Lecture 6

Moments, Skewness, Kurtosis, Median, Quantiles, Mode

Moments

The expected value and the variance of a random variable are particular cases of the quantities known as the moments of this variable.

In mathematics, a moment is a specific quantitative measure of the shape of a function.

The mathematical concept is closely related to the concept of moment in physics.

Moments

If a certain function represents physical density of a body, then

- the zeroth moment is the total mass,
- the first moment divided by the total mass is the center of mass,
- the second moment is the rotational inertia.

Expected Value

The k th moment about a point a of a discrete r.v. X with $p m f$ $p_{X}(x)$ defined on a domain $D_{X}=\left\{x_{i} \in \mathbb{R}: p_{X}\left(x_{i}\right)>0\right\}$ is the number

$$
\mu_{k}=\sum_{D_{X}}\left(x_{i}-a\right)^{k} \cdot p_{X}\left(x_{i}\right)
$$

The k th moment about a point a of a continuous r.v. X with $p d f$ $f_{X}(x)$ defined on a domain $D_{X}=\left\{x \in \mathbb{R}: f_{X}(x)>0\right\}$ is the number

$$
\mu_{k}=\int_{D_{X}}(x-a)^{k} \cdot f_{X}(x) d x
$$

Moments

If $a=0$, we can rewrite previous formulae as

$$
\mu_{k}^{\prime}=\left\{\begin{array}{c}
\sum_{D_{X}} x_{i}^{k} \cdot p_{X}\left(x_{i}\right) \text { for discrete r.v. } \\
\int_{D_{X}} x^{k} \cdot f_{X}(x) d x \text { for continuous r.v. }
\end{array}\right.
$$

We will refer to μ_{k}^{\prime} as to k th raw moment of a random variable.

$$
\mu_{k}^{\prime}=\left\{\begin{array}{c}
\sum_{D_{X}} x_{i}^{k} \cdot p_{X}\left(x_{i}\right) \text { for discrete r.v. } \\
\int_{D_{X}} x^{k} \cdot f_{X}(x) d x \text { for continuous r.v. }
\end{array}\right.
$$

Note that if $k=0, \mu_{k}^{\prime}=1$ for any random variable.

If $k=1$, the formulae above transform into the expressions for the expected value.

Moments

$$
\mu_{k}^{\prime}=\left\{\begin{array}{l}
\sum_{D_{X}} x_{i}^{k} \cdot p_{X}\left(x_{i}\right) \text { for discrete r.v. } \\
\int_{D_{X}} x^{k} \cdot f_{X}(x) d x \text { for continuous } r . v .
\end{array}\right.
$$

So, we may redefine the expected value of a random variable X as its first raw moment:

Moreover,

$$
E[X]=\mu_{1}^{\prime}
$$

$$
E\left[X^{2}\right]=\mu_{2}^{\prime}, \quad E\left[X^{3}\right]=\mu_{3}^{\prime}
$$

Moments

If $a=E[X]$, we can rewrite general formulae for moments as

$$
\mu_{k}=\left\{\begin{array}{l}
\sum_{D_{X}}\left(x_{i}-E[X]\right)^{k} \cdot p_{X}\left(x_{i}\right) \text { for discrete r.v. } \\
\int_{D_{X}}(x-E[X])^{k} \cdot f_{X}(x) d x \text { for continuous r.v. }
\end{array}\right.
$$

We will refer to μ_{k} as to k th central moment of a random variable.

Moments

$$
\mu_{k}=\left\{\begin{array}{l}
\sum_{D_{X}}\left(x_{i}-E[X]\right)^{k} \cdot p_{X}\left(x_{i}\right) \text { for discrete r.v.; } \\
\int_{D_{X}}(x-E[X])^{k} \cdot f_{X}(x) d x \text { for continuous r.v. }
\end{array}\right.
$$

As you can see, the second central moment corresponds to the variance of a random variable X :

Also,

$$
\operatorname{Var}(X)=\mu_{2}
$$

$$
\mu_{k}=E[X-E[X]]^{k}
$$

Moments

$$
\mu_{k}=\left\{\begin{array}{l}
\sum_{D_{X}}\left(x_{i}-E[X]\right)^{k} \cdot p_{X}\left(x_{i}\right) \text { for discrete r.v.; } \\
\int_{D_{X}}(x-E[X])^{k} \cdot f_{X}(x) d x \text { for continuous } r . v .
\end{array}\right.
$$

Obviously, zeroth central moment equals one, and the first central moment equals 0 .

