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For many experiments and observations concerning natural

phenomena one finds that performing the procedure twice

under (what seem) identical conditions results in two different

outcomes.

Uncontrollable factors cause “random” variation. In practice

one tries to overcome this as follows: the experiment is

repeated a number of times and the results are averaged in

some way.

The Law of Large Numbers



In the following, we will see why this works so well, using a

model for repeated measurements. We view them as a

sequence of independent random variables, each with the

same unknown distribution.

It is a probabilistic fact that from such a sequence—in

principle—any feature of the distribution can be recovered.

This is a consequence of the law of large numbers.

The Law of Large Numbers



Scientists and engineers involved in experimental work have

known for centuries that more accurate answers are obtained

when measurements or experiments are repeated a number of

times and one averages the individual outcomes.

The Law of Large Numbers



We consider a sequence of random variables ��, ��, ��, … . You

should think of �� as the result of the ith repetition of a

particular measurement or experiment.

We confine ourselves to the situation where experimental

conditions of subsequent experiments are identical, and the

outcome of any one experiment does not influence the

outcomes of others.

The Law of Large Numbers



Under those circumstances, the random variables of the

sequence are independent, and all have the same distribution,

and we therefore call ��, ��, ��, … an independent and

identically distributed sequence.

We shall denote the distribution function of each random

variable �� by � , its expectation by 	 , and the standard

deviation by 
.

The Law of Large Numbers



The average of the first � random variables in the sequence is

�� =
�� + �� + ⋯ + �

�
,

and using linearity of expectations we find:

� �� =
1

�
� �� + �� + ⋯ + � =

1

�
	 + 	 + ⋯ + 	 = 	.
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By the variance-of-the-sum rule, using the independence of

��, ��, … �,

and using linearity of expectations we find:

��� �� =
1

��
��� �� + �� + ⋯ + �

=
1

��

� + 
� + ⋯ + 
� =


�

�
.

The Law of Large Numbers



This establishes the following rule:

If �� is the average of � independent random variables with

the same expectation 	 and variance 
�, then:

� �� = 	,   ��� �� =

�

�
.

With the increase of �, �� deviates less and less from 	.
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The concentration of probability mass near the expectation is a

consequence of the fact that, for any probability distribution,

most probability mass is within a few standard deviations from

the expectation.

To show this we will employ the following tool, which provides

a bound for the probability that the random variable � is

outside the interval (�[� ]  −  �, �[� ]  +  �).

The Law of Large Numbers



Chebyshev’s Inequality

For an arbitrary random variable � and any � > 0:

Pr � − � � ≥ � ≤
1

��
��� �

See proof in Dekking et al., A Modern Introduction …, p. 183
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Denote ���(�) by 
� and consider the probability that � is

within a few standard deviations from its expectation 	:

Pr � − � � < %
 = 1 − Pr � − � � ≥ %
 ,

where % is a small integer. Setting � = %
 in Chebyshev’s

inequality, we find

Pr � − � � < %
 = 1 −
��� �

%�
�
= 1 −

1

%�
.
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Pr � − � � < %
 = 1 −
1

%�
.

For % = 2, 3, 4 the right-hand side is 3/4, 8/9, and 15/16,

respectively.

For most distributions, however, the actual value of

Pr � − � � < %


is even higher than the lower bound, provided by the

expression above.

The Law of Large Numbers



Calculate Pr � − 	 < %
 exactly for % =  1, 2, 3, 4 when �

has an �./(1) distribution and compare this with the bounds

from Chebyshev’s inequality.

We know that for �./(0) distribution the expected value is

given by 	 =
�

1
, and the variance is 
� =

�

12
. Hence, for �./(1)

we have 	 = 1, σ = 1.
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For % ≥ 1 we find:

Pr � − 	 < %
 = Pr � − 1 < % =

= Pr 1 − % < � < % + 1 = Pr � < % + 1 = 1 − 4565�

Using this formula we obtain exact probabilities for k =

1, 2, 3, 4
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% = 1:

Pr � − 	 < 1 = 1 − 45� ≈ 0.865

% = 2:

Pr � − 	 < 2 = 1 − 45� ≈ 0.950

% = 3:

Pr � − 	 < 3 = 1 − 459 ≈ 0.982

% = 4:

Pr � − 	 < 4 = 1 − 45: ≈ 0.993
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Chebyshev’s inequality gives us

% = 1:

Pr � − 	 < 1 = 1 −
1

1�
= 0

% = 2:

Pr � − 	 < 2 = 1 −
1

2�
= 0.750

% = 3:

Pr � − 	 < 3 = 1 −
1

3�
≈ 0.889

% = 4:

Pr � − 	 < 4 = 1 −
1

4�
≈ 0.938
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We see that inequality holds:

the exact probability is, indeed, greater than the lower bound,

provided by the Chebyshev’s inequality.

The Law of Large Numbers



We return to the independent and identically distributed

sequence of random variables ��, ��, … with expectation 	 and

variance 
�. We apply Chebyshev’s inequality to the average

��, where we use � �� = 	 and ��� �� =
<2


, and where

= > 0:
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Pr �� − 	 > = ≤
1

=�
��� �� =


�

�=�

The right-hand side vanishes as � goes to infinity, no matter

how small = is.

This proves the following law.

The Law of Large Numbers



The law of large numbers

If �� is the average of � independent random variables with

expectation 	 and variance 
�, then for any = > 0:

lim
→B

Pr �� − 	 > = = 0.

Another formulation exists:

Pr lim
→B

�� = 	 = 1.

The Law of Large Numbers



The central limit theorem (CLT) is a refinement of the law of

large numbers.

For a large number of independent identically distributed

random variables ��, ��, … , � , with finite variance, the

average �� approximately has a normal distribution, no matter

what the distribution of the �� is.

