


Parameter Estimation

Estimation theory is a branch of statistics that deals with

estimating the values of parameters based on measured empirical

data that has a random component.

The parameters describe an underlying physical setting in such a

way that their value affects the distribution of the measured data.

An estimator attempts to approximate the unknown parameters

using the measurements.



Parameter Estimation

The method of least squares (least squares estimation, LSE) is a

standard approach to approximate the solution of overdetermined

systems, i.e. sets of equations in which there are more equations

than unknowns.

"Least squares" means that the overall solution minimizes the sum

of the squares of the residuals made in the results of every single

equation.



Parameter Estimation

Least-squares problems fall into two categories:

• linear or ordinary least squares;

• nonlinear least squares,

depending on whether or not the residuals are linear in all

unknowns.

The linear least-squares problem has a closed-form solution. The

nonlinear problem is usually solved by iterative refinement; at

each iteration the system is approximated by a linear one, and

thus the core calculation is similar in both cases.



Parameter Estimation

The objective consists of adjusting the parameters of a model

function to best fit a data set.

A simple data set consists of � data pairs �� , �� , � = 1, … , �.

The model function has the form 
 �, � , where � adjustable

parameters are held in the vector �.

The goal is to find the parameter values �� , � = 1, … , � for the

model that "best" fits the data.



Parameter Estimation

The fit of a model to a data point is measured by its residual,

defined as the difference between the actual value of the

dependent variable and the value predicted by the model:

� �� � = �� − 
 �� , ��
The LSE method finds the optimal parameter values by minimizing

the sum of squared residuals:

� �� = � � �� �
�

�

���



Parameter Estimation

Ex.: Assume that five identical units are being reliability tested. The

units fail during the test after operating the following number of

hours: 20, 275, 365, 415, and 1020.

Assuming that the data follow exponential distribution, estimate

the value of the parameter �.

Here, the vector �� contains single element - ��, and


 �, � = 1 − ��� .



Parameter Estimation

The naïve approach is to minimize the sum of squared residuals as

previously specified:

where "� are obtained as median ranks.

� �� = � � �� �
�

#

���
= � "� − 1 − ���� $

�#

���

ti Yi

20 0,129

275 0,314

365 0,5

415 0,686

1020 0,871



Parameter Estimation

However, this would lead to a nonlinear equation with respect to

�� .

We can avoid it by linearizing the cdf:


 �, � = 1 − ��� 1 − 
 �, � = ��� 

ln 1 − 
 �, � = −�  ⇒    � = )� + +
� ≡ ln 1 − 
 �, � = ln 1 − "  

) ≡ −
� ≡ �
+ ≡ 0



Parameter Estimation

Then the sum of squared residuals:

To find the minimum of � )� we should set
./
.0� = 0.

� )� = � �� − )���
�

#

���
= � ��� − 2)����� + )�����

#

���
=

= )�� � ���
#

���
− 2)� � ����

#

���
+ � ���

#

���



2�
2)� = 2)� � ���

#

���
− 2 � ����

#

���
= 0

)� = ∑ ����#���
∑ ���#���
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xi xi
2 Yi yi xiyi

20 400 0,129 -0,138 -2,762

275 75625 0,314 -0,377 -103,641

365 133225 0,5 -0,693 -252,999

415 172225 0,686 -1,158 -480,72

1020 1040400 0,871 -2,048 -2088,902

Σ 1421875 -2929,024

)� = −2929.024
1421875 = −2.06 × 10�;

�� = 2.06 × 10�;

Parameter Estimation



Parameter Estimation

The LSE method is quite good for functions that can be linearized.

For these distributions, the calculations are relatively easy and

straightforward, having closed-form solutions that can readily yield

an answer without having to resort to numerical techniques or

tables.

LSE is generally best used with data sets containing complete data,

that is, data consisting only of single times-to-failure with no

censored or interval data.



Parameter Estimation

In statistics, maximum likelihood estimation (MLE) is a method of

estimating the parameters of a statistical model so the observed

data is most probable.

Specifically, this is done by finding the value of the parameter (or

parameter vector) �� that maximizes the likelihood function ℒ �� ,

which is the joint probability (or probability density) of the

observed data over a parameter space.



Parameter Estimation

The vector �� that maximizes the likelihood function is called the

maximum likelihood estimate.

The logic of maximum likelihood is both intuitive and flexible, and

as such the method has become a dominant means of inference

within much of the quantitative research of the social and medical

sciences and engineering.



Parameter Estimation

Consider = – a continuous random variable with pdf:

where �, �, … , 0 are ) unknown parameters which need to be

estimated, with > independent observations, ��, ��, … , �?, which

correspond in the case of life data analysis to failure times.

