
Lecture 3

Combinatorics, Bernoulli Trials, 

Poisson Limit Theorem          



Combinatorics

Combinatorics is an area of mathematics

primarily concerned with counting, and certain

properties of finite structures.

It is closely related to many other areas of

mathematics and has many applications ranging

from logic to statistical physics, from

evolutionary biology to computer science, etc.

Gottfried Wilhelm 

von Leibniz

1646-1716



Combinatorics

In combinatorial analysis (combinatorics), we basically deal

with the following two questions:

 In how many ways can a set of elements be sequenced

(arranged)?

 In how many ways can a subset be selected from a set of

elements?



Combinatorics

Since the counting of all possible combinations can become

quite complicated, we are going to present a systematic

discussion of the methods required for the most important

counting problems that occur in the applications of the

probability theory.

Such counting problems are called combinatorial problems,

because we count the numbers of ways in which different

possible outcomes can be combined.



Combinatorics

In combinatorics, we distinguish between ordered and

unordered sets. In an ordered set, the order plays a role,

whereas in an unordered set, it does not.

For instance, the list of all ordered subsets of size two of

1,2,3 consists of 1,2 , 2,1 , 1,3 , 3,1 , 2,3 and 3,2 ;

the list of unordered subsets of size two consists of 1,2 , 1,3
and 2,3 .

The set 2,1  is the same as 1,2 and therefore not listed

separately.



Combinatorics

The first question we ask is: What do our basic set operations

do to the numbers of elements of the sets involved?

In other words if we let � denote the number of elements

(cardinality) of the set �, then how are � , � , � ∪ � ,

� ∩ � , �� , �\B , etc. related to each other?



Combinatorics

Addition Principle

If � ∩ � = ∅, then � ∪ � = � + �

If ��, ��, … , �� are � disjoint sets, then

�� ∪ �� ∪ ⋯ ∪ �� = �� + �� + ⋯ + ��



Combinatorics

Addition Principle

For any two sets � and � 

� ∪ � = � + � − � ∩ � .



Combinatorics

In a survey, 100 people are asked whether they drink or smoke

or do both or neither.

The results are 60 drink, 30 smoke, 20 do both, and 30 do

neither.

Are these numbers compatible with each other?



Combinatorics

If we let � denote the set of drinkers, � the set of smokers,

� the set of those who do neither, and Ω the set of all those

surveyed, then the data translate to

� = 60 � = 30 � ∩ � = 20
� = 30 Ω = 100



Combinatorics

Also, � ∪ � and � are disjoint, and

� ∪ � ∪ � = Ω.

So we must have

� ∪ � + � = Ω , that is,

� ∪ � + 30 = 100.

Ω 
A

B N



Combinatorics

According to addition principle

� ∪ � = � + � − � ∩ �

Therefore in our case

� ∪ � = 60 + 30 − 20 = 70,
and � ∪ � + 30 is indeed 100, which

Ω 
A

B N

and � ∪ � + 30 is indeed 100, which shows that the data are 

compatible.



Combinatorics

Inclusion-Exclusion Theorem

For any positive integer � and arbitrary sets ��, ��, … , ��  

See proof in Géza Schay. Introduction to Probability…, p. 28
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Combinatorics

Subtraction Principle

For any two sets � and � 

Specifically,

Also,

�\B = � − � ∩ �

�\B = � − �  ↔ � ⊂ �

Ω 

A B

Ω 
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�� = Ω\A = Ω − �



Combinatorics

How many positive integers ≤ 1000 are there that are not

divisible by 6, 7, and 8?

Ω = 1,2, … , 1000
� = +,-./0-12 34 6 /5 Ω � = +,-./0-12 34 7 /5 Ω

6 = +,-./0-12 34 8 /5 Ω



Combinatorics

Then Ω = 1000 � = 1000 6⁄ = 166
� = 1000 7⁄ = 142 6 = 1000 8⁄ = 125

� ∩ � = 1000 42⁄ = 23
� ∩ 6 = 1000 24⁄ = 41

� ∩ 6 = 1000 56⁄ = 17

� ∩ � ∩ 6 = 1000 168⁄ = 5
least common multiple



Combinatorics

By definition, the set of integers not divisible by 6, 7 and 8 is a

complement set of the union � ∪ � ∪ 6.

Then

� ∪ � ∪ 6 � = 1000 −
−166 − 142 − 125 +
+23 + 41 + 17 −
−5                                         = 643



Combinatorics

So far we worked with fixed sample spaces and counted the

number of points in single events.

Now we are going to consider the construction of new sample

spaces and events from previously given ones and count the

number of possibilities in the new sets.



Combinatorics

For example, we draw two cards from a deck and want to find

the number of ways in which the two drawings both result in

Aces.

