Рабочий лист № 6

Subject: "Thermodynamics of ion and electron transport"

Theoretical part

Vocabulary

▶ Найдите соответствие, запишите слова в словарную тетрадь.

electrolyte/	распространение	a mean activity	ионная атмосфера
nonelectrolyte		coefficient	
migration	независимо	Debye-Hückel	оценивать
		theory	
across	оценивать, принимать во	to estimate	Теория Дебая-Хюккеля
	внимание		
propagation	получать, выводить	very dilute	ионная сила
redox reaction	коэффициент активности	ionic atmosphere	моляльность
to contribute	не идеальное поведение	stirring effect	стремиться к нулю
coulombic	способствовать	counter-ions	позволять, разрешать
interactions			
to exhibit	через	to repel	разделение,
			распределение
nonideal behavior	Электролит/ не электролит	ionic strength	противоионы
independently	миграция	partition	эффект перемешивания
to appreciate	Окислительно-	to permit	отталкивать
	восстановительная реакция		
activity coefficient	кулоновское взаимодействие	molality	очень разбавленный
to derive	проявлять	approaches zero	средний коэффициент
			активности

> Составьте 3 предложения, употребляя словарные слова.

Examples: We cannot measure the activity coefficients of cations and anions separately.

A theory that accounts for their values in very dilute solutions was developed by Peter Debye and Erich Hückel in 1923.

Main laws, equations and definitions

Прочитайте и запишите русские аналоги (воспользуйтесь	конспектами.	лекций, учебнико	M,
интернетом).				

интернетом). Mean activity coefficient for a salt MX
Mean activity coefficient for a salt MpXq
Debye-Hückel limiting law:
General expression for the ionic strength:
Overall Gibbs energy of transfer of an ion across a biological membrane:

Practical part and home work

Решите задачу

A brief illustration

The sulfate ion, SO_4^{2-} , is an important source of sulfur used in the synthesis of the amino acids cysteine and methionine in plants and bacteria. To estimate the mean activity coefficient for the ions in 0.0010 m $Na_2SO_4(aq)$ at 25°C, we begin by evaluating the ionic strength of the solution from eqn 5.5:

$$I = \frac{1}{2}\{(+1)^2 \times (2 \times 0.0010) + (-2)^2 \times (0.0010)\} = 0.0030$$

Then we use the Debye–Hückel limiting law (eqn 5.4), with A = 0.509, to calculate $\log \gamma_{\pm}$:

$$\log \gamma_{\pm} = -0.509 \times |(+1)(-2)| \times (0.0030)^{1/2} = -2 \times 0.509 \times (0.0030)^{1/2}$$

(This expression evaluates to -0.056.) On taking the antilogarithm of $\log \gamma_{\pm}$ (by using $x = 10^{\log x}$), we conclude that $\gamma_{\pm} = 0.88$.

Self-test 5.2 Estimate the mean activity coefficient of NaCl in a solution that is 0.020 m NaCl(aq) and $0.035 \text{ m Ca(NO}_3)_2(\text{aq})$.

Answer: 0.661