
HYDROSPHERE

This is a discontinuous water shell of the Earth between atmosphere and solid Earth crust (lithosphere) including oceans, seas and water surface on the land. In broader sense hydrosphere composition includes subsurface waters, ice, and snow of Arctic and Antarctic as well as atmospheric water and water contained in living organisms. The major part of water concentrates in seas and oceans, the second in volume is ground water, the third is ice and snow of Arctic and Antarctic. Surface water, atmospheric and bio-related water amounts percentages of the whole volume of hydrosphere water.

Three quarters of the planet are covered with seas and oceans, the rest are islands

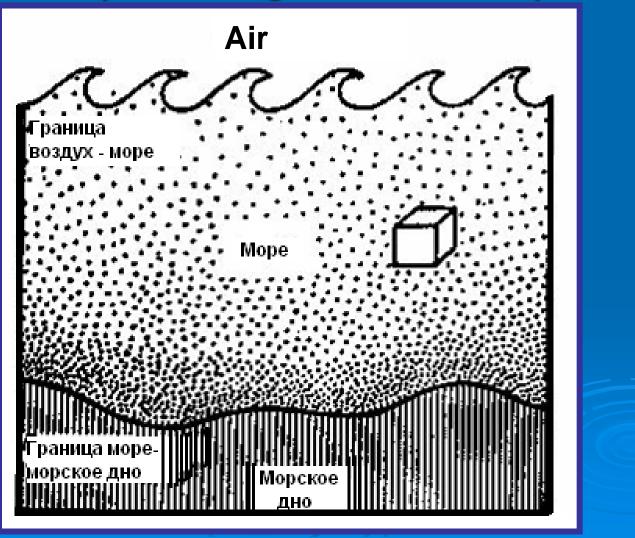
Types of water

Types of water	Name	Volume, mln.km ³	Amount with respect to entire volume of hydrosphere, %
Sea water	Sea	1370	94
Ground (except soil water) water	Ground	61,4	4
Ice and snow (Arctic, Greenland, mountain regions, ice regions)	Ice	24,0	2
Surface water: lakes, reservoirs, rivers, swamps, soil water	Fresh	0,5	0,4
Atmospheric water	Atmospheric	0,015	0,01
Water in living organisms	Bio-related	0,00005	0,0003

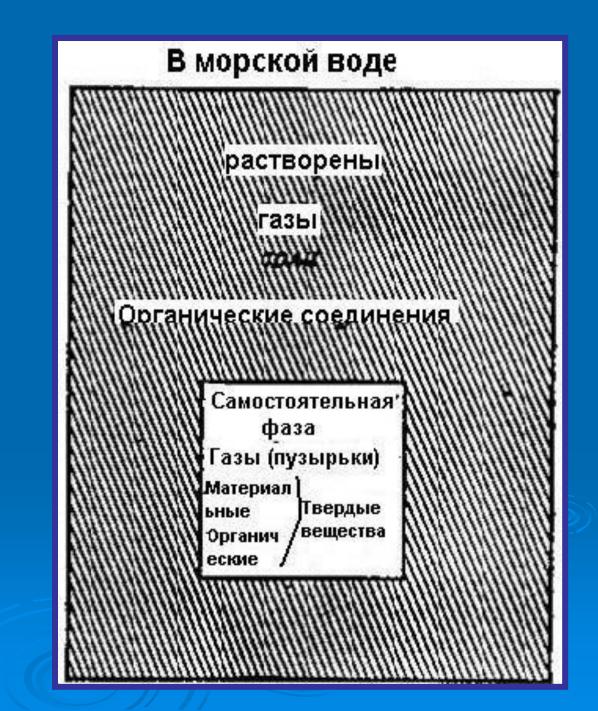
Ice distribution on Earth (according to Reymes, 1990)

Ice type	Volume		Square of distribution	
	т	%	mln.km ²	%
Ice caps	2,4*10¹⁶	98,95	16,1	10,9 of land
Subsurface ice	2 *10 ¹⁵	0,83	21	14,1 of land
Sea ice	3,5*10 ¹³	0,14	26	7,2 of ocean
Snow cover	1*10 ¹³	0,04	7264	14,2 of Earth
Glaciers	7,6*10 ¹²	0,03	63,5	18,7 of ocean, (sporadically)
Atmospheric ice	1,7*10 ¹²	0,01	510,1	100 over the Earth

Snow-ice cap of African mountain top of Kilimanjaro melted during 11000 years

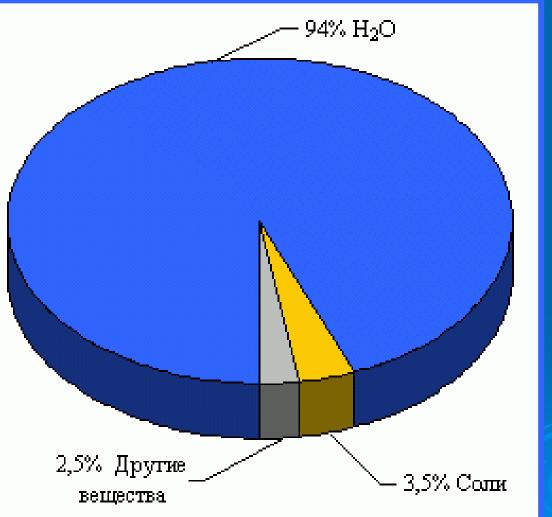

Glaciers are gradually melting

Nearly 94% of the whole water volume concentrate in oceans and seas; 4 % are in ground waters; about 2 % - in ice and snow (mainly in Arctic, Antarctic, and Greenland); 0,4 % - in surface waters (rivers, lakes, swamps).


Insignificant amount of water is contained in atmosphere and organisms. All types of water are transformed from one form to another in circulation process. Annually the amount of precipitations falling on the ground is equal to that of water evaporated in total from the surface of land and oceans. In general cycle of water the atmospheric water is most movable.

