
Lecture 6

Moments, Skewness, Kurtosis, 

Median, Quantiles, Mode



The expected value and the variance of a random variable are

particular cases of the quantities known as the moments of this

variable.

In mathematics, a moment is a specific quantitative measure of

the shape of a function.

The mathematical concept is closely related to the concept of

moment in physics.

Moments



If a certain function represents physical density of a body, then

• the zeroth moment is the total mass,

• the first moment divided by the total mass is the center of

mass,

• the second moment is the rotational inertia.

Moments



The kth moment about a point � of a discrete r.v. � with pmf�� � defined on a domain �� = �� ∈ ℝ ∶ �� �� > 0 is the

number

The kth moment about a point � of a continuous r.v. � with pdf�� � defined on a domain �� = � ∈ ℝ ∶ �� � > 0 is the

number

Expected Value

�� = � �� − � � · �� ����
.

�� = � � − � � · �� � ����
.



If � = 0, we can rewrite previous formulae as

We will refer to ��� as to kth rawmoment of a random variable.

Moments

��� =
� ��� · �� ����

 ��� ����� !  �. ". ;
� �� · �� � ����

  ��� ��$!�$%�%� �. ".



Note that if & = 0, ��� = 1 for any random variable.

If & = 1, the formulae above transform into the expressions for

the expected value.

Moments

��� =
� ��� · �� ����

 ��� ����� !  �. ". ;
� �� · �� � ����

  ��� ��$!�$%�%� �. ".



So, we may redefine the expected value of a random variable �
as its first raw moment:

Moreover,

Moments

��� =
� ��� · �� ����

 ��� ����� !  �. ". ;
� �� · �� � ����

  ��� ��$!�$%�%� �. ".

( � = �)�
( �* = �*� , ( �, = �,� , …



If � = ( � , we can rewrite general formulae for moments as

We will refer to �� as to kth central moment of a random

variable.

Moments

�� =
� �� − ( � � · �� ����

 ��� ����� !  �. ". ;
� � − ( � � · �� � ����

  ��� ��$!�$%�%� �. ".



As you can see, the second central moment corresponds to the

variance of a random variable �:

Also,

Moments

.�� � = �*

�� =
� �� − ( � � · �� ����

 ��� ����� !  �. ". ;
� � − ( � � · �� � ����

  ��� ��$!�$%�%� �. ".

�� = ( � − ( � �



Obviously, zeroth central moment equals one, and the first

central moment equals 0.

Moments

�� =
� �� − ( � � · �� ����

 ��� ����� !  �. ". ;
� � − ( � � · �� � ����

  ��� ��$!�$%�%� �. ".



Sometimes it is convenient to express central moments in

terms of raw moments. The general equation is

where � = �)� - the expected value.

Moments

�/ = ( � − ( � / = � $0 −1 /12�2� �/12/
234 ,



We also can reverse this and express raw moments in terms of

central moments:

where � = �)� - the expected value.

Moments

�5� = ( �5 = � 60 �2�5125
234 ,



In probability theory and statistics, a standardized moment of a

probability distribution is a moment (normally a higher degree

central moment) that is normalized.

The normalization is typically a division by an expression of the

standard deviation which renders the moment scale invariant.

Moments



Let � be a random variable for which we have defined the kth

central moment �� and variance .�� � = �* ≡ 8�*, where 8�
is the standard deviation of �.

Then the standardized moment of order & is given by

Moments

9� = ��8��



Such normalization leads to a fact that standardized moments

are dimensionless quantities.

Third and fourth standardized moments are widely used in

probability and statistics.

The moments of higher order have little practical use.

Moments



Third standardized moment 9, of a random variable � is often

referred to as the skewness.

Skewness is a measure of the asymmetry of the probability

distribution of a real-valued random variable about its mean.

The skewness value, �& : � , can be positive, zero, negative,

or undefined.

Skewness



Consider the two distributions in the figure above.

Within each graph, the values on the right side of the distribution taper

differently from the values on the left side.

These tapering sides are called tails, and they provide a visual means to

determine which of the two kinds of skewness a distribution has

Skewness



negative skew: The left tail is longer; the mass of the distribution is

concentrated on the right of the figure. The distribution is said to be left-

skewed, left-tailed, or skewed to the left.

positive skew: The right tail is longer; the mass of the distribution is

concentrated on the left of the figure. The distribution is said to be right-

skewed, right-tailed, or skewed to the right.

