


Maintenance defines the set of actions performed on the item to

retain it in or to restore it to a specified state.

Thus, maintenance deals with

• preventive maintenance, carried out at predetermined

intervals, e.g. to reduce wear-out failures,

• corrective maintenance, carried out at failure and intended to

bring the item to a state in which it can perform the required

function.
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The goal of a preventive maintenance must also be to detect &

repair hidden failures & defects (e.g. undetected failures in

redundant elements).

Corrective maintenance, also known as repair, includes detection,

localization, correction, and checkout.

To simplify the calculations, it is generally assumed that the item

for which a maintenance action has been performed, is as-good-

as-new after maintenance.

Repairable Systems



It is also assumed that each failed item in the multicomponent

systems is repaired by individual repairman, i.e. all failed items

are repaired simultaneously.

Item’s time to repair is regarded as a continuous random

variable.

The mean of the repair time is denoted by MTTR (mean time to

repair (restoration)).
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Just like failure probability in non-repairable systems, the

probability of repair grows with time.

We will further assume that time to repair is an exponentially

distributed random variable, which means that repair rate – a

measure analogous to the hazard rate – is a constant number, μ.

Thus, ���� = ��.
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Availability is a broad term, expressing the ratio of delivered to

expected service.

It is often designated by A and used for the asymptotic & steady-

state value of the point availability.

Point availability (��(
)) is a characteristic of the item expressed

by the probability that the item will perform its required function

under given conditions at a stated instant of time 
.
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Availability calculation is often difficult, as human aspects &

logistic support have to be considered. Ideal human aspects &

logistic support are often assumed, yielding to the intrinsic

availability.

Further assumptions for calculations are continuous operation

and complete renewal of the repaired element.

In this case, the point availability of the one-item structure

rapidly converges to an asymptotic & steady-state value, given by� = �������.
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Ex.: Consider a single-item system, assuming that the following

corrective maintenance strategy is adopted:

When the system fails, a repair action is initiated to bring it back

to its initial functioning state. After the repair is completed, the

system is assumed to be as-good-as-new.

We also assume that the system has constant hazard rate λ and

constant repair rate μ.
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To evaluate the point availability of the system, a space-state

method should be exploited. In order to do that, we need to

compose a graph – a state-transition diagram.

In the diagram circles represent system’s states and arcs

correspond to transitions from one state to another.
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We denote an operable state as a

state 1, and a failed state as 2.
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At any single moment there is a probability that the system

would transit from its current state to another one (P12 and P21),

and, also, that the system remains in its current state (P11 and

P22).

By definition, P12 is the instantaneous failure probability, and P21
– instantaneous repair probability.



Further calculations do not involve

probabilities Pii, so we won’t draw

loops in graphs anymore.
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For any given state i the sum of Pij adds up to 1.

State probabilities are obtained then by the following system of

equations: ��� 
 + ∆
 = �� 
 · 1 − ��� ∆
 + �� 
 · ��� ∆
�� 
 + ∆
 = �� 
 · 1 − ��� ∆
 + �� 
 · ��� ∆

In order to simplify the explanation, we will refer to the moment

t as to “now”, and to the moment t+Δt as to “next moment”.
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Then, the first equation is explained as follows:

�� 
 + ∆
 = �� 
 · 1 − ��� ∆
 + �� 
 · ��� ∆

The probability that the system will find itself in the next moment

in state 1 is equal to…

… the probability that it is already in state 1 and it won’t transit to

state 2 during time interval Δt…

… plus the probability that now the system is in state 2 and it will 

transit to state 1 during time interval Δt.



As Δ
 approaches to 0 , ��� ∆
 → ���∆
 , where ��� is the

transient rate.

Using the definition of derivative we obtain:

���� 
 = −��� 
 +  �� 
��� 
 =   ��� 
 −  �� 

since ��� = � and ��� =  .

We also can obtain such a system directly from the state-

transition diagram
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For each state in the diagram we have

an equation with the derivative of the

state probability on the left.
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On the right side we have as many terms as the number of arcs

adjacent to a current state.

Each arc is represented by its rate times the probability of the

originate state.

The terms corresponding to incoming arcs go with “+” sign,

outgoing arcs – with “-”.