Sea as a system and boundary zones

(according to Horn, 1972)



Classification of matter in sea water (according to Horn, 1972)

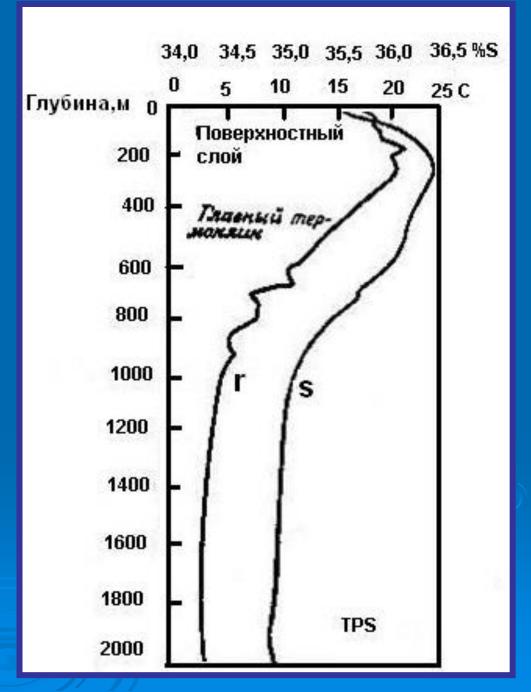
Chemical composition of hydrosphere approximates to average composition of sea water, where hydrogen, oxygen, chlorine, and sodium prevail. In land water the prevailing are carbonates. Content of mineral substances in land water (salinity) fluctuates greatly depending on local conditions and, first of all, climate. Usually land water is weakly mineralized – fresh (river and fresh lake salinity ranges from 50 to 1000 mg/kg). Average salinity of Oceanic water is around 35 g/kg (35 %), sea water salinity ranges from 1-2 % (Gulf of Finland, Baltic Sea) to 41,5 % (Red Sea). The maximum salt concentration is in salty lakes (Dead Sea up to 260 %)

Chemical composition of oceans

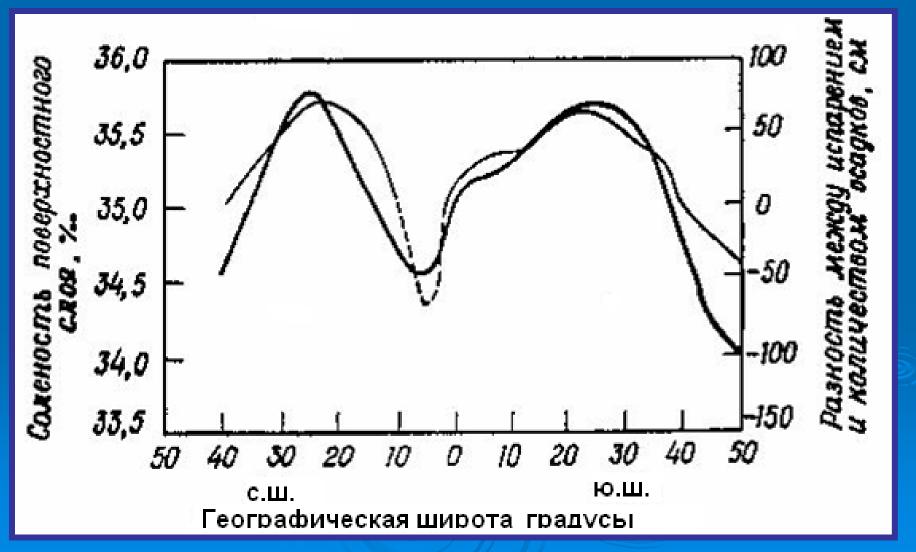
Eleme	Concentration,	Forms of occurrence	KPre Residence
nt	mg/l		time in
			environme
H	108 000	H ₂ O	nt, years
н Не	0,000005	H_2O He(r)	-
Li		He(r) U+	$-2,0*10^7$
Be	0,17 0,0000006	-	2,0*10 1,5*10 ²
В			1,5*10
Б С	4,6 28	$B(OH)_2; B(OH)_4$	-
		HCO ₃ ⁻ ;H ₂ CO ₃ ; органические соединения	-
N	0,5	NO ⁻ ₃ ; NO ⁻ ₂ ; NH ⁻ ₄ ; N ₂ (\mathbf{r}); органические соединения	-
0	857 000	H ₂ Oж; O ₂ (r); SO ²⁻ и другие анионы	-
F	1,3	F [*]	-
Ne	0,0001	Ne(r)	-
Na	10 500	Na^+	$2,6*10^8$
Mg	1 350	Mg ²⁺ ; VgSo ₄	4,5*10⁷
Al	0,01		$1,0*10^2$
Si	3	$Si(OH)_4$; $Si(OH)_3O^-$	$8,0*10^3$
P	0,07	$HPO^{2^{-}}_{4}; H_{2} PO_{4}; PO^{3^{-}}_{4}; H_{3} PO_{4}$	-
S	885	SO_4^{2-4}	-
Cl	19 000	CI	-
Ar	0,6	Ar (r)	- 7
Κ	380	\mathbf{K}_{2}^{+}	1,1*107
Ca	400	Ca ²⁺ ; CaSO ₄	8,0*10⁶
Sc	0,00004	-	$5,6*10^3$
Ti	0,001	-	$1,6*10^2$
V	0,002	$VO_2(OH)^{2-}_3$	$1,0*10^4$
Cr	0,00005		$3,5*10^2$
Mn	0,002	$Mn^{2+}; MnSO_4$	$1,4*10^3$
Fe	0,01	Fe(OH) ₃	$1,4*10^2$
Со	0,0005	$Co^{2+}; CoSO_4$	$1,8*10^4$
Ni	0,002	Ni ²⁺ ; NiSO ₄	1,8*10⁴
Cu	0,003	Cu_{2}^{2+} ; CuSO ₄	5,0*10⁴
Zn	0,01	Zn^{2+} ; $ZnSO_4$	1,8*10⁵
Ga	0,00003	-	$1,4*10^3$
Ge	0,00007	Ge(OH) ₄ ; Ge(OH) ₃ O	$7,0*10^3$
As	0,003	$HAsO^{2-}_{4}$; $H_2 AsO^{-}_{4}$; $H_3 AsO_3$	-
Se	0,004	SeO ²⁺ ₄	-
Br	65	Br	-
Kr	0,0003	Kr (r)	-
Rb	0,12	Rb ⁺	2,7*10⁵
Sr	8	Sr ²⁺ ; SrSO ₄	1,9*10⁷
Y	0,0003	- // // // //	$7,5*10^{3}$
Zr	-	-	
Nb	0,00001		$3,0*10^2$
Мо	0,01	MoO ²⁻ 4	5,0*10 ⁵

