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De Moivre-Laplace Limit Theorem

Yet another result approximating binomial

experiment is given by de Moivre-Laplace theorem

(local and integral).

Abraham de Moivre

1667-1754

Pierre-Simon Laplace

1749-1827

Consider a binomial experiment

(Bernoulli trials) consisting of �
trials with � – the probability of

success, and � = 1 − � – the

probability of failure.



The probability � �; �, � of obtaining exactly � successes in

the � trials is obtained by

� �; �, � = ������� .
De Moivre-Laplace limit theorem (local) provides the following

approximation:

De Moivre-Laplace Limit Theorem

� �; �, � ≈ 1
2����� �� ��� ���� . ��� ≥ ��



The probability �  ! ≤ � ≤  � that number of successes

would be � ∈  !;  � can be obtained by the exact formula

If  � −  ! is large, the calculation might be rather tedious.

De Moivre-Laplace Limit Theorem

�  ! ≤ � ≤  � = $ �%�%��%
&�
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De Moivre-Laplace limit theorem (integral) :

�  ! ≤ � ≤  � ≈ 1
2�� ) ��*�� +,

-

.
.

where

De Moivre-Laplace Limit Theorem

1 2, .
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Let’s introduce a function

Algebraic properties:

De Moivre-Laplace Limit Theorem

Φ0 , = 1
2�� ) ��1�� +2

*

0

Φ0 , = −Φ0 −, Φ0 , → 40,5   89 , → 4∞
Φ0 , ≈ 0,5   ;<= , > 4
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Then

The values of Φ0 , are often tabulated.

De Moivre-Laplace Limit Theorem

�  ! ≤ � ≤  � ≈ 1
2�� ) ��*�� +,

-

.
= Φ0 J − Φ0 K .



A true die is tossed 12000 times.

Calculate

(a) the probability that there will be exactly 1800 rolls of 6;

(b) the probability that the number of 6’s lies in the interval

[1950, 2100].

De Moivre-Laplace Limit Theorem



We have a Bernoulli trials with � = 12000, � = !
L, � = M

L.

(a) � = 1800;

The exact probability is

De Moivre-Laplace Limit Theorem

� 1800; 12000, 16 = �!P00!�000 16
!P00 56

!0�00



Poisson Limit Theorem gives us Q = �� = 2000 and

De Moivre-Laplace Limit Theorem

� 1800; 12000, 16 ≈ 2000!P00
1800! ���000



According to de Moivre-Laplace Limit Theorem

De Moivre-Laplace Limit Theorem

� �; �, � ≈ 1
2����� �� ��� ���� .

� 1800; 12000, 16 ≈ 9.772 · 10�V · 6.144 · 10�L ≈ 6 · 10�P



(b)  ! = 1950,  � = 2100 ;

De Moivre-Laplace Limit Theorem

K =  ! − ������ = 1950 − 2000
12000 · 16 · 56� ≈ −1.225

J =  � − ������ = 2100 − 2000
12000 · 16 · 56� ≈ 2.449



Consulting a table of Laplace function Φ0 , or calculating its

values for , = K and , = J with Mathcad, we obtain

Φ0 K = −Φ0 −K = −Φ0 −1,225 ≈ −0,3897;

Φ0 J = Φ0 2,449 ≈ 0,4928;

De Moivre-Laplace Limit Theorem

� 1950 ≤ � ≤ 2100 ≈ Φ0 J − Φ0 K = 0,8825.



In many applications, the outcomes of a probabilistic

experiment are numbers, and we can use these numbers to

obtain important information.

We can, for instance, describe in various ways how large or

small these numbers are likely to be and compute likely

averages and measures of spread.

Random Variables



For example, in three tosses of a coin, the number of heads

obtained can range from 0 to 3, and there is one of these

numbers associated with each possible outcome.

Informally, the quantity “number of heads” is called a random

variable and the numbers 0 to 3 its possible values.

In general, such an association of numbers with each member

of a set is called a function.

Random Variables



A random variable (abbreviated r.v.) is a real-valued function on

a sample space Ω.

Random variables are usually denoted by capital letters, such

as Y, Z, [, and sets like 9: Y 9 = , , 9: Y 9 ≤ , , for any

number ,, are events in Ω.

Random Variables



All events in Ω have probabilities associated with them.