�& : � ; 0 �& : � > 0
Skewness



If a distribution is symmetric about its expected value, its

skewness equals zero.

However, the converse is not true in general. An asymmetric

distribution might have the skewness value of zero, if one of its

tails is long and thin, and the other is short but fat.

Skewness



If a distribution has finite expected value ( � and standard

deviation 8�, its skewness can be expressed in terms of the

third raw moment:

�& : � ≡ 9, = ( �, − 3( � 8�* − ( � ,8�,

Skewness



Skewness

Distribution Parameters Skewness Remarks

Bernoulli 0 ≤ � ≤ 1 1 − 2�� 1 − �
Binomial $ ≥ 1, 0 ≤ � ≤ 1 1 − 2�$� 1 − �

Geometric 0 ≤ � ≤ 1 2 − �1 − �
Disc. Uniform �, @ ∈ ℤ 0
Cont. Uniform �, @ ∈ ℝ 0

Exponential B > 0 2
Weibull C, D > 0 ( �, − 3( � 8�* − ( � ,8�,
Normal �, 8 ∈ ℝ 0



Fourth standardized moment 9E of a random variable � is

called kurtosis (from Greek: kurtos, meaning “curved”).

Kurtosis is a measure of the "tailedness" of the probability

distribution of a real-valued random variable, i.e. its value

describes the thickness of the distribution’s tails.

Kurtosis



Fourth standardized moment 9E of a random variable � is

called kurtosis (from Greek: kurtos, meaning “curved”).

Kurtosis is a measure of the "tailedness" of the probability

distribution of a real-valued random variable, i.e. its value

describes the thickness of the distribution’s tails.

Kurtosis



If we would calculate the kurtosis of a normal distribution, we’d

found that its value equals three, no matter what parameters

the distribution has.

A lot of mathematicians prefer to compare kurtosis of any

distribution with that of normal distribution. For that they

subtract three from the value of kurtosis.

Kurtosis



The resulting quantity, &%�! � , is called excess kurtosis of the

random variable �.

Thus, the excess kurtosis of a normal distribution equals zero.

Kurtosis

&%�! � = 9E − 3 = �E8�E



Distributions with zero excess kurtosis are called mesokurtic.

The most prominent example of a mesokurtic distribution is

the normal distribution.

A few other well-known distributions can be mesokurtic,

depending on parameter values; e.g., the binomial distribution

is mesokurtic for � = )* ± ))*.

Kurtosis



A distribution with positive excess kurtosis is called leptokurtic

(“lepto-" means "slender“).

In terms of shape, a leptokurtic distribution has fatter tails than

the normal distribution.

Examples of leptokurtic distributions include the Rayleigh

distribution, exponential distribution, Poisson distribution.

Kurtosis



A distribution with negative excess kurtosis is called platykurtic

(“platy-" means “broad“).

In terms of shape, a platykurtic distribution has thinner tails

than the normal distribution.

An example of platykurtic distributions is the uniform

distribution. The most platykurtic distribution of all is the

Bernoulli distribution with � = ) *⁄ .

Kurtosis



If a distribution has finite expected value ( � and standard

deviation 8�, its kurtosis can be expressed in terms of the

fourth raw moment:

For excess kurtosis you should subtract 3.

9E = ( �E − 4( � ( �, + 6( � *( �* − 3( � E8�E

Kurtosis



Kurtosis

Distribution Parameters Excess Kurtosis Remarks

Bernoulli 0 ≤ � ≤ 1 1 − 6� 1 − �� 1 − �
Binomial $ ≥ 1, 0 ≤ � ≤ 1 1 − 6� 1 − �$� 1 − �

Geometric 0 ≤ � ≤ 1 6 + �*1 − �
Disc. Uniform �, @ ∈ ℤ − 6 $* + 15 $* − 1 $ = @ − � + 1 – number of values

Cont. Uniform �, @ ∈ ℝ −1.2
Exponential B > 0 6

Weibull C, D > 0 See previous slide

Normal �, 8 ∈ ℝ 0



The expected value of a random variable was introduced to

provide a numerical value for the center of its distribution.

For some random variables, however, it is preferable to use

another quantity for this purpose, either because ( � does

not exist or because the distribution of � is very skewed and( � does not represent the center very well.

Median



The latter case occurs, for instance, when � stands for the

income of a randomly selected person from a set of ten people,

with nine earning 20 thousand dollars and one of them earning

20 million dollars. Saying that the average income is

( � = ))4 9 · 20000 + 1 · 2000000 = 2018000 dollars

is worthless and misleading.

