


The Reliability of Series Systems

Components of a system are said to be connected in series if

each one of them must be operational for the system to be

operational,

i.e. the failure of any one of its component causes the system to

fail.

The reliability block diagram (RBD) of a series system with n

elements is as follows:
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The Reliability of Series Systems

For calculation purposes it is in general tacitly assumed that for

series systems, each element operates and fails independently

from each other element.

Let {ei}, i = 1, 2,…,n be the event

Assuming Ei is new at t = 0, the probability of {ei} is

with Ri(t) as reliability function of Ei.

E1 E2 En
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The Reliability of Series Systems

The system does not fail in the interval [0, t] if and only if all

elements E1, E2,…, En do not fail in that interval, thus

Here and in the following, S stands for system.

Due to the assumed independence among the elements E1, E2,…,

En , it follows for the reliability function RS(t):

E1 E2 En

�� 	 = �� �� ∩ �� ∩ ⋯ ∩ �� .
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�

���
Product Law of Reliabilities



The Reliability of Series Systems

Since the reliability of each component is a positive number less

than one,

the product value is less then each term.

It follows that the reliability of a series system is less than the

reliability of each constituent component and, hence, is less than

the reliability of its least reliable component:

E1 E2 En

�� 	 ∈ 0,1 , 	 > 0

�� 	 < min���..� �� 	 .



The Reliability of Series Systems

As we know

Given that, let hi(t) be the hazard rate of element Ei.

Hence, for series systems
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The Reliability of Series Systems

By taking

we can infer:

The hazard rate of a series system,

consisting of independent elements,

is the sum of the hazard rates of its elements.

E1 E2 En
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�
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The Reliability of Series Systems

If hi(t) = λi = const., i.e. failure times of all elements of series

system are exponentially distributed r.v., we have

Thus, time to failure of the series systems itself is also an

exponentially distributed r.v.

E1 E2 En

ℎ� 	 = 0 1�
�

���
= 1� = 23�4	.

What other distributions exhibit the same property? 

Rayleigh? Weibull?



The Reliability of Series Systems

Ex.: Consider a system used to maintain the fluid pressure in a

tank at a constant value.

The system is composed of four components (or blocks): a

pressure sensor (S), a control logic (L), a motor-pump group (P)

and a valve (V).

The components are connected in series since the correct

operation of each one of them is needed to guarantee the

correct functioning of the system.



The Reliability of Series Systems

Often, the information that is possible to retrieve from a data

bank is in the form of a (constant) hazard rate, thus implicitly

assuming an exponential failure time distribution.

Assume that consulting a data bank the following values have

been obtained (expressed in failure per hour = f/h):

S = Pressure sensor λS = 2·10-6 f / h

L = Control logic λL = 5·10-6 f / h

P = Motor-pump group λP = 2·10-5 f / h

V = Valve λV = 1·10-5 f / h



The Reliability of Series Systems

The reliability of each component after 1 year (t=8760 h) of

continuous operation is given by

RS (t = 8760 h) =  �#567 = 0.983

RL (t = 8760 h) =  �#587 = 0.957

RP (t = 8760 h) =  �#597 = 0.839

RV (t = 8760 h) =  �#5:7 = 0.916

and for the series system

RS(t = 8760 h) = 0.983 · 0.957 · 0.839 · 0.916 = 0.723



The Reliability of Series Systems

Alternatively, this result can be obtained by summing the hazard

rates of the constituent components:

1� = 1; + 1= + 1> + 1? = 3.7 · 10#B C ℎ⁄
RS(t = 8760 h) = �#567 = 0.723





Active Redundancy

When the reliability of a series system does not reach the design

goal, it becomes necessary to act at the structure level and to

resort to redundant configurations.

A system configuration is said to be redundant, when the

occurrence of a component failure does not necessarily causes a

system failure.

Various redundant architectures have been studied and applied

in practice, and they will be illustrated in the following sections.



