


In order for us to give a brief description of the distribution of

a random variable, it is obviously not very convenient to

present a table of the distribution function.

It would be better to present some suitable characteristics.

Two important classes of such characteristics are measures of

location and measures of dispersion.
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Let X be a r.v. with cdf FX and pdf fX. The most common

measure of location is the mean or expected value, which is

defined as

If we think of the distribution as the mass of some body, the

mean corresponds to the center of gravity.

NB! The expected value may not exist!
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Another measure of location is the median, which is a

number m (not necessarily unique) such that

If the distribution is symmetric, then, clearly, the median and

the mean coincide (provided that the latter exists).

If the distribution is skewed, the median might be a better

measure of the “average” than the mean.

However, this also depends on the problem at hand.
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It is clear that two distributions may well have the same

mean and yet be very different. One way to distinguish them

is via a measure of dispersion—by indicating how spread out

the mass is.

The most commonly used such measure is the variance

Var(X), which is defined as
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The variance can be computed as

An alternative and, in general, more convenient way to

compute the variance is via the relation
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We also define the standard deviation of a random variable X

by

It is often preferable to work with the standard deviation

rather than with the variance of a random variable, because

it is easier to interpret.

Indeed, the standard deviation is expressed in the same units

of measure as X, whereas the units of the variance are the

squared units of X.
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Now we can generalize to introduce the concept of raw

moments and central moments of a r.v.

Raw moment of the k-th order (k-th raw moment) is defined

as
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Central moment of the k-th order (k-th central moment) is

defined as

Thus, the mean is the 1st raw moment, and the variance is

the 2nd central moment.
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Beside the variance, 3rd and 4th central moments are often

made use of in order to measure skewness and kurtosis of a

random value.

Skewness is a measure of the asymmetry of the probability

distribution of a real-valued r.v. about its mean. The skewness

value can be positive or negative, or undefined.
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Within each graph, the values on the right side of the

distribution taper differently from the values on the left side.

These tapering sides are called tails, and they provide visual

means to determine which of the two kinds of skewness a

distribution has.
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negative skew: The left tail is longer; the distribution is said to be left-

skewed, left-tailed, or skewed to the left.

A left-skewed distribution usually appears as a right-leaning curve.

positive skew: The right tail is longer; the distribution is said to be

right-skewed, right-tailed, or skewed to the right.

A right-skewed distribution usually appears as a left-leaning curve.

Moments of Random Variables



In probability theory and statistics, kurtosis is a measure of

the "tailedness" of the probability distribution of a real-

valued r.v.

The kurtosis of any normal distribution is 3. It is common to

compare the kurtosis of a distribution to this value.

If a distribution has kurtosis less than 3 it means the

distribution produces fewer and less extreme outliers than

does the normal distribution.
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If a distribution has kurtosis less than 3, it means the

distribution produces fewer and less extreme outliers than

does the normal distribution.

If a distribution has kurtosis greater than 3, it means the

distribution produces more outliers than the normal

distribution.

It is also common practice to use an adjusted version of

kurtosis, the excess kurtosis, to provide the comparison to the

normal distribution:
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In probability theory and statistics, the continuous uniform

distribution is a family of symmetric probability distributions

such that for each member of the family, all intervals of the

same length on the distribution's support are equally

probable.

The support is defined by the two parameters, a and b, which

are its minimum and maximum values.
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In probability theory, the normal (or Gaussian) distribution is

a very common continuous probability distribution.

Normal distributions are important in statistics and are often

used in the natural and social sciences to represent real-

valued random variables whose distributions are not known.

A random variable with a Gaussian distribution is said to be

normally distributed.
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The pdf of the normal distribution is

where μ is a location parameter, and σ – shape parameter.

The normal distribution is sometimes informally called the

bell curve.

However, many other distributions are bell-shaped (e.g.

Cauchy, logistic, Student’s t, etc.).
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The parameter μ is actually equal to the mean (and median)

of X, and σ is the standard deviation of X.

Furthermore, the standard deviation of a r.v. is the square

root of the variance of this variable. Therefore, in the case of

the normal distribution, σ2 is its variance.

Since the pdf of normal distribution is symmetric, the

skewness is equal to 0.

Excess kurtosis is equal to 0 as well.
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In the empirical sciences the so-called

three-sigma rule of thumb expresses a

conventional heuristic that nearly all

values are taken to lie within three
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standard deviations of the mean, and thus it is empirically

useful to treat 99.7% probability as near certainty.

