MOMENTS
OF RANDOM VARIABLES




Moments of Random Variables

In order for us to give a brief description of the distribution of
a random variable, it is obviously not very convenient to
present a table of the distribution function.

It would be better to present some suitable characteristics.

Two important classes of such characteristics are measures of
location and measures of dispersion.




Moments of Random Variables

Let X be a rv. with cdf F, and pdf f,. The most common
measure of location is the mean or expected value, which is
defined as f

Z x; fx (x;) if Xisdiscrete

Xi€D

f Xfx(x)dx if X is continuous

\XED

If we think of the distribution as the mass of some body, the
mean corresponds to the center of gravity.
NB! The expected value may not exist!




Moments of Random Variables

Another measure of location is the median, which is a
number m (not necessarily unique) such that

Pr{iX <m}=Fy(m) =Pr{X >m} = 0.5

If the distribution is symmetric, then, clearly, the median and
the mean coincide (provided that the latter exists).

If the distribution is skewed, the median might be a better
measure of the “average” than the mean.

However, this also depends on the problem at hand.



Moments of Random Variables

It is clear that two distributions may well have the same
mean and yet be very different. One way to distinguish them
IS via @ measure of dispersion—by indicating how spread out

the mass is.

The most commonly used such measure is the variance
Var(X), which is defined as

Var(X) = E[(x — px)*]




Moments of Random Variables

The variance can be computed as

)
z (x; — uy)? fr (x;) if X is discrete
Xi€D

Var(X) = <

j (x — uy)?fx(x) dx if X is continuous
\XED

An alternative and, in general, more convenient way to
compute the variance is via the relation

Var(X) = E[X?] — E[X]?




Moments of Random Variables

We also define the standard deviation of a random variable X
by

Oy = \/Var(X)

It is often preferable to work with the standard deviation
rather than with the variance of a random variable, because
It Is easier to interpret.

Indeed, the standard deviation is expressed in the same units
of measure as X, whereas the units of the variance are the
squared units of X.



Moments of Random Variables

Now we can generalize to introduce the concept of raw
moments and central moments of a r.v.

Raw moment of the k-th order (k-th raw moment) is defined
as

’
z x; fy (x;) if Xisdiscrete
Xi€D

w = E[X*] =

j x® iy (x) dx if X is continuous

\XED



Moments of Random Variables

Central moment of the k-th order (k-th central moment) is
defined as

( z (e — W) fx (x;) if X isdiscrete
Xi€D

v = E[(X — )*] =3

j (x — ) fy(x) dx if X is continuous
\XED

Thus, the mean is the 1st raw moment, and the variance is
the 2nd central moment.




Moments of Random Variables

Beside the variance, 3rd and 4th central moments are often
made use of in order to measure skewness and kurtosis of a

random value.

Skewness is a measure of the asymmetry of the probability
distribution of a real-valued r.v. about its mean. The skewness
value can be positive or negative, or undefined.




Moments of Random Variables

Within each graph, the values on the right side of the
distribution taper differently from the values on the left side.

These tapering sides are called tails, and they provide visual
means to determine which of the two kinds of skewness a

distribution has.
A A

Negative Skew Positive Skew



Moments of Random Variables
A A

Negative Skew Positive Skew

negative skew: The left tail is longer; the distribution is said to be /eft-
skewed, left-tailed, or skewed to the left.
A left-skewed distribution usually appears as a right-leaning curve.

positive skew: The right tail is longer; the distribution is said to be
right-skewed, right-tailed, or skewed to the right.
A right-skewed distribution usually appears as a left-leaning curve.




Moments of Random Variables

In probability theory and statistics, kurtosis is a measure of
the "tailedness" of the probability distribution of a real-
valued r.v.

V4
Kurt[X] =—
Ox
The kurtosis of any normal distribution is 3. It is common to

compare the kurtosis of a distribution to this value.

If a distribution has kurtosis less than 3 it means the
distribution produces fewer and less extreme outliers than
does the normal distribution.



Moments of Random Variables

If a distribution has kurtosis less than 3, it means the
distribution produces fewer and less extreme outliers than
does the normal distribution.

If a distribution has kurtosis greater than 3, it means the
distribution produces more outliers than the normal
distribution.

It is also common practice to use an adjusted version of
kurtosis, the excess kurtosis, to provide the comparison to the
normal distribution: Ex(X) = Kurt(X) — 3




SELECTED CONTINUOUS
PROBABILITY DISTRIBUTIONS



Selected Continuous Probability Distributions

In probability theory and statistics, the continuous uniform
distribution is a family of symmetric probability distributions
such that for each member of the family, all intervals of the
same length on the distribution's support are equally
probable.

