


Estimation theory is a branch of statistics that deals with estimating

the values of parameters based on measured empirical data that

has a random component.

The parameters describe an underlying physical setting in such a

way that their value affects the distribution of the measured data.

An estimator attempts to approximate the unknown parameters

using the measurements.
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The method of least squares (least squares estimation, LSE) is a

standard approach to approximate the solution of overdetermined

systems, i.e. sets of equations in which there are more equations

than unknowns.

"Least squares" means that the overall solution minimizes the sum

of the squares of the residuals made in the results of every single

equation.
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Least-squares problems fall into two categories:

• linear or ordinary least squares;

• nonlinear least squares,

depending on whether or not the residuals are linear in all

unknowns.

The linear least-squares problem has a closed-form solution. The

nonlinear problem is usually solved by iterative refinement; at each

iteration the system is approximated by a linear one, and thus the

core calculation is similar in both cases.
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The objective consists of adjusting the parameters of a model

function to best fit a data set.

A simple data set consists of n data pairs �� , �� , � = 1, … , 	.

The model function has the form 
 �, Θ , where m adjustable

parameters are held in the vector Θ.

The goal is to find the parameter values �
� , � = 1, … , � for the

model that "best" fits the data.
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The fit of a model to a data point is measured by its residual,

defined as the difference between the actual value of the

dependent variable and the value predicted by the model:

� Θ� � = �� − 
 �� , Θ�
The LSE method finds the optimal parameter values by minimizing

the sum of squared residuals:

� Θ� = � � Θ� �
�

�

���
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Ex.: Assume that five identical units are being reliability tested. The

units fail during the test after operating the following number of

hours: 20, 275, 365, 415, and 1020.

Assuming that the data follow exponential distribution, estimate

the value of the parameter �.

Here, the vector Θ� contains single element - ��, and


 �, Θ = 1 − ��� .
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The naïve approach is to minimize the sum of squared residuals as

previously specified:

where !"� are median ranks.

Parameter Estimation

� Θ� = � � Θ� �
�

#

���
= � !"� − 1 − ���� $

�#

���

ti MRi

20 0,129

275 0,314

365 0,5

415 0,686

1020 0,871



However, this would lead to a nonlinear equation with respect to Θ�.

We can avoid it by linearizing the cdf:
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 �, Θ = 1 − ��� 1 − 
 �, Θ = ��� 

ln 1 − 
 �, Θ = −Θ�  ⇒    � = )� + +
� ≡ ln 1 − 
 �, Θ = ln 1 − !"  

) ≡ −Θ 
� ≡ �
+ ≡ 0



Then the sum of squared residuals:

To find the minimum of � )
 we should set
./
.0
 = 0.
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xi xi
2 MRi yi xiyi

20 400 0,129 -0,138 -2,762

275 75625 0,314 -0,377 -103,641

365 133225 0,5 -0,693 -252,999

415 172225 0,686 -1,158 -480,72

1020 1040400 0,871 -2,048 -2088,902

Σ
142187

5
-2929,024

)
 = −2929.024
1421875 = −2.06 × 10�<

�� = 2.06 × 10�<



The LSE method is quite good for functions that can be linearized.

For these distributions, the calculations are relatively easy and

straightforward, having closed-form solutions that can readily yield

an answer without having to resort to numerical techniques or

tables.

LSE is generally best used with data sets containing complete data,

that is, data consisting only of single times-to-failure with no

censored or interval data.
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In statistics, maximum likelihood estimation (MLE) is a method of

estimating the parameters of a statistical model so the observed

data is most probable.

Specifically, this is done by finding the value of the parameter (or

parameter vector) Θ� that maximizes the likelihood function ℒ Θ� ,

which is the joint probability (or probability density) of the

observed data over a parameter space.
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The point Θ� that maximizes the likelihood function is called the

maximum likelihood estimate.

The logic of maximum likelihood is both intuitive and flexible, and

as such the method has become a dominant means of inference

within much of the quantitative research of the social and medical

sciences and engineering.
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Consider X – a continuous random variable with pdf:

where ��, ��, … , �0 are k unknown parameters which need to be

estimated, with N independent observations, ��, ��, … , �>, which

correspond in the case of life data analysis to failure times.

The likelihood function is given by:
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? �, Θ ≡ ? �, ��, ��, … , �0

ℒ Θ� = @ ? �� , Θ�
>

���



In practice, it is often convenient to work with the natural logarithm

of the likelihood function, called the logarithmic likelihood (log-

likelihood) function:

The maximum likelihood estimators (or parameter values) of

��, ��, … , �0 are obtained by maximizing ℒ Θ� or Λ Θ� :
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Λ Θ� = ln ℒ Θ� = � ln ? �� , Θ�
>

���
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C�
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of the likelihood function, called the logarithmic likelihood (log-
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Ex.: Assume that five identical units are being reliability tested. The

units fail during the test after operating the following number of

hours: 20, 275, 365, 415, and 1020.

Assuming that the data follow exponential distribution, estimate

the value of the parameter �.

Here, the vector Θ� contains single element - ��, and


 �, Θ = 1 − ��� .
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The log-likelihood function:

Substituting failure times for ti, we get:
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Λ Θ� = � ln Θ����� $ =
#

���
5 ln Θ� − Θ� � ��

#

���

Λ Θ� = 5 ln Θ� − 2095 · Θ�
CΛ
CΘ� = 5

Θ� − 2095 = 0  ⇒   Θ� = 5
2095 = 2.39 × 10�<

�� = 2.39 × 10�<



Analyzing the results of two previous examples, you should notice

that parameter estimates differ from one another, and we can’t

specify which result is better.

We can evaluate residual sum of squares (RSS) or mean squared

error (MSE):
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"�� Θ� = � F� − 
 G� , Θ� �>

���
   !�H Θ� = "�� Θ�

I



We also can determine the likelihood of either result by calculating

Λ Θ� , or, −2Λ Θ� - the metric used in various statistical quality

tests.

Let’s compare these metrics obtained with the results of LSE and

MLE:

Parameter Estimation

"�� −2Λ
��J/K = 2.06 × 10�< 0.035 70.482
��LJK = 2.39 × 10�< 0.047 70.379



The results we have here are quite obvious: ��J/K is the value for

which RSS is minimal, so any other parameter value yields greater

RSS.

Likewise, ��LJK is the value that maximizes Λ Θ� (and minimizes

− 2Λ Θ� ).
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"�� −2Λ
��J/K = 2.06 × 10�< 0.035 70.482
��LJK = 2.39 × 10�< 0.047 70.379


