
1. Система состоит из двух элементов, А и В, соединенных последовательно.

Известно, что интенсивности отказов элементов равны $\lambda_A = 0,00015$ ч $^{\text{-}1}$ и $\lambda_B = 0,00055$ ч $^{\text{-}1}$, соответственно.

Определите среднее время до отказа каждого элемента и системы в целом.

Найдите значение функции ВБР системы и функции интенсивности отказов системы в момент времени $t=1000\,$ ч.

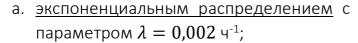
2. Для системы, изображенной выше, известно, что время до отказа элемента А распределено по закону Рэлея с параметром $\sigma=3200$ ч, а элемента В — по закону Вейбулла с параметрами $\eta=2100$ ч и $\beta=1,65$.

Запишите выражение для функции интенсивности отказов системы и **найдите** ее значение в момент времени t=1000 ч.

Постройте графики функций ВБР и интенсивности отказов системы.

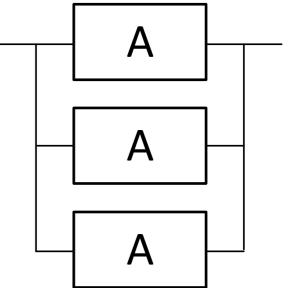
Определите среднее время до отказа каждого элемента и системы в целом.

3. Система состоит из двух элементов, А и В, соединенных параллельно (горячее резервирование).



Определите среднее время до отказа каждого элемента и системы в целом.

интенсивности отказов системы.


4. Система состоит из трех идентичных элементов А, соединенных параллельно (горячее резервирование).

Постройте графики функций ВБР и интенсивности отказов системы, а также определите среднее время до отказа каждого элемента и системы в целом, считая, что время до отказа элемента А распределено в соответствии с:

- b. <u>распределением Рэлея</u> с параметром $\sigma = 399 \, \text{ч};$
- с. <u>распределением</u> <u>Вейбулла</u> с параметрами $\eta = 541$ ч и $\beta = 1,3$;