In the social sciences, a result may be considered "significant" if its

confidence level is of the order of a two-sigma effect (95%), while in

particle physics, there is a convention of a five-sigma effect

(99.99994%) being required to qualify as a discovery.



1

0.02-

f x( )

222- x

The cdf of a normal distribution cannot be expressed in terms

of the elementary functions but can be computed at a given

value x:
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The standard normal distribution is the special case of a

normal distribution. It has μ = 0 and σ = 1.

cdf:

pdf:

The values of Φ(x) are often tabulated.
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Consider normally distributed r.v. X with parameters μ and σ.

If we define the random variable

then Z is distributed according to the standard normal

distribution.

Using tabulated values of Φ(x), we can obtain values for any

normal distribution with arbitrary μ and σ.
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Nonnegative random variable X has the exponential

distribution with parameter λ > 0 if it has the pdf

and cdf
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The Weibull distribution is one of the most widely used

lifetime distributions in reliability engineering. It is a versatile

distribution that can take on the characteristics of other

types of distributions, based on the value of the shape

parameter.

The Weibull distribution is a continuous probability

distribution. It is named after Swedish mathematician

Waloddi Weibull, who described it in detail in 1951.
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Nonnegative random variable X has the Weibull distribution if

it has the pdf

and cdf

where h > 0 is a scale parameter, and b > 0 is a shape

parameter.

Selected Continuous Probability Distributions


� � = GHI �I J;K �; �L M , � ≥ 00,           � < 0
�� � = 01 − �; �L M , � ≥ 00,           � < 0



f x( )

g x( )

q x( )

x

ηred < ηblue < ηgreen

As the scale parameter h increases, Weibull pdf stretches

along the x-axis, while its height decreases to maintain the

area under the curve constant:
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The shape parameter β affects Weibull pdf in a more

dramatic way:
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The mean and variance of the Weibull distribution are

obtained by the following equations:

where Γ(x) – is the gamma function:
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As you can see, the mean is directly proportional to the value

of η, and the variance – to its square:
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≈2.166

≈0.8856η
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The effect of b on the mean:



We can specify two special cases of the Weibull distribution:

• if b = 1, Weibull(h, 1) → Exponential;

• if b = 2, Weibull(h, 2) → Rayleigh.
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Reliability is a characteristic of the item, expressed by the

probability that it will perform its required function under

given conditions for a stated time interval. It is generally

designated by R.

From a qualitative point of view, reliability can be defined as

the ability of the item to remain functional.

Quantitatively, reliability specifies the probability that no

operational interruptions will occur during a stated time

interval.
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To make sense, a numerical statement of reliability (e. g. R =

0.9) must be accompanied by the definition of the required

function, the operating conditions, and the mission duration.

In general, it is also important to know whether or not the

item can be considered new when the mission starts.
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An item is a functional or structural unit of arbitrary

complexity (e.g. component, assembly, equipment,

subsystem, system) that can be considered as an entity for

investigations.

It may consist of hardware, software, or both, and may also

include human resources.

Often, ideal human aspects and logistic support are assumed,

even if (for simplicity) the term system is used instead of

technical system.
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Often the mission duration is considered as a parameter t,

the reliability function is then denoted by R(t).

R(t) is the probability that no failure at item level will occur in

the interval (0, t].

For the systems of physical nature reliability function is a

decreasing (non-increasing) function.

Reliability function is sometimes referred to as a survival function, S(t).
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A distinction between predicted and estimated reliability is

important:

• the first is calculated on the basis of the item’s reliability

structure and the reliability characteristics of its

components;

• the second is obtained from a statistical evaluation of

reliability tests or from field data.

The concept of reliability can be extended to processes and services,

although human aspects can lead to modeling difficulties.
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A failure occurs when the item stops performing its required

function. As simple as this definition is, it can become

difficult to apply it to complex items.

The failure-free time (hereafter used as a synonym for failure-

free operating time) is generally a random variable.

A general assumption in investigating failure-free times is

that at � =  0 the item is free of defects and systematic

failures.

Failures can be classified as sudden or gradual.
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We will consider time at which failure occurs (failure time) as

a nonnegative continuous r.v. with particular cdf F(t) and pdf

f(t).

In reliability theory F(t) is referred to as probability of failure

or failure probability function.

Similarly, f(t) is often (and not quite correctly) called failure

density function.