P1 P2

µ 

λ 
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P1 P2

µ 

λ 

���� 
 = −��� 
 +  �� 
��� 
 =   ��� 
 −  �� 




To solve this system we can use Laplace transform method,

taking into account that � 
 ℒ⇒ � $�� 
 ℒ⇒ $� $ − � 0�
Assuming that at time 0 the system is in state 1, we get:
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���� 
 = −��� 
 +  �� 
��� 
 =   ��� 
 −  �� 


� $�� $ = −��� $ +  �� $ + 1     $�� $ = ��� $ −  �� $ + 0         



From the second equation:�� $ = �$ +  �� $
Substituting this result into the first equation, we get:
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�   $�� $ = −��� $ +  �� $ + 1$�� $ = ��� $ −  �� $

�� $ = $ +  $ $ + � +  �� $ = �$ $ + � +  



Inverse Laplace transform allows us to return into time domain:

�� 
 = ℒ%� �� $ =  � +  + �� +  &% '�� (
�1(
) is the probability that the system is in operable state,

which, by definition, is the point availability ��(
) of the

repairable system.
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�   $�� $ = −��� $ +  �� $ + 1$�� $ = ��� $ −  �� $
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Since usually  ≫ �, ��(
) reaches its steady-state value very

fast. So, instead of solving differential equations, we can obtain a

steady-state solution a lot easier.

To achieve this, we replace all derivatives with zeros and

supplement the system with an additional equation:

+0 = −��� +  ��0 = ��� −  ��   �� + �� = 1        
Solving this, we obtain � =  �1.
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The major drawback of the state-space method is an avalanche-

like increase of the number of states (and in turn, the number of

equations) with increase of system complexity (number of

components).
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Sometimes the number of states can be reduced.

Usually, it is possible if components have the same failure and/or

repair rate (which is common in parallel configurations).
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Ex.: Consider a system of 2 components in parallel (hot

redundancy). Draw the state-transition diagram for 2 different

cases:

• both components have different failure and repair rates;

• both components are identical.
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Starting from the initial state 1 in the first case, two events may

happen: either component A or component B may fail (states 2

and 3). Those events are not the critical ones – the system is still

in operable state.
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Failed components may be repaired, which return the system

into the initial state.
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Components still operating in states 2 and 3 may fail as well, thus

causing system failure (state 4).
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Finally, failed components from state 4 may be repaired,

returning the system into states 2 or 3.
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Note that each arc corresponds to a single failure/repair event –

no two events can occur simultaneously!
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Since the components in the second case are statistically

identical, it is irrelevant which item fails first – the consequences

for the system are the same.

The transition rate is 2�� which indicates joint “effort” of both

items to transfer the system into state 2.
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However, only one failed item is under repair in state 2, so the

rate of reverse transition is still  �.

Repairable Systems

1 0
&1 2304&5A

A

67
ℎ 0
&1$ 9: 1

2

2λA µA 



State 2 still has one operable component that may fail, resulting

in system failure.
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State 3 has two failed components, each being repaired

individually by separate repairman. So, the rate of joint “effort”

of returning back to state 2 is 2 �.
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To find the point availability of the system we can perform the

computation manually, which is rather tedious.

Here, ��(
)  =  �1(
) + �2(
)  =  1 –  �3(
)
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@$�� $ = −2�A�� $ +  A�� $ + 1                         $�� $ = 2�A�� $ − �A +  A �� $ + 2 A�B $$�B $ = �A�� $ − 2 A�B $                                      1

2

3

2λA µA 

λA 2µA 



Alternatively, we can resort to a mathematical software:
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�� $
�� $
�B $



However, if our goal is only to find the steady-state availability,

we can achieve it easily with the following equations:
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�� = ��%�,� �,�%� ��%� �� = ∏ ��,����%��E�∏  ���,��%��E� �� F �� = 1
1 2 3

2λA λA 

µA 2µA �� = 2�A A ��
�B = �A2 A �� = 2�A · �A2 A ·  A �� = �A� A� ��



Please, note that this technique is applied only in cases, when

state transition diagram is represented as a birth-death process.
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�� 1 + 2�A A + �A� A� = 1 ⇒  �� =  A��A +  A � , �� = 2�A ·  A�A +  A �

� = �� + �� =  A  A + 2�A�A +  A �



Naturally, the state-space method can be applied for non-

repairable systems as well.

However, this approach is appropriate only in the case of

complex redundancy configuration, not covered by previously

introduced formulae.

Moreover, the state-space method allows us to find the MTTF of

repairable systems.
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Let’s compare the following equations:

The left one is the formula for the MTTF of non-repairable system

where reliability function is regarded as the probability of system

being in operable state.

The right equation is the Laplace transform.
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It’s obvious that �($ = 0) = �.

The mean sojourn time (mean waiting time) for a certain state in

the state-transition diagram is evaluated as a Laplace transform

of the probability of being in that state, assuming $ =  0.
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The algorithm for the MTTF calculation is as follows:

1. Obtain the system of equations in the form of Laplace transform.

2. Exclude from the system the equations which describe inoperable

states.

3. Exclude from the remaining equations all terms which contain the

probabilities of inoperable states.

4. Replace �0($) with �0.
5. Set $ =  0.

6. Solve for �0.
7. Find ∑ ��.
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To provide an example, we consider the previous system - hot

redundancy with two identical components:
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Ex.: The system consists of 2 subsystems in series.