ELEMENT COMPOSITION OF SEA WATER (Horn, 1972)

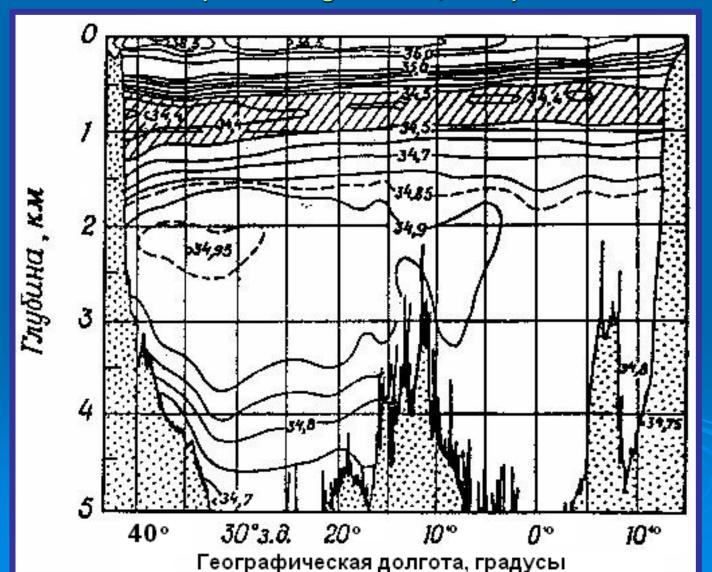
Eleme		Forma of occurrence	Residence
nt			time in
			environme nt, years
Tc	-	-	-
Ru		-	_
Rh		-	_
Pd		-	_
Ag	0,00004	$AgCl_{2}; AgCl_{3}^{2}$	$2,1*10^{6}$
Cd	0,00011	Cd^{2+} ; $CdCl^{2-n}_{n}$; $Cd(OH)^{2-n}_{n}$	5,0 *10 ⁵
In	<0,02	- ·	
Sn	0,0008		$1,0*10^5$
Sb	0,0005		3,5*10 ⁵
Te	-	-	-
I	0,06	IO [*] _{3;} I [*]	_
Xe	0,0001	Xe(r)	_
Cs	0,0005	Cs^+	$4,0*10^4$
Ba	0,03	Ba ²⁺ ; BaSO ₄	8,4*10⁴
La	1,2*10 ⁻⁵	-	$4,4*10^2$
Ce	5,2*10-6	_	8,0*10 ¹
Pr	2,6*10 ⁻⁶	_	$3,2*10^2$
Nd	9,2*10⁻⁶	_	$2,7*10^2$
Pm	-	_	
Sm	1,7*10⁻⁶	_	$1,8*10^2$
Eu	4,6 *10 ⁻⁷		$3,0*10^2$
Gd	2,4*10 ⁻⁶	_	$2,6*10^2$
Tb		_	
Dy	2,9*10⁻⁶	_	$4,6*10^2$
Ho	8,8 *10 ⁻⁷	-	$5,3*10^2$
Er	2,4*10 ⁻⁶	-	$6,9*10^2$
Tm	5,2*10 ⁻⁷	_	$1,8*10^3$
Yb	2,0*10 ⁻⁶		$5,3*10^2$
Lu	4,8*10 ⁻⁷	-	$4,5*10^2$
Hf	-	-	-
Ta		-	_
W	0,0001	WO^{2-4}	$1,0*10^3$
Re	-		
Os		-	
Ir		-	
Pt			
Au	0,000004	AuCl ²	5,6*10⁵
Hg	0,00003	HgCl ⁻ ₃ ; HgCl ²⁻ ₄	$4,2*10^4$
TI	<0,00001	TI ⁺	
Pb	0,00003	Pb ²⁺ ; PbSO ₄ ; PbCl ²⁻ⁿ _n ; Pb(OH) ²⁺ⁿ _n	$2,0*10^3$
Bi	0,00002	-	$4,5*10^5$
Po			

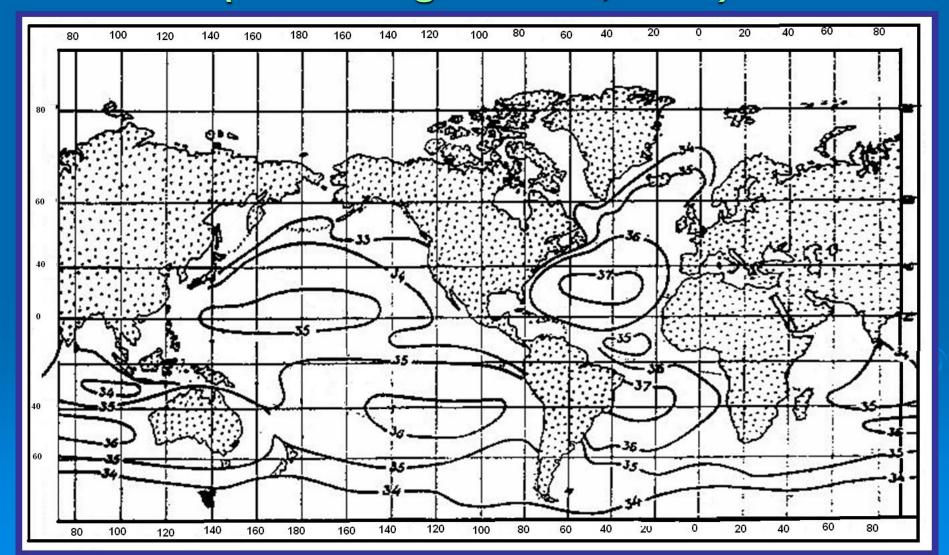

Eleme nt	Concentration, mg/l	Forms of occurrence	Residence time in environme nt, years
At	-	-	-
Rn	0,6*10 ⁻¹⁵	R n(r)	-
Fr	-	-	-
Ra	1,0*10 ⁻¹⁰	Ra^{2+} ; $RaSO_4$	-
Ac	-	-	-
Th	0,00005	-	$3,5*10^2$
Pa	2,0*10 ⁻⁹	-	-
U	0,003	$UO_2(CO_3)^{4-}$	5,0*10⁵