Pr Y = , Pr Y ≤ ,
The assignment of probabilities to all such events, for a given

random variable Y, is called the probability distribution of Y.

Random Variables



A probability distribution is a mathematical function that

provides the probabilities of occurrence of different possible

outcomes in an experiment.

In more technical terms, the probability distribution is a

description of a random phenomenon in terms of the

probabilities of events.

Random Variables



Probability distributions are generally divided into two classes:

• discrete (discrete sample space);

• continuous (continuous sample space).

To define probability distributions, it is necessary to distinguish

between discrete and continuous random variables.

Random Variables



In the discrete case, it suffices to list the possible values of Y
and their corresponding probabilities. This information is

contained in the probability mass function of Y.

The probability mass function (pmf) �_ , of a discrete random

variable Y is the function �_:  ℝ → 0, 1 , defined by

�_ , = Pr Y = , for  −∞ < , < ∞

Random Variables



A set b_ = , ∈ ℝ ∶ Pr Y = , > 0 is called a domain of a

random variable Y.

At the same time, b_ is also called a support of a probability

distribution: b_ = , ∈ ℝ ∶ �_ , > 0 .

Random Variables



If a domain of a discrete r.v. Y contains but a few number of

values, it is possible to define the probability distribution by

simply listing values of Y in a table together with their

probabilities:

Obviously,

Random Variables

dH de d� … … d��= ,% �e �� … … ��
$ �%



%'!
= 1.



Let Ω = ggg, ggh, ghg, ghh, hgg, hgh, hhg, hhh
describe three tosses of a coin, and let Y denotes the number

of “heads” obtained. Then the values of Y, for each outcome i
in Ω, are given in the following table:

Random Variables

i ggg ggh ghg ghh hgg hgh hhg hhh
Y i 3 2 2 1 2 1 1 0



Since Ω contains eight outcomes and Y takes on values 0,1,2,3,

the probability distribution of Y can be defined as:

Random Variables

i ggg ggh ghg ghh hgg hgh hhg hhh
Y i 3 2 2 1 2 1 1 0

dH 0 1 2 3

Pr ,% 1 8j 3 8j 3 8j 1 8j



Random Variables

dH 0 1 2 3

Pr ,% 1 8j 3 8j 3 8j 1 8j



Describing a probability distribution of a discrete r.v. Y as a

table becomes impractical, if there are large number of values

,%, and impossible, if Y assumes infinite number of values.

In this case, the distribution should be defined by the

probability mass function �_ , in analytical form.

Random Variables



However, pmf is not suitable for defining continuous random

variables, since the probability of Y taking on a certain value is

zero.

The distribution function of a random variable X (also known as

the cumulative distribution function, cdf) allows us to treat

discrete and continuous random variables in the same way.

Random Variables



The distribution function k_ of a random variable Y is the

function k_:  ℝ → 0, 1 , defined by

k_ , = Pr Y ≤ , for  −∞ < , < ∞
Both the pmf and the cdf of a discrete random variable Y
contain all the probabilistic information of Y; the probability

distribution of Y is determined by either of them.

Random Variables



In fact, the distribution function k_ of a discrete random

variable Y can be expressed in terms of the probability mass

function �_ of Y and vice versa.

If Y attains values ,!, ,�, …, such that

�_ ,% > 0,      �_ ,! + �_ ,� + ⋯ = 1,

then

Random Variables

k_ , = $ �_ ,%
�

*no*



The properties of cdf k_:

1. For any 8 ≤ � , k_ 8 ≤ k_ � . This property is an immediate

consequence of the fact that the event Y ≤ 8 is contained in the

event Y ≤ �  . k_ is a non-decreasing function.

2. Since k_ , is a probability, the value of the cdf is always between 0

and 1. Moreover,

3. k_ is right-continuous, i.e.,

Random Variables

lim*→s k_ , = 1 lim*→�s k_ , = 0
limt→0 k_ , + u = k_ ,



The properties of cdf k_:

4.

Remark:

for discrete r.v.

for continuous r.v.

Random Variables

Pr 8 < , ≤ � = k_ � − k_ 8

Pr 8 ≤ , ≤ � = k_ � − k_ 8 + �_ 8
Pr 8 ≤ , ≤ � = k_ � − k_ 8



Random Variables

dH 0 1 2 3

�_ ,% 1 8j 3 8j 3 8j 1 8j

dH 0 1 2 3

k_ ,% 1 8j 4 8j 7 8j 1



Random Variables



We had defined continuous r.v. Y as a function on an infinite

uncountable sample space Ω. Here we have another definition.

