Lecture 2

Conditional Probability, Total Probability, Bayes' Theorem, and Independence

Conditional Probability

Knowing that an event has occurred sometimes forces us to reassess the probability of another event; the new probability is the conditional probability.

Conditional probabilities correspond to updating one's beliefs when new information becomes available.

Conditional Probability

Conditional Probability

An urn contains two white and two black marbles.

Events:
$A-1^{\text {st }}$ person removes a white marble;

$A^{C}-1^{\text {st }}$ person removes a black marble;
$B-2^{\text {nd }}$ person removes a white marble.

Conditional Probability

$\operatorname{Pr}(B$ given A has occured $)=\frac{1}{3}$

$\operatorname{Pr}\left(B\right.$ given A^{C} has occured $)=\frac{2}{3}$

Conditional Probability

Assume that we pick a point at random from those shown in figure.

If $\operatorname{Pr}(A), \operatorname{Pr}(B)$, and $\operatorname{Pr}(A \cap B)$ denote the probabilities of picking the point from A, B, and $A \cap B$, respectively, then

$$
\operatorname{Pr}(A)=\frac{5}{10} \quad \operatorname{Pr}(B)=\frac{4}{10} \quad \operatorname{Pr}(A \cap B)=\frac{3}{10}
$$

Conditional Probability

If we restrict our attention to only those Ω trials in which B has occurred, then, obviously,

$$
\operatorname{Pr}(A \text { given } B \text { has occured })=\frac{3}{4}
$$

We can deduce that

$$
\operatorname{Pr}(A \text { given } B \text { has occured })=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Conditional Probability

Let A and B be arbitrary events in a given probability space Ω, with $\operatorname{Pr}(B) \neq 0$.

Then we define the conditional probability of A, given B, as

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Conditional Probability

Notice that, actually, every probability may be regarded as a conditional probability, with the condition Ω, since

$$
\operatorname{Pr}(A \mid \Omega)=\frac{\operatorname{Pr}(A \cap \Omega)}{\operatorname{Pr}(\Omega)}=\frac{\operatorname{Pr}(A)}{\operatorname{Pr}(\Omega)}=\operatorname{Pr}(A)
$$

Conversely, every conditional probability $\operatorname{Pr}(A \mid B)$ may be regarded as an unconditional probability in a new, reduced sample space $\Omega^{\prime}=B$.

Conditional Probability

Assume we ask the next person we meet on the street in which month his/her birthday falls.

What would be the probability that the answer is a "long" month (31 day) with a letter " r " in its name?

Let's define events $L=\{J a n, M a r, M a y, J u l, A u g, O c t, D e c\}$ and $R=\{J a n$, Feb, Mar,Apr, Sep,Oct,Nov, Dec $\}$, and draw the Venn diagram.

Conditional Probability

The answer for the problem, obviously, is the probability of event $L \cap R$:

Conditional Probability

Suppose, it is known that the person we meet was born in a "long month," and we wonder whether he/she was born in a "month with the letter r."

Alternatively, if it is known that the person we meet was born in a "month with the letter r." What is the probability that he/she was born in a "long month."

Conditional Probability

$\operatorname{Pr}(R \mid L)=\frac{\operatorname{Pr}(R \cap L)}{\operatorname{Pr}(L)}=\frac{4}{12} \cdot \frac{12}{7}=\frac{4}{7}$

$\operatorname{Pr}(L \mid R)=\frac{\operatorname{Pr}(L \cap R)}{\operatorname{Pr}(R)}=\frac{4}{12} \cdot \frac{12}{8}=\frac{1}{2}$

Conditional Probability

The Multiplication Rule
From the definition of conditional probability we derive a useful rule by multiplying left and right by the denominator.