The best way to approach such problems is by drawing a so-

called tree diagram. In such diagrams we first list the possible

outcomes of the first step and then draw lines from each of

those to the elements in a list of the possible outcomes that

can occur in the second step depending on the outcome in the

first step.



Let us illustrate the possible ways of successively drawing two

Aces from a deck of cards.

In the first step, we can obtain AS, AH, AD, AC, but in the

second step, we can only draw an Ace that has not been drawn

before.

Combinatorics



Before primary elections, voters are polled about their

preferences in a certain state. There are two Republican

candidates R1 and R2 and three Democratic candidates D1, D2,

and D3.

The voters are first asked whether they are registered

Republicans (R), Democrats (D), or independents (I) and,

second, which candidate they prefer.

The independents are allowed to vote in either primary, so in

effect they can choose any of the five candidates.

Combinatorics



Combinatorics

The branches correspond to mutually exclusive events in the

10-element sample space:

;;�, ;;�, ;;<, ==�, ==�, >;�, >;�, >;<, >=�, >=� .

This is the new sample space built up from the simpler ones

;, =, >  , ;�, ;�, ;< , and =�, =� .



Combinatorics

The Multiplication Principle

If an experiment is performed in + steps, and there are 5�
choices in the first step, and for each of those there are 5�
choices in the second step, and so on, with 5? choices in the

last step for each of the previous choices, then the number of

possible outcomes, for all the steps together, is given by the

product

5� · 5� · ⋯ · 5? = @ 5�
?

� �



Suppose three cards are drawn from a regular deck of 52 cards.

What is the number of ways they can be drawn

 if we return each card into the deck before the next one is

drawn?

 if we do not return cards?

Combinatorics



For each case we have a 3-step experiment (+ = 3).

If cards are being returned into the deck, 5� = 5� = 5< = 52.

Then, we can draw 3 cards in 52< = 140608 ways.

If cards are not being returned, 5� = 52, 5� = 51, 5< = 50,

and we can draw 3 cards in 52 · 51 · 50 = 132600 ways.

Combinatorics



Combinatorics

Results of the last example represent a concept known as

permutation of elements of the set:

 with repetitions in the former case,

 and without repetitions in the latter.

Any arrangement of things in a ordered row is called a

permutation of those things.



Combinatorics

Permutations

Suppose now that we have 5 distinct objects and that we take,

at random and without replacement, � objects among them.

The number of possible arrangements is given by

A�B = 5 × 5 − 1 × ⋯ × 5 − � + 1 = 5!
5 − � !

Sometimes, notations BA� or even AB� are used.



Combinatorics

Permutations

A�B specifies partial permutations or �-permutation on 5 items.

If all 5 items need to be arranged, then the number of

permutations is

ABB = 5!
5 − 5 ! = 5!

0! = 5!,
since 0! = 1 by the definition of factorial.



Combinatorics

Combinations

In many problems it is unnatural to concern ourselves with the

order in which things are selected, and we want to count only

the number of different possible selections without regard to

order.

The number of possible unordered selections of � different

things out of 5 different ones is called a combination of the

given things.



Combinatorics

Combinations

If the order of the objects is not important, then the number of

ways to take, at random and without replacement, � objects

among 5 distinct objects is given by

6�B = 5
� = A�B

�! = 5!
�! · 5 − � ! .

6�B is often pronounced “n choose k” and represent the

number of �-combinations out of 5 items.



In a class there are 30 men and 20 women. In how many ways

can a committee of two men and two women be chosen?

We have to choose 2 men out of 30 and 2 women out of 20.

These choices can be done in 6�<F and 6��F ways, respectively.

By the multiplication principle, the whole committee can be

selected in

6�<F · 6��F = <F!
�!·�G! · �F!

�!·�G! = <F·�H
� · �F·�H

� = 82650 ways.

Combinatorics



Combinatorics

Permutations with Repetitions

We have discussed permutations of objects different from each

other. Now, we consider permutations of objects, some of

which may be identical or which amounts to the same thing of

different objects that may be repeated in the permutations.



Combinatorics

Permutations with Repetitions

In general, if we have � different objects and we consider

permutations of length 5, with the first object occurring 5�
times, the second 5� times, and so on, with the �th object

occurring 5� times,

then we must have 5� + 5� + ⋯ + 5� = 5, and the number of

such permutations is
5!

5�! 5�! … 5�! .



Combinatorics

Permutations with Repetitions

This quantity is called a multinomial coefficient and is

sometimes denoted by

5
5�, 5�, … , 5� = 5!

5�! 5�! … 5�! .



How many seven-letter words can be made up of two a’s, two

b’s, and three c’s?

Here 5 = 7, � = 3, 5� = 5� = 2, and 5< = 3.