Median



In such cases we use the median to represent the center. Also,

for some random variables, ( � does not exist, but a median

always does.

We want to define the median so that half of the probability is

below it and half above it.

Median



For any real-valued probability distribution, a median is defined

as any real number 6 that satisfies the inequalities:

For an absolutely continuous distribution with pdf �� � and

cdf N� � , the median is any real number 6 such that

or

Median

O� � ≤ 6 ≥ 12 O� � ≥ 6 ≥ 12
� �� � ��5

1P = � �� � ��P
5 = 12 N� 6 = 12



Median

6 � � ≡ 6�



If the distribution of a

random variable � is

symmetric about a

point Q, that is, its pdf

satisfies�� Q − � = �� Q + �

Median

for all �, then Q is a median of �.



Median

Distribution Parameters Median Remarks

Bernoulli 0 ≤ � ≤ 1 R0, �� � ; 0.50, 1 , �� � = 0.51, �� � > 0.5
Binomial $ ≥ 1, 0 ≤ � ≤ 1 $� or $� there is no single formula

Geometric 0 ≤ � ≤ 1 −1log* 1 − � not unique if 
1)VWXY )1Z is an integer

Uniform �, @ ∈ ℝ � + @2
Exponential B > 0 ln 2B

Weibull C, D > 0 C ln 2 ) \]
Normal �, 8 ∈ ℝ �



In probability theory quantiles are cut points dividing the range

of a probability distribution into continuous intervals with equal

probabilities.

Common quantiles have special names: for instance tercile,

quartile, decile, etc.

Quantiles



The groups created are termed halves, thirds, quarters, etc.,

though sometimes the terms for the quantile are used for the

groups created, rather than for the cut points.

Quantiles



Let � be a continuous r.v. with N� � continuous and strictly

increasing from 0 to 1 on some finite or infinite interval.

Then, for any � ∈ 0, 1 , the solution �Z of N� �Z = � or, in

other words, �Z = N�1) � is called the p-quantile or the 100p

percentile and the function N�1) - the quantile function of � or

of the distribution of �.

Quantiles



For general � the p-quantile is defined as�Z = 6�$ �: N� � ≥ � ,

and we define the quantile function N�1) byN�1) � = �Z, 

for all � ∈ 0, 1 .

Quantiles



The quantile function N�1) is

also called inverse cumulative

distribution function (inverse

cdf).

Quantiles



Quantiles or percentiles are often used to describe statistical

data such as exam scores, home prices, incomes, etc. For

example, a student’s score of 650 on the math SAT is much

better understood if it is also stated that this number is at the

78th percentile, meaning that 78% of the students who took

the test scored 650 or less.

Quantiles



Clearly, the 50th percentile is also a median.

Furthermore, the 25th percentile is also called the first quartile,

the 50th percentile the second quartile, and the 75th percentile

the third quartile.

Quantiles



Another measure of central tendency is the mode of the

distribution.

For a discrete r.v. � with pmf �� � the mode, �5_` is the

value � at which the probability mass function takes its

maximum value:

Mode

�5_` = arg maxe∈� �� �



When the pdf of a continuous distribution has multiple local

maxima, it is common to refer to all of the local maxima as

modes of the distribution.

Such a continuous distribution is called multimodal (as opposed

to unimodal).

Mode



A mode of a continuous probability distribution is often

considered to be any value � at which its pdf has a locally

maximum value, so any peak is a mode.

Mode



In symmetric unimodal distributions, such as the normal

distribution, the mean (if defined), median and mode all

coincide.

Mode



Distribution Parameters Mode Remarks

Bernoulli 0 ≤ � ≤ 1 R 0, �� � ; 0.50 �$� 1, �� � = 0.51, �� � > 0.5
Binomial $ ≥ 1, 0 ≤ � ≤ 1 $ + 1 � or $ + 1 � − 1 there is no single formula

Geometric 0 ≤ � ≤ 1 1
Uniform �, @ ∈ ℝ any value in the domain

Exponential B > 0 0
Weibull C, D > 0 fC \1)\

g h] , �� D > 10,                  �� D ≤ 1
Normal �, 8 ∈ ℝ �

Mode



Textbook Assignment

Géza Schay. Introduction to Probability…

Chapter 6.3 & 6.6. 198-205, 220-227 pp.

F.M. Dekking et al. A Modern Introduction to…

Chapter 5.6. 65-67 pp.
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