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \Rightarrow \operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)
$$

Computing the probability of $A \cap B$ can hence be decomposed into two parts, computing $\operatorname{Pr}(B)$ and $\operatorname{Pr}(A \mid B)$ separately, which is sometimes easier than computing $\operatorname{Pr}(A \cap B)$ directly

Conditional Probability

The Multiplication Rule
Also,

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)
$$

Both ways are valid, but often one of $\operatorname{Pr}(A \mid B)$ and $\operatorname{Pr}(B \mid A)$ is easy and the other is not.

Conditional Probability

The Multiplication Rule (extended)

Let $A_{1}, A_{2}, \ldots, A_{k}$ be k events in a sample space Ω. Then,
$\operatorname{Pr}\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=\operatorname{Pr}\left(A_{1}\right) \cdot \operatorname{Pr}\left(A_{2} \mid A_{1}\right) \cdot \operatorname{Pr}\left(A_{3} \mid A_{1} \cap A_{2}\right)$
$\cdots \operatorname{Pr}\left(A_{k} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{k-1}\right)$
Or, to put it shortly

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{k} A_{i}\right)=\operatorname{Pr}\left(A_{1}\right) \cdot \prod_{i=2}^{k} \operatorname{Pr}\left(A_{i} \bigcap_{j=1}^{i-1} A_{j}\right)
$$

Conditional Probability

A ball is withdrawn from this urn three times without replacement.

What is the probability that the first two balls are red, and the third ball is green?

Conditional Probability

Let's denote with

R_{i} - red ball is obtained at ith withdrawal;
G_{i} - green ball is obtained at ith withdrawal;
B_{i} - black ball is obtained at ith withdrawal.

Conditional Probability

Then, according to extended multiplication rule we need to find the following probabilities:
$\operatorname{Pr}\left(R_{1}\right)$ - red ball is obtained first; $\operatorname{Pr}\left(R_{2} \mid R_{1}\right)$ - red ball is obtained second
 given that the first ball was also red; $\operatorname{Pr}\left(G_{3} \mid R_{1} \cap R_{2}\right)$ - green ball was obtained third, given that first two balls were red.

Conditional Probability

Since initially 4 out 11 balls were red:

$$
\operatorname{Pr}\left(R_{1}\right)=\frac{4}{11}
$$

After the $1^{\text {st }}$ red ball is withdrawn

$$
\operatorname{Pr}\left(R_{2} \mid R_{1}\right)=\frac{3}{10} .
$$

Finally, after two red balls were removed

$$
\operatorname{Pr}\left(G_{3} \mid R_{1} \cap R_{2}\right)=\frac{5}{9}
$$

Conditional Probability

According to extended multiplication rule we have

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{1} \cap R_{2} \cap G_{3}\right)= \\
& =\operatorname{Pr}\left(R_{1}\right) \cdot \operatorname{Pr}\left(R_{2} \mid R_{1}\right) \cdot \operatorname{Pr}\left(G_{3} \mid R_{1} \cap R_{2}\right)=
\end{aligned}
$$

$$
=\frac{4}{11} \cdot \frac{3}{10} \cdot \frac{5}{9}=\frac{2}{33}
$$

$=\frac{4}{11} \cdot \frac{3}{10} \cdot \frac{5}{9}=\frac{2}{33}$

Total Probability

$\operatorname{Pr}(A \mid B)$

$\operatorname{Pr}\left(A \mid B^{C}\right)$

$\operatorname{Pr}(A)$

Basing on the definition of conditional probability, we can obtain

$$
\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}\left(A \mid B^{C}\right) \operatorname{Pr}\left(B^{C}\right)
$$

Total Probability

Total Probability Formula

Furthermore, if $H_{1}, H_{2}, \ldots, H_{k}$ form a partition of the sample space Ω, then

$$
\operatorname{Pr}(A)=\sum_{i=1}^{k} \operatorname{Pr}\left(A \mid H_{i}\right) \cdot \operatorname{Pr}\left(H_{i}\right)
$$

Total Probability

Suppose we have two urns, with the first one containing two white and six black balls and the second one containing two white and two black balls.

