Безопасность, надежность технических систем, методы оценки и управления риском

<u>Лабораторная работа №2</u> Резервирование

Разработал: А.А. Ефремов

Томский политехнический университет, 2025

Цель работы:

освоить процедуру расчета показателей надежности последовательно-параллельных систем с различными видами резервирования.

Ход работы:

- 1. Для последовательной системы трех компонентов (Табл. 1, Приложения 1 и 2)
 - построить графики функций ВБР и интенсивности отказов для каждого компонента и для системы в целом;
 - ullet определить значения этих функций в момент времени T;
 - определить значение среднего времени безотказной работы каждого компонента и системы в целом.

2. Определив наименее и наиболее надежные компоненты последовательной системы, выполните горячее резервирование поочередно наименее и наиболее надежного компонента идентичным резервным компонентом.

Для каждого случая постройте графики функций ВБР и интенсивности отказов системы, определите значение ВБР системы в момент времени T и среднее время до отказа системы.

Сделайте вывод.

- 3. Постройте графики функций ВБР системы для общего и раздельного горячего резервирования (дублирования) системы. Определите значение ВБР в момент времени T и среднее время до отказа системы для каждого из вариантов резервирования. Сделайте вывод.
- 4. Выполните холодное резервирование (дублирование) наименее надежного компонента последовательной системы идентичным компонентом. Постройте графики функций ВБР и интенсивности отказов получившейся системы. Определите значение ВБР в момент времени T и среднее время до отказа системы. Сравните результат с результатами горячего резервирования из п.2.

5. Выполните тёплое резервирование <u>наименее</u> надежного компонента последовательной системы идентичным компонентом (см. Приложение 3). Постройте графики функций ВБР и интенсивности отказов получившейся системы. Определите значение ВБР в момент времени *T* и среднее время до отказа системы.

Сравните результат с результатами горячего и холодного резервирования из п.2 и п.4.

6. Постройте графики функций ВБР и интенсивности отказов для систем с кратностями резервирования $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{3}$, составленных из самых надежных элементов данной Вам системы. Определите их среднее время до отказа.

Сравните результаты с показателями надежности самого надежного элемента (без резервирования).

7. Сделайте вывод по лабораторной работе.

Таблица 1

вари	8TM42	Т	λ	η	β	компонент	γ	а	b
ант	0114142	час	10 ⁻⁴ час ⁻¹	час	۲	3	10 ⁻⁵ час ⁻¹	ŭ.	
1	Артемьев Артём Викторович	550	12.65	530	3.1	ER	69	0.415	
2	Балухта Алексей Игоревич	2450	2.83	2800	2.2	GE	35		0.765
3	Бауэр Александр Викторович	1230	5.66	1440	2.3	GE	79		0.62
4	Борзунов Денис Владимирович	610	11.31	630	2.4	EE	46	0.425	
5	Вальтер Любовь Андреевна	650	10.58	820	3.7	EE	49	0.51	
6	Вышегородский Александр Викторович	510	13.57	600	2.5	ER	75	0.37	
7	Гладкова Жанна Николаевна	740	9.38	800	3.4	GE	55		1.385
8	Глазырина Татьяна Анатольевна	520	13.27	730	1.3	ER	67	0.29	
9	Гончаров Илья Олегович	930	7.48	1150	2	ER	77	0.7	
10	Долгих Иван Михайлович	1100	6.33	1350	1.4	GE	81		0.86
11	Кватюра Иван Дмитриевич	820	8.49	960	1.7	EE	60	0.63	
12	Колодяжный Семен Сергеевич	1000	6.93	1250	2.8	GE	24		2.945
13	Ларина Анастасия Валерьевна	630	10.95	620	2.6	EE	17	0.29	
14	Линеенко Сергей Владимирович	770	8.94	1070	1.5	EE	42	0.47	
15	Максимов Максим Александрович	560	12.33	670	1.8	ER	62	0.285	
16	Маматов Яков Сергеевич	500	13.86	520	1.6	ER	39	0.195	
17	Пустыльный Руслан Николаевич	580	12	670	3.6	EE	65	0.65	
18	Сурков Максим Юрьевич	1410	4.9	1520	3.5	ER	73	1.45	
19	Толстогузов Игорь Николаевич	590	11.66	560	2.9	EE	52	0.485	
20	Точе Тиам Гедеон Стив	490	14.144	510	2.7	ER	71	0.299	
21	Шилимов Валентин Валентинович	710	9.8	730	3.3	GE	30		3.495

ПРИЛОЖЕНИЕ 1

Время до отказа компонента 1 распределено экспоненциально; компонента 2 — в соответствии с распределением Вейбулла; компонента 3 — в соответствии с распределением, заданным по варианту.

Параметры распределений указаны в Таблице 1

ПРИЛОЖЕНИЕ 2

Распределение**	Функция распределения (вероятность отказа)	Параметры
EE	$F(x) = (1 - e^{-\gamma x})^a$	$a, \gamma > 0$
ER	$F(x) = \left(1 - e^{-(\gamma x)^2}\right)^a$	$a, \gamma > 0$
GE	$F(x) = 1 - (e^{-\gamma x})^b$	$\gamma, b > 0$

- ЕЕ Экспоненциированное экспоненциальное распределение
- ER Экспоненциированное распределение Рэлея
- GE Обобщенное экспоненциальное распределение

ПРИЛОЖЕНИЕ 3

Для тёплого резервирования

В случае, если наименее надежным компонентом является λ

компонент 1, $\lambda_R = \frac{\lambda}{8}$;

если компонент 2: $\eta_R=4\eta$;

если компонент 3: $\gamma_R = \frac{\gamma}{6}$.