Moments

Sometimes it is convenient to express central moments in terms of raw moments. The general equation is

$$
\mu_{n}=E\left[(X-E[X])^{n}\right]=\sum_{j=0}^{n}\binom{n}{j}(-1)^{n-j} \mu_{j}^{\prime} \mu^{n-j}
$$

where $\mu=\mu_{1}^{\prime}$ - the expected value.

Moments

We also can reverse this and express raw moments in terms of central moments:

$$
\mu_{m}^{\prime}=E\left[X^{m}\right]=\sum_{j=0}^{m}\binom{m}{j} \mu_{j} \mu^{m-j}
$$

where $\mu=\mu_{1}^{\prime}$ - the expected value.

Moments

In probability theory and statistics, a standardized moment of a probability distribution is a moment (normally a higher degree central moment) that is normalized.

The normalization is typically a division by an expression of the standard deviation which renders the moment scale invariant.

Moments

Let X be a random variable for which we have defined the k th central moment μ_{k} and variance $\operatorname{Var}(X)=\mu_{2} \equiv \sigma_{X}^{2}$, where σ_{X} is the standard deviation of X.

Then the standardized moment of order k is given by

$$
v_{k}=\frac{\mu_{k}}{\sigma_{X}^{k}}
$$

Moments

Such normalization leads to a fact that standardized moments are dimensionless quantities.

Third and fourth standardized moments are widely used in probability and statistics.

The moments of higher order have little practical use.

Skewness

Third standardized moment v_{3} of a random variable X is often referred to as the skewness.

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.

The skewness value, skew (X), can be positive, zero, negative, or undefined.

Consider the two distributions in the figure above.
Within each graph, the values on the right side of the distribution taper differently from the values on the left side.

These tapering sides are called tails, and they provide a visual means to determine which of the two kinds of skewness a distribution has

negative skew: The left tail is longer; the mass of the distribution is concentrated on the right of the figure. The distribution is said to be leftskewed, left-tailed, or skewed to the left.
positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of the figure. The distribution is said to be rightskewed, right-tailed, or skewed to the right.

Skewness

If a distribution is symmetric about its expected value, its skewness equals zero.

However, the converse is not true in general. An asymmetric distribution might have the skewness value of zero, if one of its tails is long and thin, and the other is short but fat.

Skewness

If a distribution has finite expected value $E[X]$ and standard deviation σ_{X}, its skewness can be expressed in terms of the third raw moment:

$$
\operatorname{skew}(X) \equiv v_{3}=\frac{E\left[X^{3}\right]-3 E[X] \sigma_{X}^{2}-E[X]^{3}}{\sigma_{X}^{3}}
$$

Skewness

Distribution	Parameters	Skewness	Remarks
Bernoulli	$0 \leq p \leq 1$	$\frac{1-2 p}{\sqrt{p(1-p)}}$	
Binomial	$n \geq 1,0 \leq p \leq 1$	$\frac{1-2 p}{\sqrt{n p(1-p)}}$	
Geometric	$0 \leq p \leq 1$	$\frac{2-p}{\sqrt{1-p}}$	
Disc. Uniform	$a, b \in \mathbb{Z}$	0	
Cont. Uniform	$a, b \in \mathbb{R}$	0	
Exponential	$\lambda>0$	2	
Weibull	$\eta, \beta>0$		$\frac{E\left[X^{3}\right]-3 E[X] \sigma_{X}^{2}-E[X]^{3}}{\sigma_{X}^{3}}$
Normal	$\mu, \sigma \in \mathbb{R}$	0	

Kurtosis

Fourth standardized moment v_{4} of a random variable X is called kurtosis (from Greek: kurtos, meaning "curved").

Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable, i.e. its value describes the thickness of the distribution's tails.

Kurtosis

Fourth standardized moment v_{4} of a random variable X is called kurtosis (from Greek: kurtos, meaning "curved").

Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable, i.e. its value describes the thickness of the distribution's tails.

Kurtosis

If we would calculate the kurtosis of a normal distribution, we'd found that its value equals three, no matter what parameters the distribution has.

A lot of mathematicians prefer to compare kurtosis of any distribution with that of normal distribution. For that they subtract three from the value of kurtosis.

Kurtosis

$$
\operatorname{kurt}(X)=v_{4}-3=\frac{\mu_{4}}{\sigma_{X}^{4}}
$$

The resulting quantity, $\operatorname{kurt}(X)$, is called excess kurtosis of the random variable X.