The support is defined by the two parameters, a and b, which
are its minimum and maximum values.




pdf

Selected Continuous Probability Distributions

cdf

0, otherwise

1
fie(x) = {b —q TxElad]

( 0, ifx<a
X—a
FX(x)=<b_a,lfxE[a,b]
\ 1, if x>Db
a+b b —a)?
E[X] = Var(X)=( 12)

Sk(X) =0 Ex(X) = —1.2



Selected Continuous Probability Distributions

In probability theory, the normal (or Gaussian) distribution is
a very common continuous probability distribution.

Normal distributions are important in statistics and are often
used in the natural and social sciences to represent real-
valued random variables whose distributions are not known.

A random variable with a Gaussian distribution is said to be
normally distributed.




Selected Continuous Probability Distributions

The pdf of the normal distribution is
_(x=w)?
fx(x) = e 20°

V21mo?

where u is a location parameter, and o — shape parameter.

The normal distribution is sometimes informally called the
bell curve.

However, many other distributions are bell-shaped (e.g.
Cauchy, logistic, Student’s t, etc.).



Selected Continuous Probability Distributions

The parameter u is actually equal to the mean (and median)
of X, and o is the standard deviation of X.

Furthermore, the standard deviation of a rv. is the square
root of the variance of this variable. Therefore, in the case of
the normal distribution, o2 is its variance.

Since the pdf of normal distribution is symmetric, the
skewness is equal to O.

Excess kurtosis is equal to 0 as well.




Selected Continuous Probability Distributions

Mblue > Mred

Location parameter u defines the position (locus) of the
distribution’s center




Selected Continuous Probability Distributions

1
\V2mo?

fx() = .
Oblue < Ored < Ogreen

Shape parameter o affects the spread of the curve, and its
height
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Selected Continuous Probability Distributions
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Selected Continuous Probability Distributions

In the empirical sciences the so-called
three-sigma rule of thumb expresses a
conventional heuristic that nearly all
values are taken to lie within three

standard deviations of the mean, and thus it is empirically
useful to treat 99.7% probability as near certainty.

In the social sciences, a result may be considered "significant” if its
confidence level is of the order of a two-sigma effect (95%), while in
particle physics, there is a convention of a five-sigma effect
(99.99994%) being required to qualify as a discovery.




Selected Continuous Probability Distributions

The cdf of a normal distribution cannot be expressed in terms
of the elementary functions but can be computed at a given
value x:

X

e

— 00

_(t=w)*
202 dt |

Fx(x) =




Selected Continuous Probability Distributions

The standard normal distribution is the special case of a
normal distribution. It hasu=0and o= 1.

cdf: d(x) —m je 2 dt
1 _x?
pdf: p(x) =—e 2

N

The values of @(x) are often tabulated.



Selected Continuous Probability Distributions

Consider normally distributed r.v. X with parameters u and o.
If we define the random variable

X —
/= .
o)

then Z is distributed according to the standard normal
distribution.

Using tabulated values of @(x), we can obtain values for any
normal distribution with arbitrary u and o.



Selected Continuous Probability Distributions

Nonnegative random variable X has the exponential
distribution with parameter A > 0 if it has the pdf

fr(x)=21e™™ x>0

and caf Fy(x) =1—e,

1
Var(X) = 7 Sk =2 Ex(X)=6

1



Selected Continuous Probability Distributions

o - }\red




Selected Continuous Probability Distributions

The Weibull distribution is one of the most widely used
lifetime distributions in reliability engineering. It is a versatile
distribution that can take on the characteristics of other

types of distributions, based on the value of the shape
parameter.

The Weibull distribution is a continuous probability
distribution. It is named after Swedish mathematician
Waloddi Weibull, who described it in detail in 1951.



Selected Continuous Probability Distributions

Nonnegative random variable X has the Weibull distribution if

it has the pdf .
.3_1 X B
() s

fX(x)=<77 n
L 0, x <0
and cdf ( B
Fy(x) =41-— e_(ﬁ) , x>0
0, x <0

\

where n > 0 is a scale parameter, and £ > 0 is a shape
parameter.




Selected Continuous Probability Distributions

As the scale parameter 7 increases, Weibull pdf stretches
along the x-axis, while its height decreases to maintain the
area under the curve constant:




Selected Continuous Probability Distributions

The shape parameter B affects Weibull pdf in a more
dramatic way:




Selected Continuous Probability Distributions

The mean and variance of the Weibull distribution are
obtained by the following equations:

) .
1 2 1
E|X] =77F(1+'E> Var|X] =772 F<1+E>_(F<1+E>)

where l(x) —is the gamma function:

oo

[(x) = j s¥le=Sds
0



Selected Continuous Probability Distributions

E[X]=77F(1+1> Var[X] = n? -F<1+z>— F<1+1> :
B B B

As you can see, the mean is directly proportional to the value
of n, and the variance — to its square:

E[X] xn Var[X] < n?