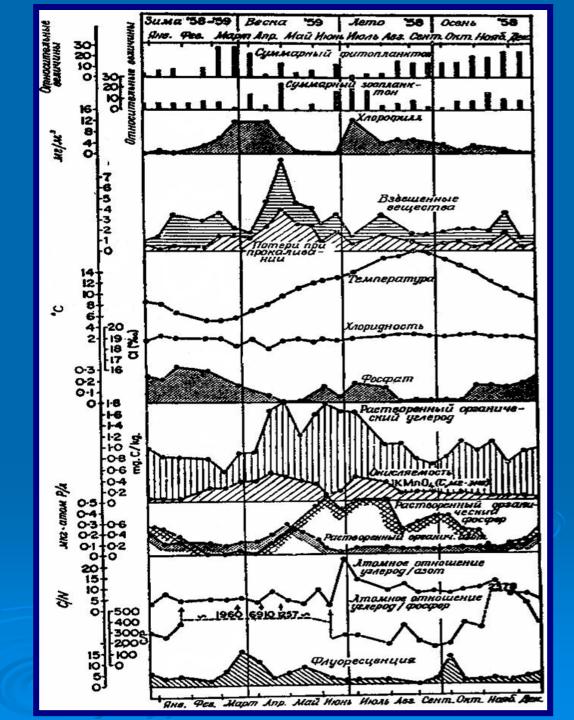
Approximate data on mineral production from natural mineral water (according to Bandarenko S.S. et al., 1986)

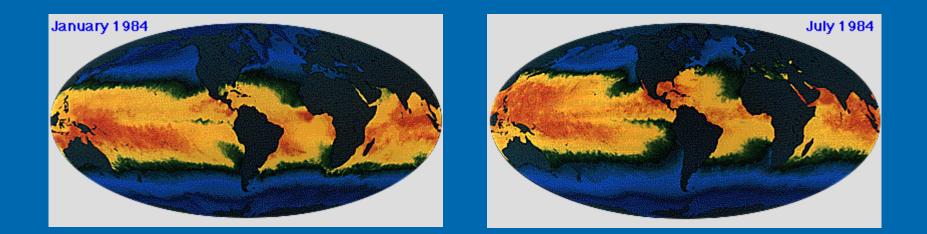

Raw material	\sum Production	Из, Н ₂ О,%
Sodium chloride	2,2*10⁸	30-35
(NaCl)		
Potassium salts	$2,6*10^7$	5-10
Sodium carbonate	$3,5*10^{7}$	5-10
Sodium sulfate	$4,6*10^{6}$	20-30
Calcium chloride	$2,7*10^{6}$	20-25
Boron(B)	$1*10^{6}$	20-30
Bromine(Br)	3,9*10⁵	30-95
Magnesium (Mg)	$1,1*10^5$	25
Lithium (Li)	$5,5*10^4$	15-20
Iodine (I)	1,3*10⁴	80-85
Iron (Fe)	$4,1*10^{6}$	+
Copper (Cu)	6*10 ⁶	++
Zink (Zn)	5*10 ⁶	++
Lead (Pb)	2,3*10⁶	+
Uranium (U)	3,8*10 ⁴	
Silver (Ag)	1*10⁴	

+ - technologies available; ++ - project designed

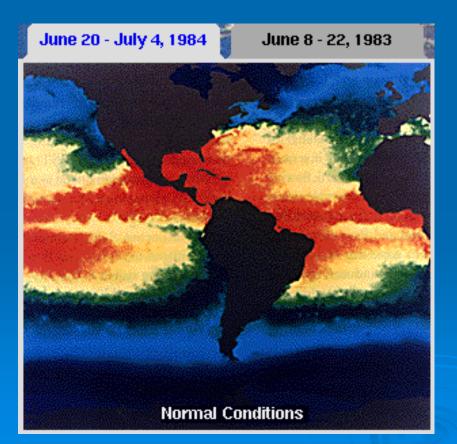

Typical profiles of temperature and salinity (according to Horn, 1972)

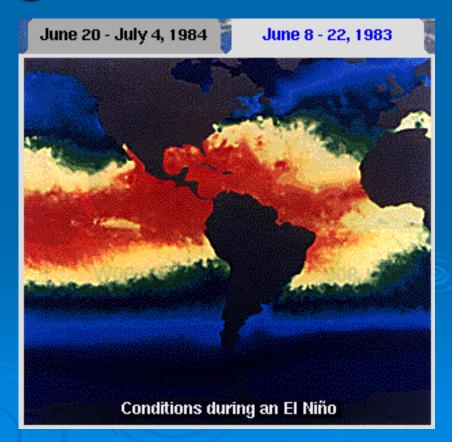

Salinity in the Ocean surface layer as a function of geographic latitude (according to Horn, 1972)