Active Redundancy

From the operating point of view, we can distinguish between:

• Active Redundancy (parallel, hot): Redundant elements are

subjected from the beginning to the same load as the

operating elements;

• Warm Redundancy (lightly loaded): Redundant elements are

subjected to a lower load until they become operating;

• Standby Redundancy (cold, unloaded): Redundant elements

are subjected to no load until they become operating, and the

hazard rate in reserve (standby) state is assumed to be zero.



Active Redundancy

By default, we assume the components of the system with

redundancy are statistically independent, i.e. the failure of one of

them doesn’t affect the reliability of the rest.

However, if this is not the case, i.e. the component(s) that are

still operating assume the failed unit's portion of the load, such

type of redundancy is called load sharing.

The reliability of load sharing configurations is much harder to

compute.



Active Redundancy

A parallel model consists of n (often statistically identical)

elements in active redundancy, of which k (1≤ k<n) are necessary

to perform the required function and the remaining (n − k) are in

reserve.
E1

E2

En

Such a structure is designated as a k-out-of-n

(or k-out-of-n:G) redundancy.

1-out-of-n redundancy is also called hot

redundancy.



Active Redundancy

Let's consider at first the case of an active (hot) 1-out-of-2

redundancy.

The required function is fulfilled if at least one of the elements E1

or E2 works without failure in the interval (0, t]. In other words,

the system fails if both elements failed in the interval (0, t].

Let ��E , � = 1,2 be the event of ith element failing in (0, t], then

G� 	 = �� ��E is the failure probability of Ei.



Active Redundancy

Then, if FS(t) denotes the failure probability of

the entire system, it follows:

E1

E2

G� 	 = �� ��E ∩ ��E = �� ��E · �� ��E =
= G� 	 · G� 	

Generalizing for 1-out-of-n system, we obtain

G� 	 = � G� 	
�

���
Product Law of Unreliabilities



Active Redundancy

Substituting G∗ 	 with 1 − �∗ 	 , we obtain E1

E2

For 1-out-of-n system, we get

�� 	 = �� 	 + �� 	 − �� 	 �� 	

�� 	 = 1 − � 1 − �� 	
�

���



Active Redundancy

As it is often that all elements in parallel system are statistically

identical, i.e. �� 	 = �� 	 = ⋯ = �� 	 = � 	 , we can

obtain for this particular case

for 1-out-of-2 system

and

for 1-out-of-n system.

�� 	 = 2� 	 − � 	 �

�� 	 = 1 − 1 − � 	 �



Active Redundancy

Thus, for parallel systems of independent components, we have

a product law of “unreliabilities” analogous to the product law of

reliabilities for series systems.

It follows that the reliability of a parallel system is greater than

the reliability of each constituent component …

… and, hence, a parallel system is more reliable than the most

reliable of its components.



Active Redundancy

Let’s assume the parallel system consists of 2 identical

components, and

�� 	 = �� 	 = � 	 = �#57,

i.e. the failure time of each component is an exponentially

distributed r.v.

Moreover, the hazard rate of each component is constant.

The reliability of the system then is

�� 	 = 2� 	 − � 	 � = 2�#57 − �#�57



Active Redundancy

Obviously, we can’t find such λS > 0 so that

This means that the hazard rate of the entire system is not

constant, and its failure time is not an exponentially distributed

r.v.

To demonstrate this, let’s find the expression for the system’s

hazard rate.

�#567 = 2�#57 − �#�57



Active Redundancy

We know that

Given that

we obtain

ℎ 	 = − �J 	
� 	

�� 	 = 2�#57 − �#�57

ℎ� 	 = 21�#57 − 21�#�57
2�#57 − �#�57 = 21�#57 1 − �#57

�#57 2 − �#57 =
= 21 1 − �#57

2 − �#57 .



Active Redundancy

Reliability

hazard rate



Active Redundancy

As previously mentioned, a hot redundancy system is the special

case of k-out-of-n redundancy systems (with k=1).

Mind that for k-out-of-n systems correct operation of k

components is sufficient for the system to be operable, hence

the system can tolerate (n-k) failures of its components.

By default we assume that all items in k-out-of-n systems are

statistically identical.



Active Redundancy

Consider a k-out-of-n system (2 ≤ k < n) with reliability of each

item equals R.