The Central Limit Theorem



The Central Limit Theorem (CLT)

Let ��, ��, … be any sequence of independent identically

distributed random variables with finite variance. Let 	 be the

expected value and 
� the variance of each of the ��.

For � ≥ 1, let C be defined by

C = �
�� − 	



.

The Central Limit Theorem



The Central Limit Theorem (CLT)

Then for any number �

lim
→B

�DE
� = Φ � ,

where Φ is the distribution function of the G(0,1) distribution.

In other words: the distribution function of C converges to the

distribution function of the standard normal distribution.

The Central Limit Theorem



Since

�� =



�
C + 	,

it follows that �� approximately has an G(	, 
�/�)

distribution.

The Central Limit Theorem



Calculate the probability that the mean duration of a 100

randomly selected processing operations is between 46 and 49

seconds, if the expected value of a single operation’s duration

is 47.4 sec, and the standard deviation is 4.9 sec.

The Central Limit Theorem



Let’s define the duration of a single processing operation as a

random variable �, with 	 = 47.4 and 
 = 4.9.

Then ���HH =
�

�HH
∑ ��

�HH
�J� - the mean duration of a 100

randomly selected operations – is also a random variable with

� ���HH = 	 and ��� ���HH =
9.K2

�HH
.
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What we need to find is the probability Pr 46 ≤ ���HH ≤ 49 .

Using the CLT we define the new variable

C�HH = �
���HH − 	



= 100

���HH − 47.4

4.9
=

���HH − 47.4

0.49
.

According to the CLT, C�HH has the standard normal distribution

G(0,1).

The Central Limit Theorem



Likewise, the lower and upper limits for the inequality should

be transformed:

Pr 46 ≤ ���HH ≤ 49 = Pr
46 − 47.4

0.49
≤ C�HH ≤

49 − 47.4

0.49

= Pr
−1.4

0.49
≤ C�HH ≤

1.6

0.49
= Pr −2.857 ≤ C�HH ≤ 3.265 .

The Central Limit Theorem



Since C�HH has G(0,1) distribution,

Pr −2.857 ≤ C�HH ≤ 3.265 = Φ 3.265 − 1 − Φ 2.857

= 0.99945 − 0.00214 = 0.99731.

So, Pr 46 ≤ ���HH ≤ 49 = 0.99731.

The Central Limit Theorem



In probability theory, we always assumed that we knew some

probabilities, and we computed other probabilities or related

quantities from those.

On the other hand, in mathematical statistics, we use observed

data to compute probabilities or related quantities or to make

decisions or predictions.

The Elements of Mathematical Statistics



The problems of mathematical statistics are classified as

parametric or nonparametric, depending on how much we

know or assume about the distribution of the data.

The Elements of Mathematical Statistics



In parametric problems, we assume that the distribution

belongs to a given family, for instance, that the data are

observations of values of a normal random variable, and we

want to determine a parameter or parameters, such as 	 or 
.

The Elements of Mathematical Statistics



In nonparametric problems, we make no assumption about the

distribution and want to determine either single quantities like

the expected value �[�] or the whole distribution, that is,

�L . or ML . , or to use the data for decisions or predictions.

The Elements of Mathematical Statistics



Random Sample

In mathematical terms, given a probability distribution �, a

random sample of size � (where � may be any positive integer)

is a set of realizations of � independent, identically distributed

random variables with distribution �.

The Elements of Mathematical Statistics



A sample represents the results of � experiments in which the

same quantity is measured. For example, if we want to

estimate the average height of members of a particular

population, we measure the heights of � individuals. Each

measurement is drawn from the probability distribution �

characterizing the population, so each measured height .� is

the realization of a random variable �� with distribution �.

The Elements of Mathematical Statistics



The elements .� of a sample are known as sample points,

sampling units or observations.

We denote samples with bold capital letters:

N = .�, .�, … . .

Sometimes samples are referred to as vectors of data.

The Elements of Mathematical Statistics



A statistic (singular) or sample statistic is any quantity

computed from values in a sample.

Technically speaking, a statistic can be calculated by applying

any mathematical function to the values found in a sample of

data:

O N ≡ O .�, .�, … .

The Elements of Mathematical Statistics



In statistics, there is an important distinction between a

statistic and a parameter.

"Parameter" refers to any characteristic of a population under

study.

When it is not possible or practical to directly measure the

value of a population parameter, statistical methods are used

to infer the likely value of the parameter on the basis of a

statistic computed from a sample taken from the population.

The Elements of Mathematical Statistics



When a statistic is used to estimate a population parameter, it

is called an estimator.

It can be proved that the mean of a sample is an unbiased

estimator of the population mean. This means that the average

of multiple sample means will tend to converge to the true

mean of the population.

The Elements of Mathematical Statistics



Formally, statistical theory defines a statistic as a function of a

sample where the function itself is independent of the

unknown estimands; that is, the function is strictly a function of

the data.

The term statistic is used both for the function and for the

value of the function on a given sample.

The Elements of Mathematical Statistics



When a statistic (a function) is being used for a specific

purpose, it may be referred to by a name indicating its

purpose:

• in descriptive statistics, a descriptive statistic is used to

describe the data;

• in estimation theory, an estimator is used to estimate a

parameter of the distribution (population);

• in statistical hypothesis testing, a test statistic is used to test

a hypothesis.

The Elements of Mathematical Statistics



However, a single statistic can be used for multiple purposes –

for example the sample mean can be used to describe a data

set, to estimate the population mean, or to test a hypothesis.

The Elements of Mathematical Statistics



Textbook Assignment

F.M. Dekking et al. A Modern Introduction to…

Chapters 13 & 14. 181-206 pp.

Ex. 13.2, 13.5, 14.2, 14.3, 14.10
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