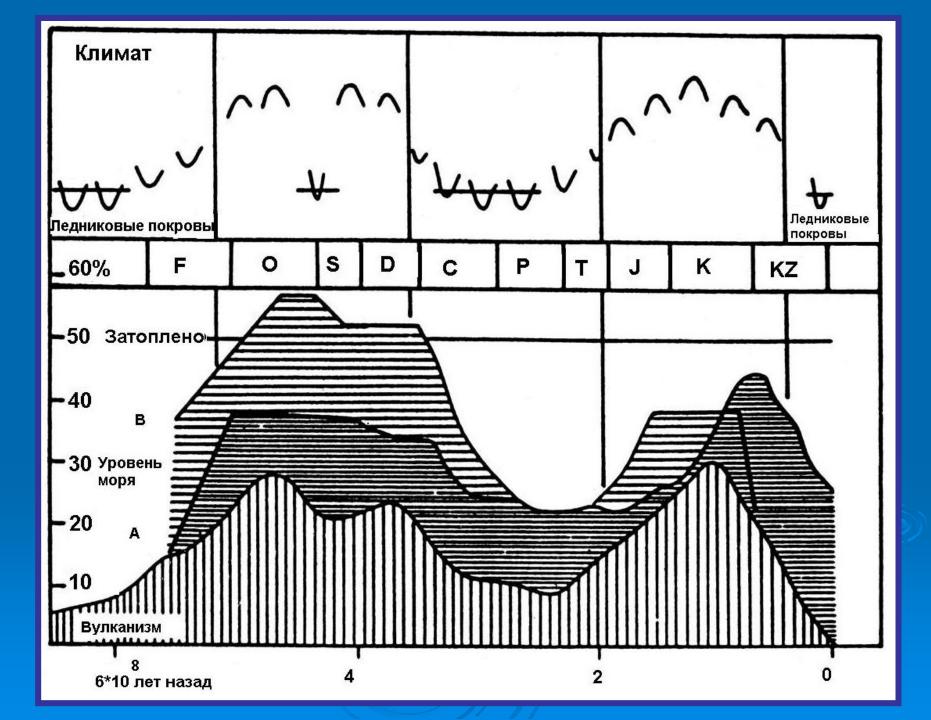

Salinity distribution in vertical cross section of the Atlantic Ocean near 23° S.L. (according to Horn, 1972)


The Ocean surface layer salinity in the North summer (according to Horn, 1972)

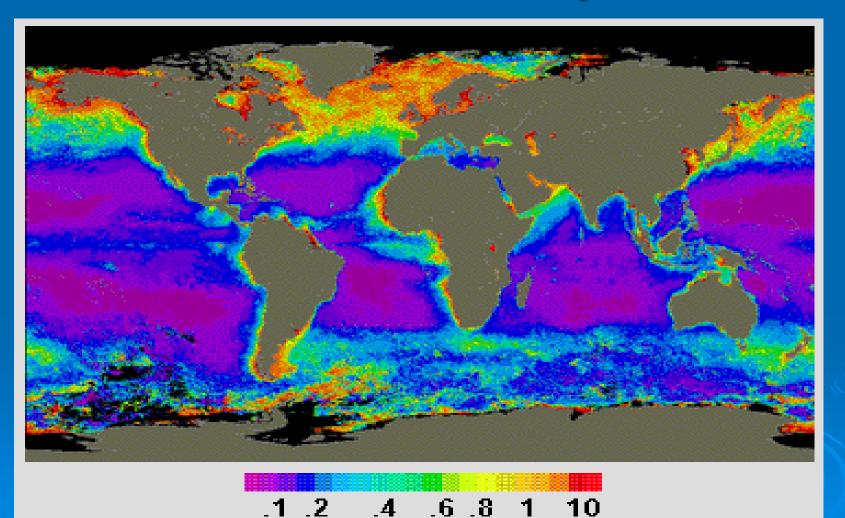
Seasonal changes in oceanic water composition (according to Horn R.,1972)

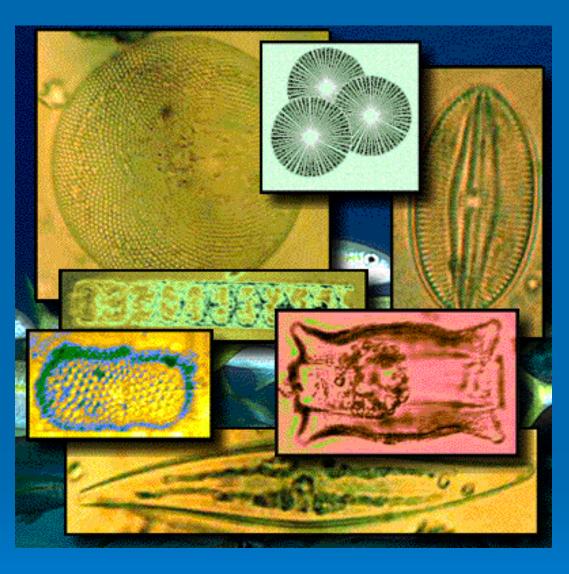


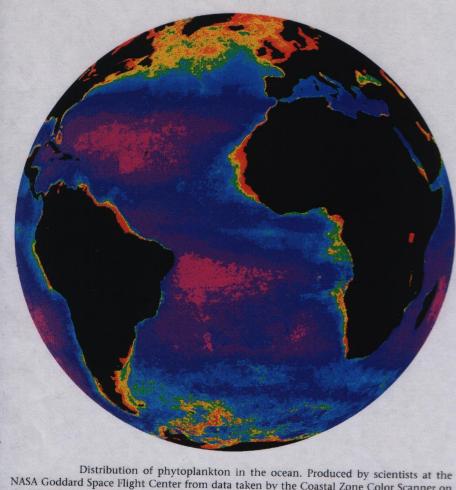

Sea Surface Temperatures

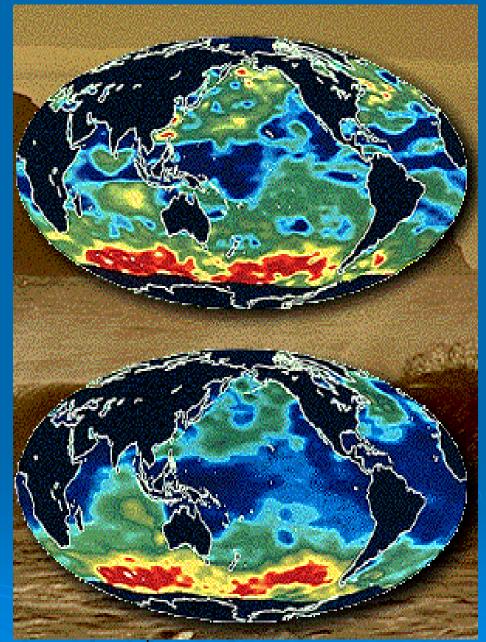


These global sea surface temperature images of 1984 show normal temperatures within a 6month cycle. The colors range from blue, which represents 3° C, to dark orange, which represents 30° C.


