -215 с.
- 3. Холин К. М., Никитин О. Ф. Основы гидравлики и объемные гидроприводы: Учебник для учащихся средних спец. учеб. заведений. 2-е изд., перераб. и доп. М.: Машиностроение, 1989. 264 с.

ИЗМЕРЕНИЕ ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

Методические указания

Составитель Алексей Васильевич Воробьев

Подписано к печати 14.02.2000 г. Формат 60х84/16. Бумага ксероксная. Плоская печать. Усл. печ. л. 1,05. Уч. - изд. л. 0,95. Тираж 25 экз. Заказ № 215. Цена свободная. ИПЛ ЮФ ТПУ. Лицензия ПЛД № 44 - 55 от 04.12.97 г. Ризограф ЮФ ТПУ. 652000, Юрга, ул. Московская, 17а.