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Parameter Estimation, Least Squares 

Estimation, Maximum Likelihood 

Estimation, Interval Estimation



Estimation theory is a branch of statistics that deals with estimating the

values of parameters based on measured empirical data that has a

random component.

The parameters describe an underlying physical setting in such a way

that their value affects the distribution of the measured data. An

estimator attempts to approximate the unknown parameters using the

measurements.

Parameter Estimation



We will consider two different approaches to the Parameter Estimation:

• point estimation, which involves the use of sample data to calculate a

single value (known as a point estimate) to serve as a "best guess" or

"best estimate" of an unknown population parameter.

• interval estimation, which uses the sample data to calculate an

interval of possible values of an unknown population parameter.

Parameter Estimation



For the Point Estimation, we will consider two methods

generally applied in research:

• Least Squares Estimation (LSE).

• Maximum Likelihood Estimation (MLE).

Parameter Estimation



The most important application of LSE is in data fitting.

The best fit in the least-squares sense minimizes the sum of

squared residuals (a residual being: the difference between an

observed value, and the fitted value provided by a model).

Least Squares Estimation



Least-squares problems fall into two categories:

• linear or ordinary least squares;

• nonlinear least squares,

depending on whether or not the residuals are linear in all

unknowns.

Least Squares Estimation



The linear least-squares problem occurs in statistical regression

analysis; it has a closed-form solution.

The nonlinear problem is usually solved by iterative refinement;

at each iteration the system is approximated by a linear one,

and thus the core calculation is similar in both cases.

Least Squares Estimation



The objective of the LSE consists of adjusting the parameters of

a model function to best fit a data set.

A simple data set consists of n points �� , �� , � = 1, … , 	,

where �� is an independent variable and �� is a dependent

variable whose value is found by observation.

Least Squares Estimation



The model function has the form 
 �, � , where � < 	
adjustable parameters are held in the vector �.

The goal of the LSE is to find the parameter estimates

���, ���, … , ��� for the model that "best" fits the data.

Least Squares Estimation



The fit of a model to a data point is measured by its residual, defined as

the difference between the actual value of the dependent variable and

the value predicted by the model:

�� = �� − 
 �� , � .
The LSE method finds the optimal parameter values by minimizing the

function of the sum of squared residuals:

��� � = � ��
�

���
.

Least Squares Estimation



Consider an experiment resulting in three datapoints

Least Squares Estimation



It is proposed, or assumed, that the model explaining the data

is a line 
 � = �� + �, where � is a slope and � is an

intercept of the line.

Least Squares Estimation



The residuals �� depend on the values of parameters � and �:

Least Squares Estimation



The sum of squared residuals function we need to minimize is

given by:

��� �, � = � �� − ��� + � �
 

���
Substituting �� and �� with the observed values, we get

��� �, � = 3�� − 2� + 4�� + 6�� − 10� + 5

Least Squares Estimation



In order to find the minimum of the function ��� �, � , we

need to set its partial derivatives with respect to k and b to

zero, and solve the system of equations:

'���
'� = 12� + 4� − 10 = 0;

'���
'�   =   4� + 6� − 2 = 0.

Least Squares Estimation



Solving the system of equations for � and �, we obtain the

estimates for the parameter values: �� = 0.928, �� = −0.2857.

Least Squares Estimation



The sum of squared residuals for the obtained values is

��� ��, �� = 0.6429,
and this is the least value possible; all other sets of parameters

will give us greater values of the ���.

Least Squares Estimation



When estimating distribution parameters based on a random

sample, the elements of the sample serve as X-values.

The Y-values might be obtained by the EDF, or, which is

preferable, by calculating so called median ranks.

Least Squares Estimation



The Median Ranks method is used to obtain an estimate of the

cdf for each element of the ordered sample.

The median rank �� = -� for the element �� of the ordered

sample is obtained by solving the following equation for -�:

0.5 = � 	
� -�. 1 − -� �/.

�

.��
where 	 is the sample size and � is the order number.

Least Squares Estimation



A more straightforward and easier (though, less accurate)

method of estimating median ranks is so called Benard’s

Approximation:

-�� = � − 0.3
	 + 0.4 ,  � = 1, … , 	.

Least Squares Estimation



From a statistical point of view, the method of maximum

likelihood estimation (MLE) is considered to be the most robust

of the parameter estimation techniques.

The basic idea behind MLE is to obtain the most likely values of

the parameters, for a given distribution, that will best describe

the data.

Maximum Likelihood Estimation



If � is a continuous random variable with pdf 
 �, � , where

� = ��, ��, … , �� 0 is a vector of � unknown parameters

which need to be estimated, and ��, ��, … , �� are elements of

the random sample, then

1 � = 2 
 �� , �
�

���
is called the likelihood function.

Maximum Likelihood Estimation



The goal of MLE is to find the values of the model parameters

that maximize the likelihood function over the parameter space

3, that is

�4 = arg max
�:3

1� �

Maximum Likelihood Estimation



In practice, it is often convenient to work with the natural

logarithm of the likelihood function, called the log-likelihood:

Λ � = ln 1 � = � ln 
 �� , �
�

���
Since the logarithm is a monotonic function, the maximum of

Λ � occurs at the same value of �4 as does the maximum of

1 � .

Maximum Likelihood Estimation



By maximizing Λ � which is much easier to work with than

1 � , the maximum likelihood estimators (MLE) ���, ���, … , ���
are the simultaneous solutions of � equations such that:

'Λ
'�>

= 0, ? = 1,2, … , �.

Maximum Likelihood Estimation



For some probability distributions, these equations can be

explicitly solved for �4, but in general no closed-form solution to

the maximization problem is known or available, and an MLE

can only be found via numerical optimization.