The system is operable if it has n, n-1, n-2, …, k+1, k operable

components.

The probability that exactly n-1 components are operable is

given by � · ��#� · 1 − � �. Here the multiplier n is stands for

the number of all possible combinations of operating items, i.e.
�

� − 1 = �!
� − 1 ! � − � + 1 ! = �.



Active Redundancy

The probability that exactly n-2 components are operable is

given by �
�#� · ��#� · 1 − � �.

…

Finally, the probability that exactly k components are operable is

given by �
L · �L · 1 − � �#L.

Since we have listed all possible conditions for the system to be

operable, the reliability of the system is given by

�� = 0 �
� · �� · 1 − � �#�

�

��L



Active Redundancy

Ex.: Consider a 2-out-of-3 system with reliability of each

component given as � 	 = �#57. Find the reliability function,

MTTF and hazard rate function for the entire system.

First, the reliability of the system is obtained as

�� 	 = 0 3
� · � 	 � · 1 − � 	 M#�

M

���
=

= 3� 	 � 1 − � 	 + � 	 M =
= 3� 	 � − 2� 	 M =

                               = 3�#�57 − 2�#M57



Active Redundancy

The system is more reliable if the reliability of each item

is greater than 0,5.



Active Redundancy

Second, the MTTF is given by

Note that MTTF of the 2-out-of-3 system is less than the MTTF of

a single item!

NOOG = P �� 	 Q	
R

S
= P 3�#�57 − 2�#M57 Q	

R

S
=

= 3
21 − 2

31 = 5
61 .



Active Redundancy

Finally, the hazard rate is given by

ℎ� 	 = − ��J 	
�� 	 = 61�#�57 − 61�#M57

3�#�57 − 2�#M57 =
= 61�#�57 1 − �#57

�#�57 3 − 2�#57 =
= 61 · 1 − �#57

3 − 2�#57 .



Active Redundancy



Active Redundancy

The 2-out-of-3 system is the most common case of k-out-of-n

redundancy, since all other variants are more costly.

Often, 2-out-of-3 system is called TMR system, where TMR

stands for triple modular redundancy.

Also, there is a subclass of k-out-of-n systems called majority

voting systems. Here n is always odd number, and V = �W�
� .



Active Redundancy

The RBD for 2-out-of-3 system is as follows:

Often, the element V (voter) is assumed to be perfectly reliable,

i.e. RV(t)=1.

1

2

3

V



Active Redundancy

The formulae for the reliability computation of series and

parallel systems can be used in combination to compute the

reliability of a system having both series and parallel parts

(series-parallel systems).

The computational procedure consists of a progressive reduction

of the system complexity by substituting blocks of components

in series/parallel with a single equivalent block.



Active Redundancy

Ex.: Consider a system with the following RBD:

1st step: replace all series elements with equivalent ones:

R8 = R1R2R3

R9 = R4R5

R10 = R6R7

1 2 3

4 5

6 7

8

9

10



Active Redundancy

2nd step: replace parallel elements 8 and 9 with equivalent one:

R11 = R8+R9-R8R9

Finally, reliability of the entire system is given by

11 10

�� = ��S��� = �����M + �X�B − �����M�X�B · �Y�Z
1 2 3

4 5

6 7



Active Redundancy

When discussing series-parallel systems, we should address

another topic, namely, system redundancy vs. component

redundancy.

Consider a system composed of two series components A and B:

Let’s denote its reliability as R1 = RARB.

A B



Active Redundancy

If we decide to improve the reliability of the system by applying

redundancy using one single replica for each component, two

solutions are possible. Either we replicate the complete line

(system redundancy):

or we replicate each component individually (component

redundancy):

A B

A’ B’

A B

A’ B’



Active Redundancy

Reliability of the system with system redundancy is

R2 = 2RARB-(RARB)2 = RARB(2 - RARB)

Reliability of the system with component redundancy:

R3 = (2RA - RA
2)(2RB - RB

2) =

= RARB [4 – 2(RA + RB) + RARB]

A B

A’ B’

A B

A’ B’



R1 = RARB

R2 = RARB(2 - RARB)

R3 = RARB [4 – 2(RA + RB) + RARB]

It is easy to see that R2>R1 and R3>R1; both redundant

configurations are more reliable than the original system.