The first one has 2 identical components A with a warm standby

redundancy.

The second one is a 2-out-of-3 system with identical components B.

Draw a state-transition diagram for the system.
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At first, let’s draw transitions representing failures:
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Now, let’s complete the graph with transitions representing

recoveries:
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Next, let’s write down the system of differential equations that

describes the obtained graph:
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L�� 
 = − �A + �MA + 3�N L� 
 +  AL� 
 +  NLB 

L�� 
 = �A + �MA L� 
 − �A + 3�N +  A L� 
 + 2 ALO 
 +  NLP 

L�B 
 = 3�NL� 
 − �A + �MA + 2�N +  N LB 
 +  ALP 
 + 2 NLQ 
L�O 
 = �AL� 
 − 2 ALO 
 +  NLR 

L�Q 
 = 2�NLB 
 − 2 NLQ 
 +  ALS 
L�P 
 = 3�NL� 
 + �A + �MA LB 
 − �A + 2�N +  A +  N LP 
 + 2 ALR 
 + 2 NLS 

L�R 
 = �ALP 
 − 2 A +  N LR 
L�S 
 = 2�NLP 
 −  A + 2 N LS 




The Laplace transform of the obtained system is as follows:
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$�� $ = − �A + �MA + 3�N �� $ +  A�� $ +  N�B $ + T
$�� $ = �A + �MA �� $ − �A + 3�N +  A �� $ + 2 A�O $ +  N�P $ + U
$�B $ = 3�N�� $ − �A + �MA + 2�N +  N �B $ +  A�P $ + 2 N�Q $ + U$�O $ = �A�� $ − 2 A�O $ +  N�R $ + U
$�Q $ = 2�N�B $ − 2 N�Q $ +  A�S $ + U$�P $ = 3�N�� $ + �A + �MA �B $ − �A + 2�N +  A +  N �P $ + 2 A�R $ + 2 N�S $ + U
$�R $ = �A�P $ − 2 A +  N �R $ + U$�S $ = 2�N�P $ −  A + 2 N �S $ + U



Since the system is operable when it is in the 1st, 2nd, 3rd, or 5th

state, the point availability function is

or, alternatively,
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�V 
 = L� 
 + L� 
 + LB 
 + LP 
 ,
�V 
 = 1 − LO 
 + LQ 
 + LR 
 + LS 
 .



The system of equations for the steady-state solution:
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0 = − �A + �MA + 3�N L� +  AL� +  NLB0 = �A + �MA L� − �A + 3�N +  A L� + 2 ALO +  NLP0 = 3�NL� − �A + �MA + 2�N +  N LB +  ALP + 2 NLQ0 = �AL� − 2 ALO +  NLR
0 = 2�NLB − 2 NLQ +  ALS
0 = 3�NL� + �A + �MA LB − �A + 2�N +  A +  N LP + 2 ALR + 2 NLS
0 = �ALP − 2 A +  N LR0 = 2�NLP −  A + 2 N LS1 = L� + L� + LB + LO + LP + LQ + LR + LS



Since the system is operable when it is in the 1st, 2nd, 3rd, or 5th

state, the steady-state availability is

or, alternatively,
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�VJ(XYZ[ = L� + L� + LB + LP,
�VJ(XYZ[ = 1 − LO + LQ + LR + LS .



Let’s transform the graph by removing all inoperable states and

related outgoing arcs:
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Now we can write down the system of equations for the calculation

of the mean time to the system failure:
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$�� $ = − �A + �MA + 3�N �� $ +  A�� $ +  N�B $ + T
$�� $ = �A + �MA �� $ − �A + 3�N +  A �� $ + 2 A�O $ +  N�P $ + U
$�B $ = 3�N�� $ − �A + �MA + 2�N +  N �B $ +  A�P $ + 2 N�Q $ + U$�O $ = �A�� $ − 2 A�O $ +  N�R $ + U
$�Q $ = 2�N�B $ − 2 N�Q $ +  A�S $ + U$�P $ = 3�N�� $ + �A + �MA �B $ − �A + 2�N +  A +  N �P $ + 2 A�R $ + 2 N�S $ + U
$�R $ = �A�P $ − 2 A +  N �R $ + U$�S $ = 2�N�P $ −  A + 2 N �S $ + U



Replacing Pi(s) with Ti, we get

Solving the system for Ti, we obtain the mean time to the system

failure as
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0 = − �A + �MA + 3�N �� +  A�� +  N�B + 1
0 = �A + �MA �� − �A + 3�N +  A �� +  N�P0 = 3�N�� − �A + �MA + 2�N +  N �B +  A�P0 = 3�N�� + �A + �MA �B − �A + 2�N +  A +  N �P

���) = �� + �� + �B + �P