A random variable Y is continuous if for some function

;_:  ℝ → ℝ and for any numbers 8 and � with 8 ≤ �,

Random Variables

Pr 8 ≤ , ≤ � = ) ;_ , +,
v

w



The function ;_ has to satisfy ;_ , ≥ 0 for all , and

We call ;_ the probability density function (pdf) of Y.

Random Variables

) ;_ , +,
s

�s
= 1



Note that the probability that Y lies in an interval 8, � is equal

to the area under the probability density function ;_ of Y over

the interval 8, � .

Random Variables



If the interval gets smaller and smaller, the probability will go

to zero: for any positive u

and sending u to 0, it follows that for any 8

Random Variables

Pr 8 − u ≤ , ≤ 8 + u = ) ;_ , +,
wxt

w�t
,

Pr Y = 8 = 0



Probability density function ;_ , can be interpreted as a

relative measure of how likely it is that Y will be near ,.

However, unlike pmf �_, pdf doesn’t represent probability!

Random Variables

0 ≤ �_ , ≤ 1 ;_ , ≥ 0



There is a simple relation between the cdf k_ , and the pdf

;_ , of a continuous random variable.

It follows from integral calculus that

Random Variables

k_ , = ) ;_ y +y
*

�s
;_ , = ++, k_ ,



Random Variables

k_ , = ) ;_ y +y
*

�s



Both the probability density function (pdf) and the distribution

function (cdf) of a continuous random variable Y contain all the

probabilistic information about Y; the probability distribution

of Y is described by either of them.

Random Variables



The Bernoulli distribution

The Bernoulli distribution models an experiment with only two

possible outcomes, often referred to as “success” and “failure”,

usually encoded as 1 and 0.

A discrete r.v. Y has a Bernoulli distribution with parameter �,

where 0 ≤ � ≤ 1, if its pmf is given by

We denote this distribution by z�= � .

Notable Probability Distributions

�_ 1 = �; �_ 0 = 1 − �.



Binomial distribution

Binomial distribution allows obtaining the probability of �
“successes” in � Bernoulli trials, z�= � .

A discrete r.v. Y has a binomial distribution with parameters �
and �, where � = 1,2, … and 0 ≤ � ≤ 1, if its pmf is given by

We denote this distribution by z{� �, � .

Notable Probability Distributions

�_ � = �� �� 1 − � �� , � = 0,1, … , �



Binomial distribution

Notable Probability Distributions

pmf for Bin(10, 0.35)

cdf for Bin(10, 0.35) k_ , =
0,  {; , < 0;

$ �� �� 1 − � ��
*

�'0
, {; 0 ≤ , < �;

1,  {; , ≥ �.



Geometric distribution

Suppose we perform independent Bernoulli trials (z�= � )

with parameter �, until we obtain a success.

The number Y of trials is called a geometric random variable

with parameter �. Its pmf is given by

We denote this distribution by |�< � .

Notable Probability Distributions

�_ � = � 1 − � ��!, � = 1,2, …



Geometric distribution

Notable Probability Distributions

pmf for Geo(0.35)

k_ , = } 0, {; , < 1;1 − 1 − � * , {; , ≥ 1.cdf for Geo(0.35)



Discrete Uniform distribution

A random variable Y and its distribution are called discrete

uniform if Y has a finite number of possible values, say,!, ,�, … , , , for any positive integer �, and

It’s common practice to denote ,! = 8, , = �. Then, the

notation for discrete uniform distribution is ~ 8, � .

Notable Probability Distributions

�_ � = 1� , � = 1,2, … , �.



Discrete Uniform distribution

Notable Probability Distributions

k_ , =
0,  {; , < 8;, − 8 + 1� , {; 8 ≤ , < �;
1,  {; , ≥ �.

pmf for U{1,6}

cdf for U{1,6}



Textbook Assignment

Géza Schay. Introduction to Probability…

Chapter 5. 105-114 pp.

F.M. Dekking et al. A Modern Introduction to…

Chapter 4. 41-55 pp.

Chapter 5. 56-60 pp.
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