Химическая технология ядерного топлива

Тема 12. Получение тетрафторида урана

Амелина Галина Николаевна доцент ОЯТЦ ИЯТШ 334-10 к.

ВОДНЫЙ МЕТОД ПОЛУЧЕНИЯ UF₄

1) Восстановление в растворе ${{\rm UO}_2^{2^+}}$ до ${{\sf U}^{4^+}}$:

химическое (лаб.)

$$UO_2SO_4 + Zn + 2H_2SO_4 \rightarrow U(SO_4)_2 + ZnSO_4 + 2H_2O_4$$

электохимическое (пром.)

$$UO_2SO_4 + 2H_2SO_4 \xrightarrow{\bar{e}} U(SO_4)_2 + 2H_2SO_4$$

ВОДНЫЙ МЕТОД ПОЛУЧЕНИЯ UF₄

2) Осаждение UF₄

$$U(SO_4)_2 + 4HF \rightarrow UF_4 \downarrow + 2H_2SO_4$$

В зависимости от температуры во время осаждения образуются различные кристаллогидраты:

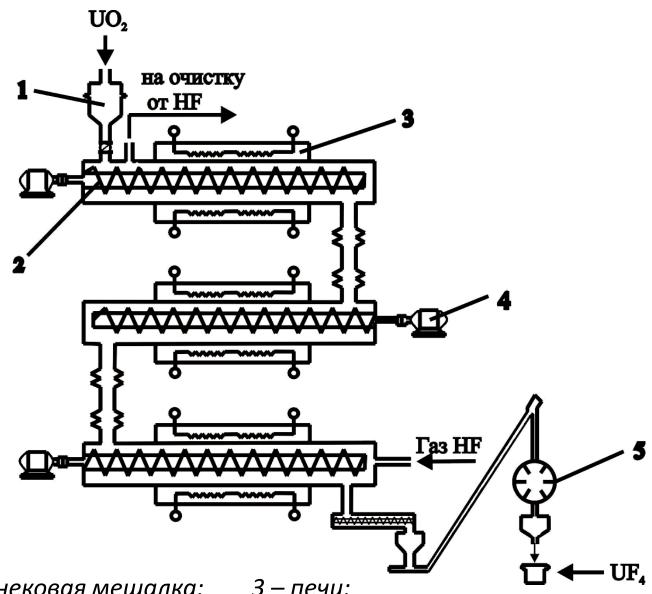
- при **20** °C UF₄ **2,5H₂O** труднофильтруемый зеленый аморфный осадок;
- при 40-60 °C UF₄ 1,5H₂O;
- при 90–100 °C UF₄ 0,5H₂O крупные бирюзовые хорошо фильтрующиеся кристаллы.

3) Дегидратация осадка:

$$UF_4 \cdot nH_2O \xrightarrow{450 \, ^{\circ}C, HF} UF_4 + nH_2O$$

БЕЗВОДНЫЙ МЕТОД ПОЛУЧЕНИЯ UF₄ (сухое гидрофторирование)

$$UO_{2 \text{ тв}} + 4HF_{\text{газ}} \leftrightarrows UF_{4 \text{ тв}} + 2H_2O_{\text{пар}} + 265,8 \text{ кДж}$$

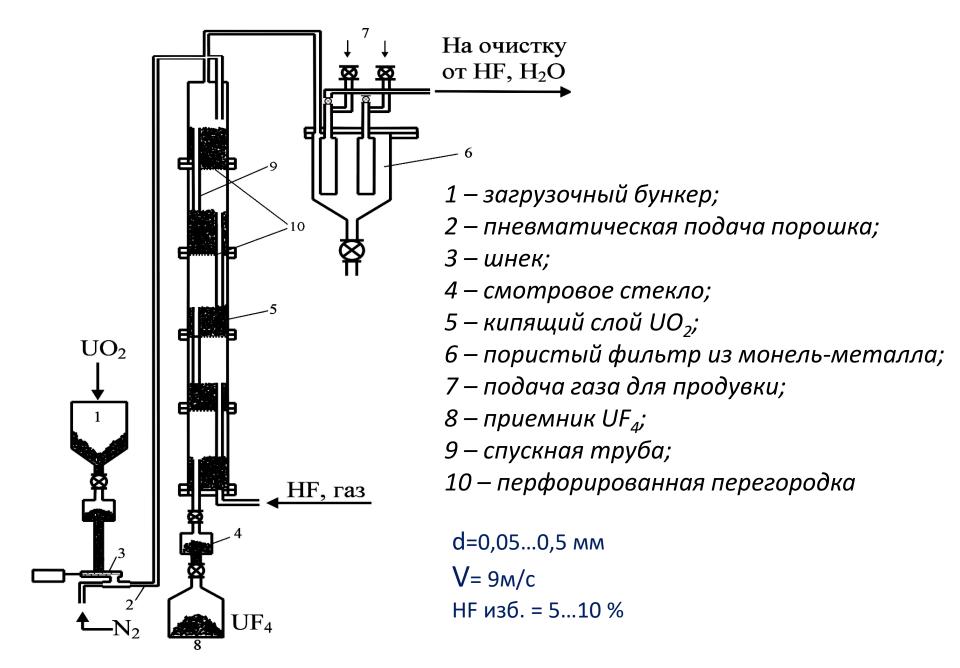

Эффективность гидрофторирования зависит от:

- температуры процесса (t_{опт.}= 400...600 °C)
- количества фтороводорода HF
- реакционной способности диоксида урана
- аппаратурного оформления процесса
- времени процесса фторирования.

Конструкционные материалы – никель и его сплавы:

- монель-металл (сплав Ni + 30 % Cu),
- инконель (сплав Ni + 15% Cr + 7% Fe + 2,5% Ti + Nb, Al, Mn, Si и
 C),
- хэстеллой (Hastelloy) (Ni + (17–30)% Mo + (5–20)% + Cu, Cr).

Схема установки непрерывного гидрофторирования UO₂ до UF₄


1 – бункер; 2 – шнековая мешалка; 3 – печи;

4 – электропривод мешалки; 5 – смеситель

- Производительность установки ≈200 кг UF₄
- Продолжительность процесса 4-5 час.
- Состав продукта, в % масс.:

U _{общий}	.76,0	Wi	.0,0035
UF_4	96,2	Cr	0,0009
UO_2F_2	2,0	Cd	0,00005
Оксиды U	.1,8	Fe	0,0055

Схема установки для получения UF₄ в кипящем слое

Преимущества получения ТФУ в кипящем слое:

- Интенсивное перемешивание $\Rightarrow \uparrow$ скорость реакции,
- Хорошая теплопередача ⇒
- Предотвращение спекания частиц
- Непрерывность процесса
- Снижается избыток НЕ
- Хорошая регулируемость и возможность полной автоматизации процесса

Недостатки получения ТФУ в кипящем слое:

- Истирание частиц
- Большой пылеунос
- Эррозия стенок аппарата