Anomalies, such as El Niño, may indicate serious global climate changes

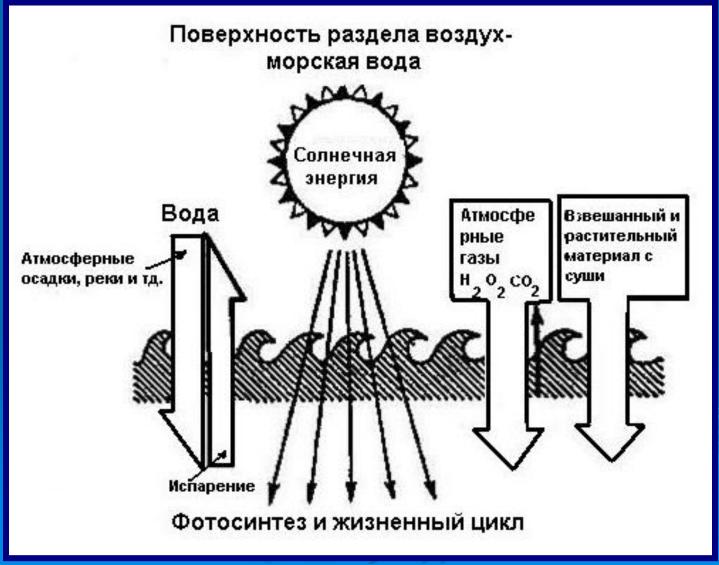


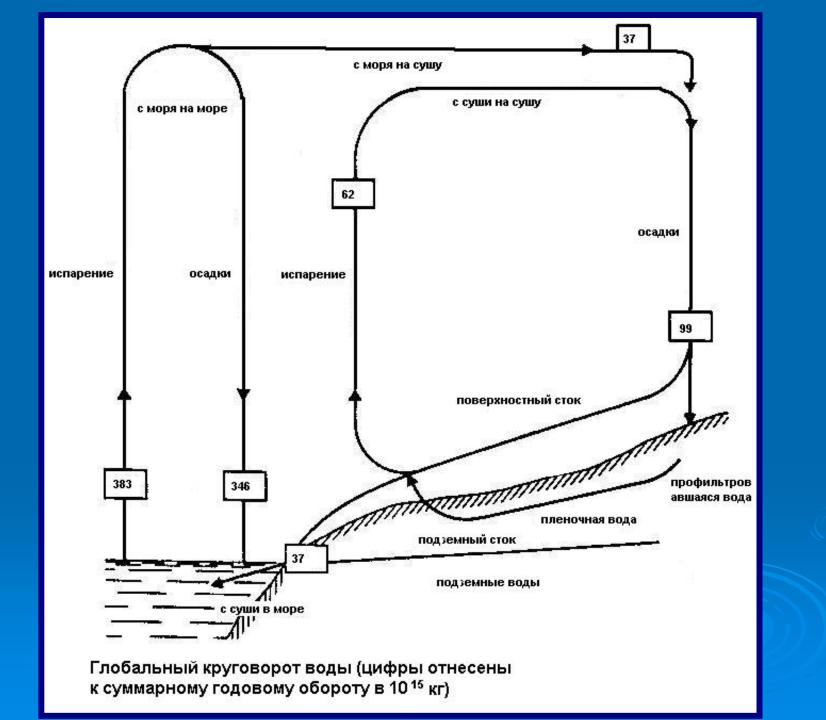

Global distribution of phytoplankton concentration is indicated by ocean color


Microscopic green plants, called phytoplankton, form the lowest level of the marine food web and play important roles in many geochemical processes

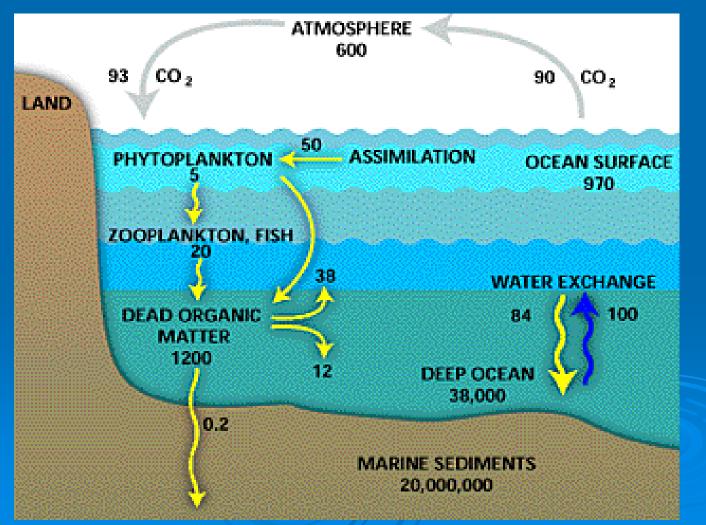
Plankton productivity in the World Ocean (satellite observation)

NASA Goddard Space Flight Center from data taken by the Coastal Zone Color Scanner on the *NIMBUS 7* satellite, the image is an ensemble of data from different seasons. Red, yellow: high concentrations; blue, purple: low concentrations. (*Source:* Courtesy of NASA.)


The bottom image indicates the wave heights in the oceans during the same period. Wave height is determined by the shape of the radar pulse returned by the ocean's surface. In this image, the highest waves occur in the Southern Ocean, where waves up to 6 meters high (represented in red) are found. The lowest waves (indicated by dark blue) are found primarily in the tropical and subtropical oceans, where the winds tend to be lighter.