The likelihood function is given by:

@ �, � ≡ @ �, �, �, … , 0

ℒ �� = A @ �� , ��
?

���



Parameter Estimation

In practice, it is often convenient to work with the natural

logarithm of the likelihood function, called the logarithmic

likelihood (log-likelihood) function:

The maximum likelihood estimators (or parameter values) of

�, �, … , 0 are obtained by maximizing ℒ �� or Λ �� :

Λ Θ� = ln ℒ Θ� = � ln @ �� , Θ�
?

���

EΛ
E��

= 0, � = 1,2, … , )



Parameter Estimation

Ex.: Assume that five identical units are being reliability tested. The

units fail during the test after operating the following number of

hours: 20, 275, 365, 415, and 1020.

Assuming that the data follow exponential distribution, estimate

the value of the parameter �.

Here, the vector �� contains single element - ��, and

@ �, � = ��� .



Parameter Estimation

The log-likelihood function:

Substituting failure times for ti, we get:

Λ Θ� = � ln Θ���F� $ =
#

���
5 ln Θ� − Θ� � ��

#

���

Λ Θ� = 5 ln Θ� − 2095 · Θ�
EΛ
EΘ� = 5

Θ� − 2095 = 0  ⇒   Θ� = 5
2095 = 2.39 × 10�;

�� = 2.39 × 10�;



Parameter Estimation

Analyzing the results of two previous examples, you should notice

that parameter estimates differ from one another, and we can’t

specify which result is better.

We can evaluate residual sum of squares (RSS) or mean squared

error (MSE):

I�� �� = � "� − 
 =� , �� �?

���
   J�K �� = I�� ��

>



Parameter Estimation

We also can determine the likelihood of either result by calculating

Λ �� , or, −2Λ �� - the metric used in various statistical quality

tests.

Let’s compare these metrics obtained with the results of LSE and

MLE:

I�� −2Λ
��L/M = 2.06 × 10�; 0.035 70.482
��NLM = 2.39 × 10�; 0.047 70.379



Parameter Estimation

The results we have here are quite obvious: ��L/M is the value for

which RSS is minimal, so any other parameter value yields greater

RSS.

Likewise, ��NLM is the value that maximizes Λ �� (and minimizes

− 2Λ �� ).

I�� −2Λ
��L/M = 2.06 × 10�; 0.035 70.482
��NLM = 2.39 × 10�; 0.047 70.379





Pseudo-Random Number Sampling

Quite often in statistics and simulation we need to obtain samples

of random numbers distributed according to a given probability

distribution.

Modern mathematical software is equipped with pseudo-random

number generator producing uniformally distributed samples.

To generate samples drawn from other distributions we need to

resort to pseudo-random number sampling techniques.



Pseudo-Random Number Sampling

The most common technique is inverse transform sampling

(Smirnov transform, inverse transformationmethod).

Inverse transformation sampling takes uniform samples of a

number O between 0 and 1, interpreted as a probability, and then

returns the largest number x from the domain of the distribution

P = such that

P −∞ < = < � ≤ O.



Pseudo-Random Number Sampling

Computationally, this method involves computing the quantile

function of the distribution — in other words, computing the

cumulative distribution function (cdf) of the distribution and then

inverting that function.

For a continuous distribution we need to integrate the probability

density function (pdf) of the distribution or to obtain quantile

function in an explicit form, which is impossible to do analytically

for most distributions (including the normal distribution).



Pseudo-Random Number Sampling

Let = be a random variable whose distribution can be described by

the cdf 
=. We want to generate values of = which are distributed

according to this distribution.

The inverse transform sampling method works as follows:

• Generate a random number O from the standard uniform

distribution in the interval [0,1].

• Find the inverse of the desired cdf, 
V�� � .

• Compute = = 
V�� O . The computed random variable = has

distribution 
=(�).



Pseudo-Random Number Sampling

Ex.: Suppose we have a random variable Y~Y��@ 0,1 and a cdf

of Weibull distribution


 � = 1 − �� [
\

]
.

In order to perform an inversion we need to express � in terms of

Y = 
(�).




 � = 1 − �� ^
_

]
                     
 � = Y

1 − �� [
\

]
= Y

�� [
\

]
= 1 − Y

�
`

a
= − ln 1 − Y 

� = ` · − ln 1 − Y 

�
a

Pseudo-Random Number Sampling



Pseudo-Random Number Sampling

Once the samples of components’ failure times are generated, we

can obtain the sample of the system failures, providing that the

system configuration is known.

