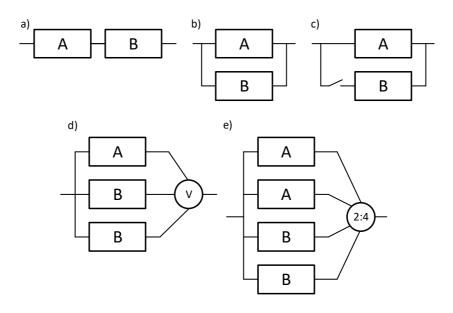
- 1. Используя встроенные функции Mathcad, сгенерируйте выборки объема N=50 и N=200 значений случайной величины, распределенной в соответствии
  - с экспоненциальным распределением ( $\lambda = 0.002$ );
  - с распределением Вейбулла ( $\eta = 800, \beta = 1.7$ ).

Для каждой из выборок определите выборочное среднее и несмещенную выборочную дисперсию. Сравните полученные значения с теоретическими.

- 2. Используя метод обратного преобразования, определите выражения, позволяющие получать значения случайной величины, распределенной
  - экспоненциально;
  - по закону Вейбулла;
  - в соответствии с обобщенным комплементарным экспоненциально-геометрическим распределением:


$$F(x) = 1 - \left(\frac{e^{-\gamma x}}{\alpha + (1 - \alpha)e^{-\gamma x}}\right)^{b}$$

Реализуйте генераторы случайных чисел в Mathcad.

3. Считая, что отказы компонента A распределены по экспоненциальному закону с параметром  $\lambda = 0.0008$ , а компонента B — по закону Вейбулла с параметрами

$$\eta=1400, \beta=1.35,$$

получите выборки времен отказа системы (см. рис.) объемом N=1000. Определите выборочное среднее и несмещенную выборочную дисперсию. Сравните полученные значения с теоретическими.