Selected Continuous Probability Distributions

The effect of fon the mean:




Selected Continuous Probability Distributions

We can specify two special cases of the Weibull distribution:

* if =1, Weibull(n, 1) - Exponential;
o if f=2, Weibull(n, 2) - Rayleigh.

NG

E[XRayleigh] =1 7

JIA
VaT[XRayleigh] — 772 (1 — Z)
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OF

RELIABILITY THEORY




Basic Concepts of Reliability Theory

Reliability is a characteristic of the item, expressed by the
probability that it will perform its required function under
given conditions for a stated time interval. It is generally
designated by R.

From a gualitative point of view, reliability can be defined as
the ability of the item to remain functional.

Quantitatively, reliability specifies the probability that no
operational interruptions will occur during a stated time
interval.




Basic Concepts of Reliability Theory

To make sense, a numerical statement of reliability (e. g. R =
0.9) must be accompanied by the definition of the required
function, the operating conditions, and the mission duration.

In general, it is also important to know whether or not the
item can be considered new when the mission starts.



Basic Concepts of Reliability Theory

An item is a functional or structural unit of arbitrary
complexity (e.g. component, assembly, equipment,
subsystem, system) that can be considered as an entity for
Investigations.

It may consist of hardware, software, or both, and may also
include human resources.

Often, ideal human aspects and logistic support are assumed,
even if (for simplicity) the term system is used instead of
technical system.




Basic Concepts of Reliability Theory

Often the mission duration is considered as a parameter t,
the reliability function is then denoted by R(t).

R(t) is the probability that no failure at item level will occur in
the interval (O, t].

For the systems of physical nature reliability function is a
decreasing (non-increasing) function.

Reliability function is sometimes referred to as a survival function, 5(t).



Basic Concepts of Reliability Theory

A distinction between predicted and estimated reliability is

Important:

e the first is calculated on the basis of the item’s reliability
structure and the reliability characteristics of its
components;

e the second is obtained from a statistical evaluation of
reliability tests or from field data.

The concept of reliability can be extended to processes and services,
although human aspects can lead to modeling difficulties.



Basic Concepts of Reliability Theory

A failure occurs when the item stops performing its required
function. As simple as this definition is, it can become
difficult to apply it to complex items.

The failure-free time (hereafter used as a synonym for failure-
free operating time) is generally a random variable.

A general assumption in investigating failure-free times is
that at t = 0 the item is free of defects and systematic
failures.

Failures can be classified as sudden or gradual.



Basic Concepts of Reliability Theory

We will consider time at which failure occurs (failure time) as
a nonnegative continuous r.v. with particular cdf F(t) and pdf

f(t).
In reliability theory F(t) is referred to as probability of failure
or failure probability function.

Similarly, f(t) is often (and not quite correctly) called failure
density function.

The failure probability function is sometimes referred to as a
life distribution.



Basic Concepts of Reliability Theory

We can infer the following formulae:




Basic Concepts of Reliability Theory

The (instantaneous) failure rate can be defined as the ratio of
the number of items failed in the infinitesimal interval (t, t+bt]
to the number of items still operating at time t.

Some authors refer to the failure rate as the hazard rate and
consider these terms synonyms (others — don’t!).

Failure rate function is often denoted as A(t).
To avoid confusion with the parameter of exponential
distribution we will denote it as h(t).



Basic Concepts of Reliability Theory

By definition t
R(t)
Omitting the derivation, it is possible to define failure rate in

terms of the other reliability measures:

R’(t)= F'(t) _ f ()
R(t) 1-F(t) ftoof(r)dr

The reverse formulae could also be of use:

R(t) — e fot h(t)dz F(t) —1—e fot h(t)dt f(t) - — [e_ fot h(T)dT]

h(t) = —




Basic Concepts of Reliability Theory

Now we can update the table:

f@®) h(t)

jof(r) dt

F(t) =

f) =

h(t) =




Basic Concepts of Reliability Theory

The failure rate of a large population of statistically identical
and independent items often exhibits a typical bathtub curve:

4 h(t)

\ A,




Basic Concepts of Reliability Theory

h(t)

Infant
mortality

As can be seen from this plot, many products will begin their
lives with a higher failure rate (which can be due to
manufacturing defects, poor workmanship, poor quality control
of incoming parts, etc.) and exhibit a decreasing failure rate.