Sea balance (according to V.I. Vernadskiy, 1960)


B.Matter is transported from sea to land or air
Water evaporation
transporting not only water, but also NaCl etc.**
Wind and splashes Unsolved sea deposits on
the bottom
Gas circulation, Gas escape at temperature and pressure changes.
Transition of sea organisms
onto land.
Eating sea organisms by
land organisms. Human activity.

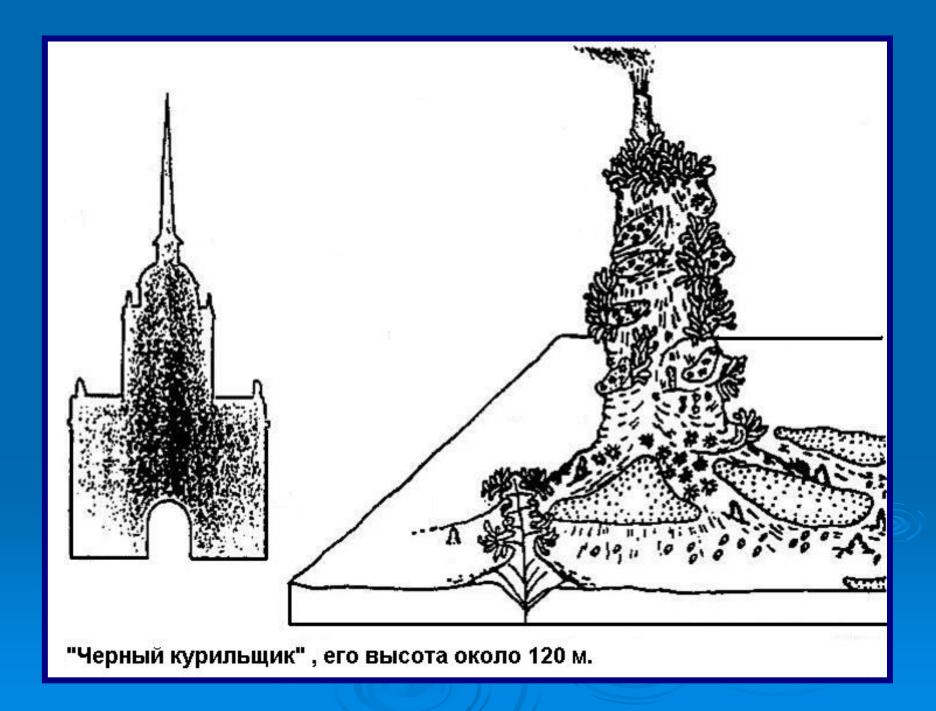
Some transportation processes through the interface of air and sea water (according to Horn R., 1972)

This illustration shows the estimate of the carbon exchange between the ocean and the atmosphere. All quantities are in billions of metric tons.

Sea submarine placers

Their role has increased in recent years. They are, as a rule, delta placers or embedded marginal-marine

placers.


They are at different depths and distances from coast. Their length is sometimes up to 1600 km.

Cassiterite – Indonesia h = 35 m, l from coast – 10-50 km. Volume – kg/m³.

Gold – Alaska h = 5-60 m, 1 from coast – 5 km. Sand layer thickness – 6 m.

Diamonds – Western coast of Africa h to 120 m, l from coast – 5 km. Length 1200 km 5 carats/1 g. (in original – 0,5 carat m³) Production ~ 300 th. carats

There is a problem of international regulation.

Current hydrothermal ore-formation on the Ocean bottom

In the SPREADING zones of the Ocean bottom the numerous sites with sources of THERMAL brines forming thick sulfide deposits were revealed:

GALAPAGOS region, the RED SEA (Atlantis depression, Juan de Fuca range).

Atlantis: Salt thermal deposits reserves^>100 mln. tons.

Content:

 Fe>29%
 Ag

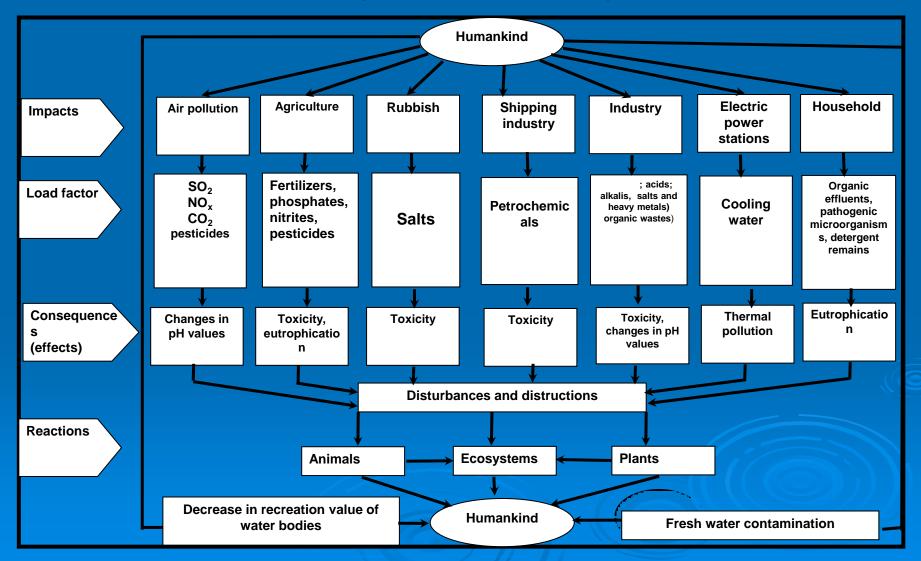
 Zn-2-5%
 Au

 Cu-3-9%
 Au

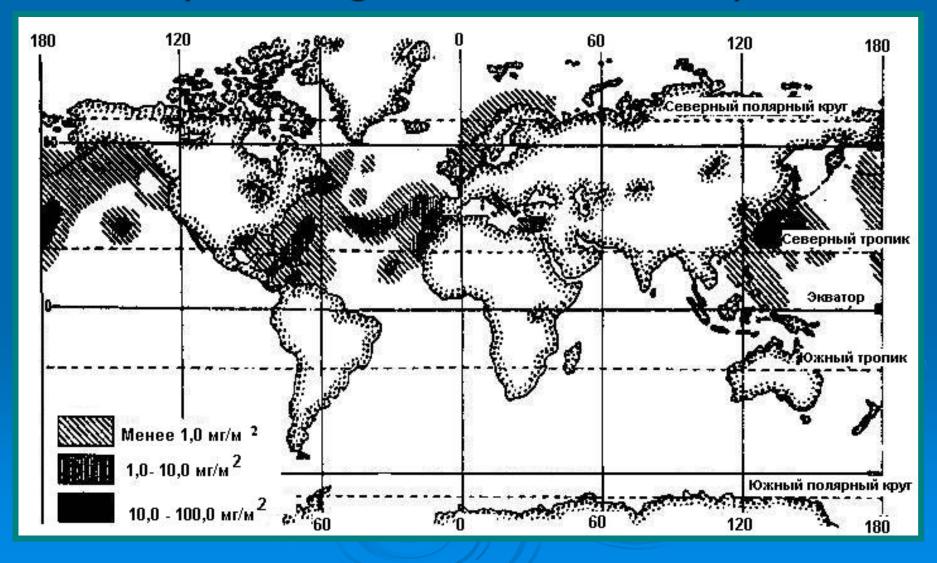
Ад-60 г/т Аu-5 г/т $\mathrm{Sr}^{87}/\mathrm{Sr}^{86} = 0,7034$

It is a modern analogue for a number of ancient stratiform depositions (Zhezqazghan, Mount Isa (Australia), Sullivan (Canada) and other deposits of Pb, Zn, Cu)

Deposits are formed by thermal benthic-oceanic.

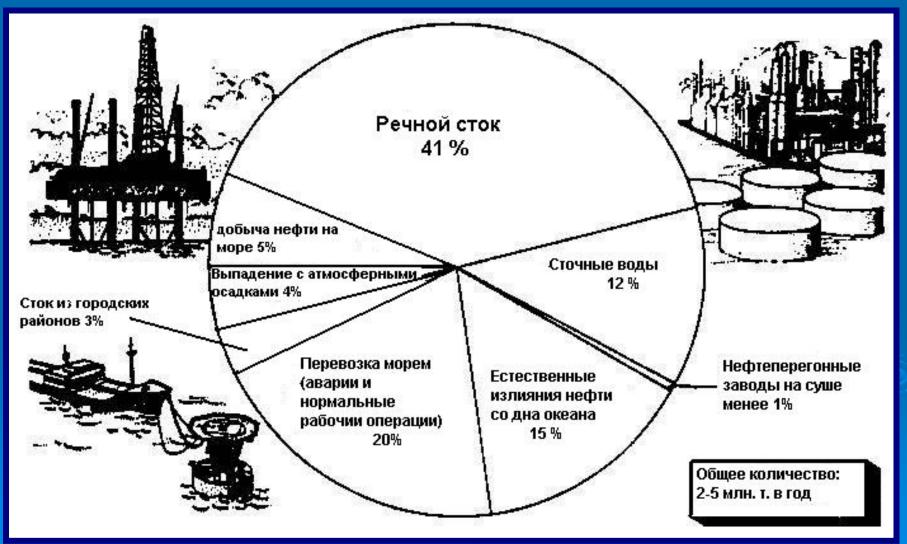

Composition of Sulfide ore in the World Ocean

Elements	Mid-Atlantic	East-Pacific	Juan-de-Fuca	Galapagos
	ridge	Rise		ridge
Fe, %	17,6-30,2	23,1-28,7	5-24,7	
Cu, %	2,01-16,25	0,61-1,89	0,06-0,61	
Zn, %	1,39-4,06	2,80-5,93	11,48-28,84	
Ba , %	0,05-0,09	0,07	0,03-1,37	
Рb г/т	260-460	230-1160	1920-2150	
Со	15,9-103,8	44-62,1	5,4-10,5	
Ni	38-45	2,7-56,5	25,8	
As	62-67	431-480	421-711	
Cd	52	122-493	134-550	
Ag	42,7-48,6	121,3-172,6	63,1-165,2	
Au	1-12,85	0,18	0,13-4,42	
	(до 70 г/т)			
Mn	< 0,1	< 0,1	< 0,1	< 0,1


HYDROSPHERE			
Balance disturbance:			
Irreversible water	-	9	Mainly due to irrigation and
consumption			reservoirs
Irreversible outflow	430-570	-	Mostly due to water pumping
into the ocean	km³/year		from wells.
			Data of different authors differ.
Oil pollution		3560 times	Oil film covers up to ¼ of the
Heavy metal	2135x10 ⁶ t/year		World Ocean surface.
pollution		since the 19-th	Sometimes geochemical
	-	century 10-15	abnormalities differ from
		times on average	catastrophic level by one of values

Anthropogenic disturbances in functional cycle by the example of water ecosystem

(«Environment», 1993)



Oil Spillages Concentrations on the World Ocean Surface (according to N.F. Reimes,1990)

Oil pollution sources of world reservoirs at the beginning of the 1980's

(According to P. Revel et al., 1995)

The photo was taken from the space satellite on September 7, 1985, showing waters of the Mahajamba Bay on Madagascar Island. The sedimentation, seen on the left of the bay, is the result of extreme erosion due to deforestation.

Silting rates in some reservoirs

Country	Reservoir	Annual silting	Period of
		rates (t)	complete
			silting (years)
Egypt	Aswan High	139 000 000	100
	Dam		
Pakistan	Mangla Dam	3 700 000	75
Philippines	Ambuclao	5 800	32
Tanzania	Matumbulu	19 800	30
Tanzania	Xisongo	3 400	15

Source: S.A. El-Swiafy, E.W.Dangler, "Rainfall Erosion in the Tropics: A State of the Art", American Society of Agronomy, Soil Erosion and Conservation in the Tropics (Madison, Wisc.: 1982