Thus, the excess kurtosis of a normal distribution equals zero.

Kurtosis

Distributions with zero excess kurtosis are called mesokurtic.

The most prominent example of a mesokurtic distribution is the normal distribution.

A few other well-known distributions can be mesokurtic, depending on parameter values; e.g., the binomial distribution is mesokurtic for $p=\frac{1}{2} \pm \sqrt{\frac{1}{12}}$.

Kurtosis

A distribution with positive excess kurtosis is called leptokurtic ("lepto-" means "slender").

In terms of shape, a leptokurtic distribution has fatter tails than the normal distribution.

Examples of leptokurtic distributions include the Rayleigh distribution, exponential distribution, Poisson distribution.

Kurtosis

A distribution with negative excess kurtosis is called platykurtic ("platy-" means "broad").

In terms of shape, a platykurtic distribution has thinner tails than the normal distribution.

An example of platykurtic distributions is the uniform distribution. The most platykurtic distribution of all is the Bernoulli distribution with $p=1 / 2$.

Kurtosis

If a distribution has finite expected value $E[X]$ and standard deviation σ_{X}, its kurtosis can be expressed in terms of the fourth raw moment:

$$
v_{4}=\frac{E\left[X^{4}\right]-4 E[X] E\left[X^{3}\right]+6 E[X]^{2} E\left[X^{2}\right]-3 E[X]^{4}}{\sigma_{X}^{4}}
$$

For excess kurtosis you should subtract 3.

Kurtosis

Distribution	Parameters	Excess Kurtosis	Remarks
Bernoulli	$0 \leq p \leq 1$	$\frac{1-6 p(1-p)}{p(1-p)}$	
Binomial	$n \geq 1,0 \leq p \leq 1$	$\frac{1-6 p(1-p)}{n p(1-p)}$	
Geometric	$0 \leq p \leq 1$	$6+\frac{p^{2}}{1-p}$	
Disc. Uniform	$a, b \in \mathbb{Z}$	$-\frac{6\left(n^{2}+1\right)}{5\left(n^{2}-1\right)}$	$n=b-a+1$ - number of values
Cont. Uniform	$a, b \in \mathbb{R}$	$\frac{-1.2}{}$	
Exponential	$\lambda>0$	6	
Weibull	$\eta, \beta>0$		0
Normal	$\mu, \sigma \in \mathbb{R}$		

Median

The expected value of a random variable was introduced to provide a numerical value for the center of its distribution.

For some random variables, however, it is preferable to use another quantity for this purpose, either because $E[X]$ does not exist or because the distribution of X is very skewed and $E[X]$ does not represent the center very well.

Median

The latter case occurs, for instance, when X stands for the income of a randomly selected person from a set of ten people, with nine earning 20 thousand dollars and one of them earning 20 million dollars. Saying that the average income is

$$
E[X]=\frac{1}{10}(9 \cdot 20000+1 \cdot 2000000)=2018000 \text { dollars }
$$

is worthless and misleading.

Median

In such cases we use the median to represent the center. Also, for some random variables, $E[X]$ does not exist, but a median always does.

We want to define the median so that half of the probability is below it and half above it.

Median

For any real-valued probability distribution, a median is defined as any real number m that satisfies the inequalities:

$$
\operatorname{Pr}\{X \leq m\} \geq \frac{1}{2} \quad \operatorname{Pr}\{X \geq m\} \geq \frac{1}{2}
$$

For an absolutely continuous distribution with $p d f f_{X}(x)$ and $\operatorname{cdf} F_{X}(x)$, the median is any real number m such that

$$
\int_{-\infty}^{m} f_{X}(x) d x=\int_{m}^{\infty} f_{X}(x) d x=\frac{1}{2} \quad \text { or } \quad F_{X}(m)=\frac{1}{2}
$$

Median

If the distribution of a random variable X is symmetric about a point α, that is, its $p d f$ satisfies

$f_{X}(\alpha-x)=f_{X}(\alpha+x)$ for all x, then α is a median of X.