Next, we compare between the two redundant configurations

Active Redundancy



�M
��

= 4 − 2 �\ + �] + �\�]
2 − �\�]

= 1 + 2 1 − �\ 1 − �]
2 − �\�]

> 1
It should, however, be noted that configuration 3 is more complex

than configuration 2, since each type A component need to be

possibly connected with any type B component.

This higher complexity requires an additional control logic (not

considered in the formulae) that may reduce the benefits

calculated from the equation.

Active Redundancy



The reason why configuration 3 is more reliable than

configuration 2 can be also explained on a qualitative basis,

noticing that there are failure combinations of basic blocks that

cause failure of configuration 2, but not of configuration 3.

A B

A’ B’

A B

A’ B’

Active Redundancy





From now on, we will denote both cold and warm redundancy as

a standby redundancy.

Also, we will consider statistically identical items with constant

hazard rates, unless otherwise stated.

The RBDs for these configurations are as follows:

Standby Redundancy

Cold Redundancy Warm Redundancy



The most general way to compute the reliability of standby

system (of 2 components) is to evaluate the integral:

where:

R1 is the reliability of the active component;

f1 is the pdf of the active component;

R2;SB is the reliability of the standby component when in standby mode (quiescent

reliability);

R2;A is the reliability of the standby component when in active mode;

te is the equivalent operating time for the standby unit, if it had been operating at an

active mode, such that:

��;�] _ = ��;\ 	`

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S



Note that the formula above may involve different distributions

of component failure time.

Furthermore, you can compute the reliability of active

redundancy with this formula as well, though such an approach

wouldn’t be the most convenient.

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S



To provide an example, we will consider the system of two

statistically identical components with constant hazard rate.

The quiescent reliabilities are:

��;�] 	 = 1 for cold redundancy;

��;�] 	 = �#56a7 for warm redundancy (λSB < λ);

��;�] 	 = ��;\ 	 = �#57 for hot (active) redundancy.

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S

�� 	 = ��;\ 	 = �#57 C� 	 = 1�#57



The equivalent operating time te is obtained from the equation

R2;SB(x) = R2;A(te), so for the case of cold redundancy:

For warm redundancy:

For hot redundancy:

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S

1 = �#57b  ⇒   	` = 0.
�#56ad = �#57b  ⇒   	` = 1�]

1 _.
�#5d = �#57b  ⇒   	` = _.



The equivalent operating time te is obtained from the equation

R2;SB(x) = R2;A(te), so for the case of cold redundancy:

For warm redundancy:

For hot redundancy:

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S

1 = �#57b  ⇒   	` = 0.
�#56ad = �#57b  ⇒   	` = 1�]

1 _.
�#5d = �#57b  ⇒   	` = _.



Let’s start with hot redundancy:

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S

� 	 = �#57 + P 1�#5d · �#5d · �#5 dW7#d
�#5d Q_

7

S
=

= �#57 + P 1�#5d · �#5d · �#57
�#5d Q_

7

S
=

= �#57 + 1�#57 P �#5d Q_
7

S
=

= �#57 + 1�#57 − �#57
1 + 1

1 = 2�#57 − �#�57



Next, for cold redundancy:

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S

� 	 = �#57 + P 1�#5d · 1 · �#5 SW7#d
1 Q_

7

S
=

= �#57 + P 1�#5d�#57�5d Q_
7

S
=

= �#57 + 1�#57 P Q_
7

S
=

= �#57 + 1�#57 	 − 0 = �#57 1 + 1	



And finally, for warm redundancy:

Standby Redundancy

� 	 = �� 	 + P C� _ · ��;�] _ · ��;\ 	` + 	 − _
��;\ 	`

Q_
7

S

� 	 = �#57 + P 1�#5d · �#56ad · �#5 56a5 dW7#d

�#5 56a5 d
Q_

7

S
=

= �#57 + 1 P �#5d�#56ad �#56ad�#57�5d
�#56ad Q_

7

S
=

= �#57 + 1�#57 P �#56ad Q_
7

S
=

= �#57 1 + 1
1�]

1 − �#56a7



These results can also be obtained via state-space method, which

will be addressed later.

