Задача 6.

Схема резервирования системы изображена на рисунке:

Время до отказа элементов 1 и 2 распределено экспоненциально с параметрами $\lambda_1 = 0,0005 \text{ ч}^{-1}$ и $\lambda_2 = 0,0008 \text{ ч}^{-1}$;

элементов 3, 6, 7 — в соответствии с распределением Рэлея с параметрами σ_3 = 8000 ч, σ_6 = 4000 ч и σ_7 = 6500 ч;

элементов 4 и 5 — в соответствии с распределением Вейбулла с параметрами η_4 = 2500 ч, β_4 = 1,4, η_5 = 2000 ч, β_4 = 1,7.

Определите значение ВБР системы в течение 3000 ч и среднее время до отказа системы.

<u>Задача 7.</u>

Устройство состоит из пяти групп элементов, в каждой из которых, соответственно, N_1 = 20, N_2 = 18, N_3 = 28, N_4 = 33, N_5 = 9 элементов с интенсивностями отказов λ_1 = 0,0002 ч⁻¹, λ_2 =0,0025 ч⁻¹, λ_3 = 0,0002 ч⁻¹, λ_4 = 0,00003 ч⁻¹, λ_5 = 0,0005 ч⁻¹.

Элементы 2 и 5 групп восстанавливаемы, со временем восстановления τ_2 = 33 ч, τ_5 = 60 ч.

Пополнение элементов остальных групп в ЗИПе проводится через 1000 часов.

Определите, сколько элементов каждой группы должно быть в ЗИПе, чтобы его достаточность была не менее 0,95?

Задача 8.

Рассчитать время проведения профилактического ремонта системы управления, имеющей значение главного параметра $X_0 = 10$, допуск на параметр (± 2,5), среднеквадратичное отклонение $\sigma_0 = 0.8$, если известно, что $m(t) = m_0 - 0.05t$, $\sigma(t) = \sigma_0 + 0.01t$, а в момент начала проведения профилактических работ требуемая вероятность $P_{\text{проф}} = 0,9$.

Задача 9.

При испытаниях партии исполнительных механизмов (ИМ) из 10 штук было установлено, что погрешность позиционирования со временем увеличивается.

Данные о погрешностях, полученные для моментов времени эксплуатации $t_0 = 0$ ч, $t_1 = 100$ ч приведены в Таблице.

Номер ИМ	1	2	3	4	5	6	7	8	9	10
Δ_0 , MM	0,04	0,042	0,043	0,044	0,045	0,048	0,048	0,051	0,056	0,057
Δ_1 , MM	0,066	0,047	0,125	0,105	0,09	0,122	0,142	0,148	0,128	0,139

Для использования ИМ необходимо, чтобы погрешность его позиционирования была Δ ≤ 0,15 мм.

Полагая, что скорость изменения погрешности подчиняется нормальному закону распределения, определите интервал проведения профилактических работ, исключающий постепенные отказы с вероятностью Р≥0.95.