For example, if the series system consists of m components and for

each of them failure time samples = � (� =  1. . �) of size � were

generated, then we can get the sample " of system’s failure times

as follows:

"� = min�∈ �,e =�
� , � = 1. . �



Pseudo-Random Number Sampling

For the parallel hot redundancy system of � components we get:

"� = max�∈ �,e =�
�

For the cold standby redundancy system of � components we get:

"� = � =�
�

e

���



Pseudo-Random Number Sampling

Ex.: For the system with RBD shown below provide an algorithm of

generating the sample of � system failures.

We assume the failure times of components 1 – 5 are collected

into samples X1 – X5, respectively.

1
2

3

4 5



1
2

3

4 5

max =2� , =3� min =1� , max =2� , =3�

min =4� , =5�

"� = min =1� , max =2� , =3� + min =4� , =5�

Pseudo-Random Number Sampling





Model Selection

Model selection is the task of selecting a statistical model from a

set of candidate models, given data.

Given candidate models of similar predictive or explanatory power,

the simplest model is most likely to be the best choice (Occam's

razor).

In its most basic forms, model selection is one of the fundamental

tasks of scientific inquiry. Determining the principle that explains a

series of observations is often linked directly to a mathematical

model predicting those observations.



Model Selection

The mathematical approach of model selection decides among a

set of candidate models; this set must be chosen by the

researcher.

Once the set of candidate models has been chosen, the statistical

analysis allows selecting the best of these models.

What is meant by “best” is controversial.



Model Selection

A good model selection technique will balance goodness of fit with

simplicity.

More complex models will be better able to adapt their shape to

fit the data (for example, a fifth-order polynomial can exactly fit six

points).



Model Selection

However, the additional parameters may not represent anything

useful. (Perhaps those six points are really just randomly

distributed about a straight line.)



Model Selection

The most straightforward technique of model selection is to prefer

the model with maximum likelihood (log-likelihood) score.

If Λ� ��h and Λ� ��i are the values of log-likelihood functions

for two candidate models with estimated parameter vectors ��h
and ��i, then the model with greater log-likelihood value should

be preferred.

For various reasons, in statistics usually estimate the value

− 2Λ �� , and select the model with minimal score.



Model Selection

Though this technique accounts for goodness of the fit, it doesn’t

take into account model complexity.

In order to do that, the Akaike information criterion (AIC) was

introduced, which is an estimator of the relative quality of

statistical models for a given set of data.

Given a collection of models for the data, AIC estimates the quality

of each model, relative to each of the other models.



Model Selection

Suppose that we have a statistical model of some data.

Let ) be the number of estimated parameters in the model.

Let Λ� be the maximum value of the log-likelihood function for the

model.

Then the AIC value of the model is the following:

jkl = 2) − 2Λ�



Model Selection

Given a set of candidate models for the data, the preferred model

is the one with the minimum AIC value.

Thus, AIC rewards goodness of fit (as assessed by the likelihood

function), but it also includes a penalty that is an increasing

function of the number of estimated parameters.

The penalty discourages overfitting, because increasing the

number of parameters in the model almost always improves the

goodness of the fit.



Model Selection

Note that AIC tells nothing about the absolute quality of a model,

only the quality relative to other models.

Thus, if all the candidate models fit poorly, AIC will not give any

warning of that.

Hence, after selecting a model via AIC, it is usually good practice to

validate the absolute quality of the model.



Model Selection

Various developments of the AIC were introduced later. Based on

ideas from statistics and information theory, researchers

suggested different penalties for the number of parameters.

Bayesian information criterion (BIC):

mkl = ) ln � − 2Λ�
Hannan–Quinn information criterion (HQC):

nol = 2) ln ln � − 2Λ�
where � is the sample size.



Model Selection

Another approach for model selection is to apply various statistical

goodness-of-the-fit tests.

Generally, they are performed in order to validate the model (as a

part of hypothesis testing), i.e. to determine whether the model is

applicable to the given data.

However, these tests can be applied to assess the relative quality

of models.



Model Selection

Cramér–vonMises Test

Let ��, ��, … , �� be the observed values, in increasing order, and


 � is the cdf of the model under the test. Then, the statistic is:

lJ = 1
12� + � 2� − 1

2� − 
 ��
��

���

The smaller the value of lJ is, the better the quality of the

model.



Model Selection

Anderson-Darling Test

Let ��, ��, … , �� be the observed values, in increasing order, and


 � is the cdf of the model under the test. Then, the statistic is:

j� = −� − �,
where

� = � 2� − 1
� ln 
 �� + ln 1 − 
 ��p���

�

���
Again, smaller value of j2 indicates better model.