Maximum Likelihood Estimation



The interval estimation profoundly differs from the point

estimation. Instead of providing a single number that has

virtually zero chances of being equal to the true value of the

parameter, it gives you the range which covers true value with

given probability.

Interval Estimation



One of the most widespread form of the interval estimation is

confidence interval (CI), which proposes a range of plausible

values for an unknown parameter (for example, the mean).

The interval has an associated confidence level that the true

parameter is in the proposed range.

Interval Estimation



Given observations ��, ��, … , �� and a confidence level @, a

valid confidence interval has a @ probability of containing the

true underlying parameter.

The level of confidence can be chosen by the investigator.

Interval Estimation



Given observations ��, ��, … , �� and a confidence level @ ,

(sometimes @ · 100%), a valid confidence interval has a @
probability of containing the true underlying parameter.

The level of confidence can be chosen by the investigator. Most

commonly, the 95% confidence level is used. However,

confidence levels of 90% and 99% are also often used in

analysis.

Interval Estimation



Factors affecting the width of the confidence interval include

the size of the sample, the confidence level, and the variability

in the sample.

A larger sample will tend to produce a better estimate of the

population parameter, when all other factors are equal. A

higher confidence level will tend to produce a broader

confidence interval.

Interval Estimation



Let’s assume that an unbiased estimate �� is obtained for a

certain parameter �.

We predefine some large value of @, such that the random

event with the probability @ could be regarded as almost

certain.

Interval Estimation



We want to obtain such C that

Pr � − �� ≤ C = @.
In other form

Pr �� − C ≤ � ≤ �� + C = @.
The values �� − C and �� + C are called lower and upper

boundaries for the CI.

Interval Estimation



We will consider the interval estimation algorithms for the

expected value (mean) and the variance of normally distributed

random variable, based on a random sample.

Also, for the estimation of the mean value, we will consider two

separate cases:

• true value of the variance is known a priori;

• true value of the variance is unknown.

Interval Estimation



If ��, ��, … , �� is a sample from F(H, I�) distribution, then the

sample mean �̅ has F(H, LM
�⁄ ) distribution, and from the

properties the normal distribution we know that O = P̅/Q
L 	

has an F(0,1) distribution.

Interval Estimation



If RS and RT are chosen such that Pr RS ≤ O ≤ RT = @ for a

random variable O with standard normal distribution, then

@ = Pr RS ≤ �̅ − H
I 	 ≤ RT =

= Pr RS
I
	 ≤ �̅ − H ≤ RT

I
	 =

= Pr �̅ − RT
I
	 ≤ H ≤ �̅ − RS

I
	

Interval Estimation



We have found that 1 = �̅ − RT
L
� and U = �̅ − RS

L
� satisfy

the confidence interval definition: the interval (1, U) covers H
with probability @.

Interval Estimation

1 − @
2

1 − @
2



The values RT and RS  are the quantiles of the standard normal

distribution. If V = 1 − @, then

RS = RW M⁄  and RT = R�/W M⁄ .

Moreover, since normal distribution is symmetrical,

RW M⁄ = −R�/W M⁄ .

Interval Estimation



Summarizing, the γ · 100% confidence interval for H is:

YZ = �̅ − R�/[ �\
I
	 ; �̅ + R�/[ �\

I
	

For example, if V = 0.05, we use R].^_` = 1.96 and the 95%
confidence interval is

Y].^` = �̅ − 1.96 I
	 ; �̅ + 1.96 I

	

Interval Estimation



If true value of the variance is not known, we can use its

unbiased estimator instead:

a� = 1
	 − 1 � �� − �̅ �

�

���
.

However, it is known that random variable b = P̅/Q
c 	 follows

Student’s t-distribution with 	 − 1 degrees of freedom.

Interval Estimation



Following the similar reasoning, we obtain the γ · 100%
confidence interval for H as

YZ = �̅ − d�/[ �\
a
	 ; �̅ + d�/[ �\

a
	

where d�/W M⁄ is 1 − [ �⁄ quantile of Student’s t-distribution with

	 − 1 degrees of freedom.

Interval Estimation



The confidence interval for the variance is obtained by the

similar reasoning:

Pr IS� ≤ I� ≤ IT� = @ = 1 − V
YZ = IS�; IT�

However, there are some differences.

Interval Estimation



It was found that if a random variable � follows normal

distribution F(H, I�), and sample mean �̅ follows F(H, LM
�⁄ )

distribution, then the following relation is true:

	 − 1 a� = I�e�/�� ,
where e�/�� denotes chi-squared distribution with 	 − 1
degrees of freedom.

Interval Estimation



To calculate lower and upper boundaries of the CI for the

variance, we must find the quantiles of chi-squared

distribution:

Pr e� ≤ eS� = Pr e� ≥ eT� = 1 − @
2 = V

2 .
Since chi-squared distribution is not symmetrical, the quantiles

for upper and lower boundaries should be calculated

separately.

Interval Estimation



After some transformations we obtain

IS� = 	 − 1 a�

e�/�;�/[ �⁄� ;      IT� = 	 − 1 a�

e�/�;[ �⁄� ,

where e�/�;[ �⁄� and e�/�;�/[ �⁄� are
[
�-quantile and 1 − [

� -

quantile of the chi-squared distribution with 	 − 1 degrees of

freedom.

Interval Estimation



The values of the quantiles for the Student’s t-distribution and

chi-squared distribution are often tabulated, similar to the

quantiles of standard normal distribution.

Also, they can be obtained in Mathcad:

Rg = h	i�� j, 0,1 
dg = hd j, 	 − 1

eg� = hkℎ�ah j, 	 − 1

Interval Estimation
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