For now, we can have the formulae for certain special cases of

cold and warm redundant configurations, namely, systems of

m+1 statistically identical components with constant hazard rate.

Standby Redundancy



For cold standby redundancy (λSB = 0):

For warm standby redundancy (λSB < λ):

where

Standby Redundancy

� 	 = �#57 0 1	 �
�!

e

��S
NOOG = f + 1

1

� 	 = �#57 1 + 0 ��
�! 1 − �#56a7 �

e

���
NOOG = 1

1 0 1
1 + �V

e

��S

�� = � g + 1
V

�#�

h�S
V = 1�]

1



Ex.: Consider a single-component system with constant hazard

rate (λ = 0.001 h-1).

Providing that redundant components are statistically identical,

determine the minimal number m of redundant elements for

hot, warm and cold redundancy, sufficient for the system

reliability at a mission time t = 1000 h be greater than 0.9.

(for warm standby λSB =
�
Yλ)

Standby Redundancy



To begin with, let’s compute the reliability of a single component

at t = 1000 h.

First, let’s consider hot redundancy. Since all components are

equally reliable, we have

Rewriting, we get

Standby Redundancy

� 	 = 1000 = �#S.SS�·�SSS = �#� ≈ 0.368

�k 	 = 1 − 1 − � 	 eW�

1 − �k 	 = 1 − � 	 eW�



By taking the logarithm, we obtain:

Hence,

Substituting RH(1000) = 0.9 and R(1000) = 0.368, we get

Since m must be integer, m = 5.

Standby Redundancy

ln 1 − �k 	 = f + 1 ln 1 − � 	

f = ln 1 − �k 	
ln 1 − � 	 − 1

f = ln 1 − 0.9
ln 1 − 0.368 − 1 ≈ 4.02



Since equations for warm and cold standby systems don’t allow

direct computing of m, we should use simple substitution.

So, for warm redundancy substituting m = 1 yields

Standby Redundancy

V = 1
6 �� = � g + 1

V
�#�

h�S
= 6

�n 1000 = �#57 1 + 0 ��
�! 1 − �#56a7 �

�

���
=

= �#� 1 + 6 1 − �#� Yo ≈ 0.707 < 0.9



Substituting m = 2 yields

Standby Redundancy

�� = � g + 1
V

�#�

h�S
= 6 · 7 = 42

�n 1000 = �#57 1 + 0 ��
�! 1 − �#56a7 �

�

���
=

= �#� 1 + 6 1 − �#� Yo + 42
2 1 − �#� Yo � ≈

≈ 0.889 < 0.9



Substituting m = 3 yields

So, in the case of warm standby we need the main component

and 3 redundant ones.

Standby Redundancy

�M = � g + 1
V

�#�

h�S
= 6 · 7 · 8 = 336

�n 1000 = �#57 1 + 0 ��
�! 1 − �#56a7 �

M

���
=

= �#� 1 + 6 1 − �#� Yo + 42
2 1 − �#� Yo � + 336

6 1 − �#� Yo M ≈
≈ 0.963



For cold redundancy substituting m = 1 yields

Substituting m = 2 yields

Hence, in the case of cold standby we only need 2 extra

components to meet the requirements.

Standby Redundancy

�p 1000 = �#57 0 1	 �
�!

�

��S
= �#� 1 + 1 ≈ 0.736 < 0.9

�p 1000 = �#57 0 1	 �
�!

�

��S
= �#� 1 + 1 + 1

2 ≈ 0.92



As demonstrated by the previous example, cold standby

redundancy is the most reliable configuration of the three from

the above.

It can be shown that MTTF of the cold standby is also the largest.

So, why won’t we always using cold redundancy?

Standby Redundancy



First, toggling the redundant components on requires switching

devices.

Though their reliability is often considered to be perfect, it’s not!

Second, switching the redundant components from the standby

mode can take considerable time, which negatively affect

system’s fail-safety.

Standby Redundancy