We pick an urn at random and then pick a ball from the chosen urn at random.

What is the probability of picking a white ball?

Total Probability

Let us denote the events that we choose urn 1 by U_{1} and urn 2 by U_{2}, and that we pick a white ball
 by W.

We are given the probabilities $\operatorname{Pr}\left(U_{1}\right)=\operatorname{Pr}\left(U_{2}\right)=\frac{1}{2}$, since this is what it means that an urn is picked at random.

Total Probability

Given that urn 1 is chosen, the random choice of a ball gives us the conditional probability

$$
\operatorname{Pr}\left(W \mid U_{1}\right)=\frac{2}{8}=\frac{1}{4}
$$

and similarly

$$
\operatorname{Pr}\left(W \mid U_{2}\right)=\frac{2}{4}=\frac{1}{2} .
$$

Total Probability

Then, by the formula of total probability

$$
\begin{gathered}
\operatorname{Pr}(W)=\operatorname{Pr}\left(W \mid U_{1}\right) \operatorname{Pr}\left(U_{1}\right)+\operatorname{Pr}\left(W \mid U_{2}\right) \operatorname{Pr}\left(U_{2}\right)= \\
=\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{3}{8} .
\end{gathered}
$$

Total Probability

Suppose we have three urns, with the first one containing three white, two black and one red ball, the second one containing two white and four black balls, and the third one - one white, two black and three red balls.

Total Probability

We pick an urn at random and then pick two balls from the chosen urn at random (without replacement).

What is the probability of picking
\square two white balls?
\square two black balls?
\square two red balls?
\square two balls of the same color?
\square two balls of different colors?

Total Probability

Since we choose the urn randomly,

$$
\operatorname{Pr}\left(U_{1}\right)=\operatorname{Pr}\left(U_{2}\right)=\operatorname{Pr}\left(U_{3}\right)=\frac{1}{3}
$$

Let's denote with
W_{i} - white ball is obtained at ith withdrawal;
B_{i} - black ball is obtained at ith withdrawal;
R_{i} - red ball is obtained at ith withdrawal.

Total Probability

First, let's find the probability of picking 2 white balls, i.e.

$$
\begin{aligned}
& \quad \operatorname{Pr}\left(W_{2} \cap W_{1}\right)=\operatorname{Pr}\left(W_{1}\right) \cdot \operatorname{Pr}\left(W_{2} \mid W_{1}\right) \\
& U_{1}: \operatorname{Pr}\left(W_{2} \cap W_{1}\right)=\frac{3}{6} \cdot \frac{2}{5}=\frac{1}{5} \\
& U_{2}: \operatorname{Pr}\left(W_{2} \cap W_{1}\right)=\frac{2}{6} \cdot \frac{1}{5}=\frac{1}{15} \\
& U_{3}: \operatorname{Pr}\left(W_{2} \cap W_{1}\right)=\frac{1}{6} \cdot \frac{0}{5}=0
\end{aligned}
$$

Total Probability

By the formula of total probability

$$
\operatorname{Pr}\left(W_{2} \cap W_{1}\right)=\frac{1}{5} \cdot \frac{1}{3}+\frac{1}{15} \cdot \frac{1}{3}+0 \cdot \frac{1}{3}=\frac{4}{45} .
$$

Similar reasoning allows us to obtain

$$
\begin{aligned}
& \operatorname{Pr}\left(B_{2} \cap B_{1}\right)=\frac{1}{15} \cdot \frac{1}{3}+\frac{2}{5} \cdot \frac{1}{3}+\frac{1}{15} \cdot \frac{1}{3}=\frac{8}{45} . \\
& \operatorname{Pr}\left(R_{2} \cap R_{1}\right)=0 \cdot \frac{1}{3}+0 \cdot \frac{1}{3}+\frac{1}{5} \cdot \frac{1}{3}=\frac{3}{45} .
\end{aligned}
$$