Median

Distribution	Parameters	Median	Remarks
Bernoulli	$0 \leq p \leq 1$	$\left\{\begin{array}{lr}0, \text { if } p<0.5 \\ {[0,1], \text { if } p=0.5} \\ 1, & \text { if } p>0.5\end{array}\right.$	
Binomial	$n \geq 1,0 \leq p \leq 1$	$\lfloor n p\rfloor$ or $[n p\rceil$	there is no single formula
Geometric	$0 \leq p \leq 1$	$\left[\frac{-1}{\log _{2}(1-p)}\right]$	not unique if $\frac{-1}{\log _{2}(1-p)}$ is an integer
Uniform	$a, b \in \mathbb{R}$	$\frac{a+b}{2}$	
Exponential	$\lambda>0$	$\frac{\ln 2}{\lambda}$	
Weibull	$\eta, \beta>0$	$\eta(\ln 2)^{1 / \beta}$	
Normal	$\mu, \sigma \in \mathbb{R}$		

Quantiles

In probability theory quantiles are cut points dividing the range of a probability distribution into continuous intervals with equal probabilities.

Common quantiles have special names: for instance tercile, quartile, decile, etc.

Quantiles

The groups created are termed halves, thirds, quarters, etc., though sometimes the terms for the quantile are used for the groups created, rather than for the cut points.

Quantiles

Let X be a continuous r.v. with $F_{X}(x)$ continuous and strictly increasing from 0 to 1 on some finite or infinite interval.

Then, for any $p \in(0,1)$, the solution x_{p} of $F_{X}\left(x_{p}\right)=p$ or, in other words, $x_{p}=F_{X}^{-1}(p)$ is called the p-quantile or the $100 p$ percentile and the function F_{X}^{-1} - the quantile function of X or of the distribution of X.

Quantiles

For general X the p-quantile is defined as

$$
x_{p}=\min \left\{x: F_{X}(x) \geq p\right\}
$$

and we define the quantile function F_{X}^{-1} by

$$
F_{X}^{-1}(p)=x_{p}
$$

for all $p \in(0,1)$.

Quantiles

The quantile function F_{X}^{-1} is also called inverse cumulative distribution function (inverse $c d f)$.

Quantiles

Quantiles or percentiles are often used to describe statistical data such as exam scores, home prices, incomes, etc. For example, a student's score of 650 on the math SAT is much better understood if it is also stated that this number is at the 78th percentile, meaning that 78\% of the students who took the test scored 650 or less.

Quantiles

Clearly, the 50th percentile is also a median.

Furthermore, the 25 th percentile is also called the first quartile, the 50th percentile the second quartile, and the 75th percentile the third quartile.

Mode

Another measure of central tendency is the mode of the distribution.

For a discrete r.v. X with $\operatorname{pmf} p_{X}(x)$ the mode, $x_{\text {mod }}$ is the value x at which the probability mass function takes its maximum value:

$$
x_{\text {mod }}=\underset{x \in D}{\arg \max } p_{X}(x)
$$

Mode

When the pdf of a continuous distribution has multiple local maxima, it is common to refer to all of the local maxima as modes of the distribution.

Such a continuous distribution is called multimodal (as opposed to unimodal).

Mode

A mode of a continuous probability distribution is often considered to be any value x at which its $p d f$ has a locally maximum value, so any peak is a mode.
unimodal

Mode

In symmetric unimodal distributions, such as the normal distribution, the mean (if defined), median and mode all coincide.

Distribution	Parameters	Mode	Remarks
Bernoulli	$0 \leq p \leq 1$	$\left\{\begin{array}{cc} 0, & \text { if } p<0.5 \\ 0 \text { and } 1, \text { if } p=0.5 \\ 1, & \text { if } p>0.5 \end{array}\right.$	
Binomial	$n \geq 1,0 \leq p \leq 1$	$\lfloor(n+1) p\rfloor$ or $\lceil(n+1) p\rceil-1$	there is no single formula
Geometric	$0 \leq p \leq 1$	1	
Uniform	$a, b \in \mathbb{R}$	any value in the domain	
Exponential	$\lambda>0$	0	
Weibull	$\eta, \beta>0$	$\begin{cases}\eta\left(\frac{\beta-1}{\beta}\right)^{1 / \beta}, & \text { if } \beta>1 \\ 0, & \text { if } \beta \leq 1\end{cases}$	
Normal	$\mu, \sigma \in \mathbb{R}$	μ	

Lecture 6

Textbook Assignment
Géza Schay. Introduction to Probability...

* Chapter 6.3 \& 6.6. 198-205, 220-227 pp.
F.M. Dekking et al. A Modern Introduction to...
*Chapter 5.6. 65-67 pp.