Thus the answer is

7
2,2,3 = 7!

2! 2! 3! = 210.

Combinatorics



Bernoulli trials

Consider an experiment that consists of n identical and

statistically independent sub-experiments called trials. In each

trial we have:

1. Two possible outcomes, which we call “success” and

“failure”;

2. The probability of success is the same number 0 in each

trial, while the probability of failure is I = 1 − 0.



Bernoulli trials

Such trials are called Bernoulli trials.

For example, tossing a coin or throwing a die

repeatedly or selecting a person from a given

population with replacement and observing

whether he or she has a certain trait are such

trials. Jacob Bernoulli

1654-1705

Often, the sequence of Bernoulli trials is called a binomial

experiment.



Bernoulli trials

We ask for the probability J �; 5, 0 of obtaining exactly �
successes in the 5 trials.

By the assumed independence, the probability of having �
successes and 5 − � failures in any fixed order is 0�IB&�, and

since the � successes and 5 − � failures can be ordered in 6�B
mutually exclusive ways

J �; 5, 0 = 6�B0�IB&� .



In an airport, five radars are in operation and each radar has a

0 = 0.9 probability of detecting an arriving airplane. The

radars operate independently of each other.

a) Calculate the probability that an arriving airplane will be detected by

at least four radars.

b) Knowing that at least three radars detected a given airplane, what is

the probability that the five radars detected this airplane?

c) What is the smallest number of radars that must be installed if we

want an arriving airplane to be detected by at least one radar with

probability 0.9995 or greater?

Bernoulli trials



(a) Let � be the number of radars that successfully detect the

airplane. Then, the probability that an arriving airplane will be

detected by at least four radars is

Pr � ≥ 4 = J 4; 5,0.9 + J 5; 5,0.9
Pr � ≥ 4 = 6PQ · 0.9P · 0.1� + 6QQ · 0.9Q · 0.1F

Pr � ≥ 4 = 5 · 0.9P · 0.1� + 1 · 0.9Q · 0.1F ≅ 0.9185

Bernoulli trials



(b) We want the conditional probability

Pr � = 5 | � ≥ 3 = Pr � = 5 ∩ � ≥ 3
Pr � ≥ 3 .

Given that � = 5 ⊂ � ≥ 3 , the intersection of these two

sets is a set � = 5 .

Pr � = 5 | � ≥ 3 = Pr � = 5
Pr � ≥ 3 .

Bernoulli trials



Pr � = 5 = J 5; 5,0.9 = 6QQ · 0.9Q · 0.1F ≅ 0.5905
Pr � ≥ 3 = 6<Q · 0.9< · 0.1� + 6PQ · 0.9P · 0.1� +

+6QQ · 0.9Q · 0.1F ≅ 0.9914

Pr � = 5 | � ≥ 3 ≅ 0.5905
0.9914 ≈ 0.596.

Bernoulli trials



(c) We want to find the smallest 5 such that

Pr � ≥ 1 ≥ 0.9995.

It’s easier to compute 1 − Pr � = 0 :

Pr � ≥ 1 = 1 − Pr � = 0 = 1 − 6FB · 0.9F · 0.1B =
= 1 − 0.1 B ≥ 0.9995; 

0.1 B ≤ 0.0005 ⇒ 5 ≥ logF.� 0.0005 ≈ 3.3 ⇒  5?�B = 4

Bernoulli trials



Poisson Limit Theorem

J �; 5, 0 = 6�B0�IB&�

Computing probabilities with Bernoulli’s formula is convenient

only if 5 is relatively small, since we must calculate 5! and such.

If 5 is very large and probability of success 0 is small we face

even greater challenge using Bernoulli’s formula.



Poisson Limit Theorem

Consider a sequence of 5 Bernoulli trials with

success probability 0 and failure probability I =
1 − 0.

If 5 → ∞, 0 → 0 and 50 → \ > 0, then

J �; 5, 0 ≈ \�

�! · 1&^.
This result is known as Poisson Limit Theorem (PLT)

or the Law of Rare Events.

Siméon Denis 

Poisson

1781-1840



Poisson Limit Theorem

A brewery sent a shipment of 100,000 bottles of beer to a

customer. There is a 0.0001 probability that a bottle breaks

during delivery.

What is the probability that exactly 4 bottles break during

delivery?



Poisson Limit Theorem

We have 5 = 100000, 0 = 0.0001, and 50 = \ = 10.

According to PLT

J 4; 10Q, 10&P ≈ 10P

4! · 1&�F ≈ 0.019.



Textbook Assignment

Géza Schay. Introduction to Probability…

Chapter 3. 25-51 pp.

Ex. 3.5.2, 3.5.3, 3.5.7 and 3.5.10

Lecture 3