Total Probability

The union of disjoint events $W_{2} \cap W_{1}, B_{2} \cap B_{1}$ and $R_{2} \cap R_{1}$ results in the event S consisting in picking 2 balls of the same color with probability of

$$
\operatorname{Pr}(S)=\frac{4+8+3}{45}=\frac{15}{45}=\frac{1}{3} .
$$

The event $D=S^{C}$ consists in picking 2 balls of different colors with probability of

$$
\operatorname{Pr}(D)=1-\operatorname{Pr}(S)=\frac{2}{3} .
$$

Bayes' Theorem

Total probability formula allows computing probabilities for the events yet to come, provided that a priori (prior) probabilities of causes for these events are known.

However, if the fact of event occurrence has been established, we might recalculate the probabilities of its causes, thus obtaining a posteriori (posterior) probabilities.

Bayes' Theorem

Bayes' Theorem

Let $H_{1}, H_{2}, \ldots, H_{k}$ be a partition of the sample space Ω, and A - some fixed event. Then

$$
\operatorname{Pr}\left(H_{i} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid H_{i}\right) \cdot \operatorname{Pr}\left(H_{i}\right)}{\sum_{i=1}^{k} \operatorname{Pr}\left(A \mid H_{i}\right) \cdot \operatorname{Pr}\left(H_{i}\right)}
$$

Rev. Thomas Bayes 1701-1761

The denominator represents total probability for the event A.

Bayes' Theorem

Let's get back to the previous balls-and-urns example.
Assuming that as a result of the experiment two white balls were extracted, what is the probability

v_{2}
$: 8$
8

that these balls were withdrawn from the first urn? the second urn?

Bayes' Theorem

Prior probabilities are

$$
\operatorname{Pr}\left(U_{1}\right)=\operatorname{Pr}\left(U_{2}\right)=\operatorname{Pr}\left(U_{3}\right)=\frac{1}{3}
$$

Total probability of event $W_{2} \cap W_{1}$ was determined as

$$
\operatorname{Pr}\left(W_{2} \cap W_{1}\right)=\frac{4}{45} .
$$

Bayes' Theorem

Conditional probabilities were also calculated:

$$
\begin{aligned}
& \operatorname{Pr}\left(W_{2} \cap W_{1} \mid U_{1}\right)=\frac{1}{5} \\
& \operatorname{Pr}\left(W_{2} \cap W_{1} \mid U_{2}\right)=\frac{1}{15} .
\end{aligned}
$$

Bayes' Theorem

Then, by Bayes' theorem we get:

$$
\begin{aligned}
& \operatorname{Pr}\left(U_{1} \mid W_{2} \cap W_{1}\right)=\frac{\operatorname{Pr}\left(W_{2} \cap W_{1} \mid U_{1}\right) \cdot \operatorname{Pr}\left(U_{1}\right)}{\operatorname{Pr}\left(W_{2} \cap W_{1}\right)}=\frac{\frac{1}{5} \cdot \frac{1}{3}}{\frac{4}{45}}=\frac{3}{4} . \\
& \operatorname{Pr}\left(U_{2} \mid W_{2} \cap W_{1}\right)=\frac{\operatorname{Pr}\left(W_{2} \cap W_{1} \mid U_{2}\right) \cdot \operatorname{Pr}\left(U_{2}\right)}{\operatorname{Pr}\left(W_{2} \cap W_{1}\right)}=\frac{\frac{1}{15} \cdot \frac{1}{3}}{\frac{4}{45}}=\frac{1}{4} .
\end{aligned}
$$

Bayes' Theorem

A certain blood test for a disease gives a positive result 90\% of the time among patients having the disease. But it also gives a positive result 25% of the time among people who do not have the disease. $100-25=75 \%$
specificity of the test
It is believed that 30% of the population has this disease.
What is the probability that a person with a positive test result indeed has the disease?
prior probability
false positive