The failure probability function is sometimes referred to as a

life distribution.
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We can infer the following formulae:
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The (instantaneous) failure rate can be defined as the ratio of

the number of items failed in the infinitesimal interval (t, t+δt]

to the number of items still operating at time t.

Some authors refer to the failure rate as the hazard rate and

consider these terms synonyms (others – don’t!).

Failure rate function is often denoted as λ(t).

To avoid confusion with the parameter of exponential

distribution we will denote it as h(t).
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By definition

Omitting the derivation, it is possible to define failure rate in

terms of the other reliability measures:

The reverse formulae could also be of use:
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Now we can update the table:
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The failure rate of a large population of statistically identical

and independent items often exhibits a typical bathtub curve:
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As can be seen from this plot, many products will begin their

lives with a higher failure rate (which can be due to

manufacturing defects, poor workmanship, poor quality control

of incoming parts, etc.) and exhibit a decreasing failure rate.
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During the useful life period the item failure rate remains nearly

constant with respect to time. Some of the main reasons for the

occurrence of failures during this period are undetectable

defects, higher random stress than expected, abuse, low safety

factors, and human error.
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As the products experience more use and wear, the failure rate

begins to rise as the population begins to experience failures

related to aging, wear-out, fatigue, etc.
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t
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It should be obvious that it would be best to ship a product at the

beginning of the useful life period, rather than right off the production

line; thus preventing the customer from experiencing early failures. This

practice is what is commonly referred to as "burn-in", and is frequently

performed for electronic components.
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The failure rate strongly depends upon the item's operating

conditions.

Typical figures for h(t) are 10−10 to 10−7 h−1 for electronic

components at 40°C, doubling for a temperature increase of 10

to 20°C.
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Since time to failure, T, is a random variable, its mean is an

important and the most obvious reliability measure.

In reliability theory it is called “mean time to failure” (MTTF),

and, by definition, it can be computed as
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Another useful formula for the MTTF is as follows:

Note that, although
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Reliability Models (Life Distributions)

When specifying certain probability distribution as a reliability

model for an element, a system or a subsystem, we assume that

failure time of such items is a random variable distributed

according to this particular distribution.

Generally, any distribution can be regarded as a life distribution.

Often, it is assumed that failure probability at t = 0 is equal to 0,

so, failure time is considered to be a non-negative continuous r.v.



Reliability Models (Life Distributions)

However, even a distribution F(t) with an infinite support (-∞;

+∞) can be employed as a reliability model in cases when

• F(t = 0) is a negligible quantity;

• F(t = 0) > 0 a priori, i.e. the assumption on F(t = 0) = 0 is not

valid.

When failure occurs after random number of on-off cycles, F(t)

could be discrete.



Reliability Models (Life Distributions)

The most popular reliability models are exponential and Weibull

distributions.

As most of characteristics of these distributions were addressed

in preceding sections, we will consider only failure rate according

to these two models.



Reliability Models (Life Distributions)

Exponential Reliability Model (ERM)

Given that and

we obtain h(t) = λ = const.
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Therefore, ERM is valid for items

in their useful life period.

By using ERM we assume that the manufacturer carried out

complete burn-in and that the item will be in use for a time

interval not extending into wear-out period.
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Weibull Reliability Model (WRM)

Given that and

we get

The obtained equation offers various distinct shapes of the

failure rate.
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Reliability Models (Life Distributions)

First, if b = 1, Weibull distribution reduces to the exponential:

Second, if b < 1, the failure rate of Weibull distribution is a

convex decreasing function.

Third, if 1 < b < 2, the failure rate of Weibull distribution is a

concave increasing function.
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Reliability Models (Life Distributions)

Next, if b = 2, Weibull distribution reduces to the Rayleigh

distribution, and h(t) becomes linear:

Finally, if b > 2, the failure rate of Weibull distribution is a convex

increasing function.
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The following clip illustrates the shapes of the Weibull failure rate:
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Reliability Models (Life Distributions)

Though Weibull distribution can’t provide bathtub shape for the

failure rate, it is widely applied in reliability analysis due to its

relative simplicity and flexibility.

There were suggested various compound distributions that

demonstrate this particular shape of the failure rate.

Some of them are based on either exponential or Weibull

distributions.



Reliability Models (Life Distributions)

Consider so called Bi-Weibull distribution with a reliability

function defined as

Adjusting its parameters we can obtain the following shape of

the failure rate function:

Z � = �; ?LK Mh; ?L& M= . 