Basic Concepts of Reliability Theory

4 h(t)

Useful life

t
>

During the useful life period the item failure rate remains nearly
constant with respect to time. Some of the main reasons for the
occurrence of failures during this period are undetectable
defects, higher random stress than expected, abuse, low safety

factors, and human error.




Basic Concepts of Reliability Theory

4 h(t)

Wear-out

t
————————

As the products experience more use and wear, the failure rate
begins to rise as the population begins to experience failures
related to aging, wear-out, fatigue, etc.




Basic Concepts of Reliability Theory

h(t)

Infant
mortality

It should be obvious that it would be best to ship a product at the
beginning of the useful life period, rather than right off the production
line; thus preventing the customer from experiencing early failures. This
practice is what is commonly referred to as "burn-in", and is frequently
performed for electronic components.



Basic Concepts of Reliability Theory

The failure rate strongly depends upon the item's operating
conditions.
Typical figures for h(t) are 1071° to 1077 h™! for electronic

components at 40°C, doubling for a temperature increase of 10
to 20°C.



Basic Concepts of Reliability Theory

Since time to failure, T, is a random variable, its mean is an
important and the most obvious reliability measure.

In reliability theory it is called “mean time to failure” (MTTF),
and, by definition, it can be computed as

0.0)

E[T] = MTTF = j tf(t)dt.

0



Basic Concepts of Reliability Theory

Another useful formula for the MTTF is as follows:

0.0)

MTTF =jR(t)dt.
0

Note that, although

MTTF = | R(t)dt = | tf()dt,
f rou=

R(t) # tf(t) !



RELIABILITY MODELS
(LIFE DISTRIBUTIONS)




Reliability Models (Life Distributions)

When specifying certain probability distribution as a reliability
model for an element, a system or a subsystem, we assume that
failure time of such items is a random variable distributed
according to this particular distribution.

Generally, any distribution can be regarded as a life distribution.

Often, it is assumed that failure probability at t = O is equal to 0,
so, failure time is considered to be a non-neqative continuous r.v.




Reliability Models (Life Distributions)

However, even a distribution F(t) with an infinite support (-e;
+o0) can be employed as a reliability model in cases when

* F(t=0)is a negligible quantity;
* F(t=0)>0a priori, i.e. the assumption on F(t =0) = 0 is not
valid.

When failure occurs after random number of on-off cycles, F(t)
could be discrete.



Reliability Models (Life Distributions)

The most popular reliability models are exponential and Weibull
distributions.

As most of characteristics of these distributions were addressed

in preceding sections, we will consider only failure rate according
to these two models.



Reliability Models (Life Distributions)

Exponential Reliability Model (ERM)

Given that h(t) = @ and f(t) =le M

R(®) Rt)=1—-F(t)=eM

we obtain h(t) = A = const. h L
Therefore, ERM is valid for items

in their useful life period. t

»
»

By using ERM we assume that the manufacturer carried out
complete burn-in and that the item will be in use for a time
interval not extending into wear-out period.



Reliability Models (Life Distributions)

Weibull Reliability Model (WRM)

- i,
Given that h(t) = 10 and
p-1 £\ B £\ B
ft) = %(%) e_(ﬁ) Rt)=1-F(@) = e_(ﬁ)
t f-1
we ge o) = é(ﬁ)
n\n

The obtained equation offers various distinct shapes of the
failure rate.



Reliability Models (Life Distributions)

First, if f=1, Weibull distribution reduces to the exponential:

_B ()
h(t) = . (n>

1
— = const.
=1 n

Second, if f# < 1, the failure rate of Weibull distribution is a
convex decreasing function.

Third, if 1 < < 2, the failure rate of Weibull distribution is a
concave increasing function.




Reliability Models (Life Distributions)

Next, if f = 2, Weibull distribution reduces to the Rayleigh
distribution, and h(t) becomes linear:

_B ()
M= (n>

B=2 n?"

Finally, if #> 2, the failure rate of Weibull distribution is a convex
increasing function.




Reliability Models (Life Distributions)

The following clip illustrates the shapes of the Weibull failure rate:

concave convex increasing
increasing linear

convex
decr&%smg




Reliability Models (Life Distributions)

Though Weibull distribution can’t provide bathtub shape for the
failure rate, it is widely applied in reliability analysis due to its
relative simplicity and flexibility.

There were suggested various compound distributions that
demonstrate this particular shape of the failure rate.

Some of them are based on either exponential or Weibull
distributions.



Reliability Models (Life Distributions)

Consider so called Bi-Weibull distribution with a reliability

function defined as C\BL B2
R(t) = e‘(ﬁ) _(n_z)

Adjusting its parameters we can obtain the following shape of

the failure rate function: |

L