Bayes' Theorem

$A=$ "the person has the disease";
$B=$ "the blood test gives a positive result for the person."
Then, by Bayes' theorem,

$$
\begin{aligned}
\operatorname{Pr}(A \mid B) & =\frac{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)}{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)+\operatorname{Pr}\left(B \mid A^{C}\right) \cdot \operatorname{Pr}\left(A^{C}\right)}= \\
& =\frac{0,9 \cdot 0,3}{0,9 \cdot 0,3+0,25 \cdot(1-0,3)} \approx 0,607 .
\end{aligned}
$$

Bayes' Theorem

Let's reevaluate the result by increasing the sensitivity to 99\% and the specificity to 90% (10% - false positive).

At the same time, let's assume only $0,1 \%$ of the population has the disease.

Then, by Bayes' theorem,

$$
\operatorname{Pr}(A \mid B)=\frac{0,99 \cdot 0,001}{0,99 \cdot 0,001+0,1 \cdot(1-0,001)} \approx 0,01
$$

Independence

In our everyday language, we say that two events A and B are independent if the occurrence of A has no effect on the occurrence of B and vice versa.

Independence of events corresponds to lack of probabilistic information in one event about some other event; i.e., even if knowledge that some event A has occurred was available, it would not cause us to modify the chances of the event B.

Independence

An event A is called independent of B if

$$
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)
$$

By application of the multiplication rule and the definition of conditional probability one may prove that independence is a mutual property.

Independence

To show that A and B are independent it suffices to prove just one of the following:

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A) \\
\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B) \\
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
\end{gathered}
$$

where A may be replaced by A^{C} and B replaced by B^{C}, or both. If one of these statements holds, all of them are true.

Independence

Remark 1

Since the word independence has several meanings, one sometimes uses the terms stochastic or statistical independence to avoid ambiguity.

Independence

Remark 2

Independence of two events should not be confused with their mutual exclusivity.

In fact, if A and B are disjoint events with nonzero probabilities, then they cannot be independent: as soon as A occurs, B becomes impossible!

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}(\emptyset)}{\operatorname{Pr}(A)}=0 \neq \operatorname{Pr}(B)
$$

Independence

Events $A_{1}, A_{2}, \ldots, A_{k}$ are called independent if

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{k} A_{i}\right)=\prod_{i=1}^{k} \operatorname{Pr}\left(A_{i}\right)
$$

This statement also holds when any number of the events A_{i} are replaced by their complements throughout the formula.

Independence

Recall the birthday events $L=$ "born in a long month" and $R=$ "born in a month with the letter r."

Let H be the event "born in the first half of the year."
Figure out whether these pairs of events independent or not:
$>R$ and H;
$>L$ and H.

Independence

Obviously, for the event $H, \operatorname{Pr}(H)=$ $\operatorname{Pr}\left(H^{C}\right)=\frac{1}{2}$.

Also, $\operatorname{Pr}(H \mid R)=\frac{1}{2}$.

Since $\operatorname{Pr}(H \mid R)=\operatorname{Pr}(H)$, the events R and H are independent.

Independence

We know that $\operatorname{Pr}(L \cap H)=\frac{3}{12}=\frac{1}{4}$ and $\operatorname{Pr}(L)=\frac{7}{12}$.
If events L and H are independent, $\operatorname{Pr}(L \cap H)=\operatorname{Pr}(L) \cdot \operatorname{Pr}(H)$.

We have $\frac{7}{12} \cdot \frac{1}{2}=\frac{7}{24} \neq \frac{1}{4}$, hence the events L and H are dependent.

Lecture 2

Textbook Assignment

Géza Schay. Introduction to Probability...

* Chapter 4. 75-103 pp.
\&x. 4.5.6 and 4.5.12
F.M. Dekking et al. A Modern Introduction to...
* Chapter 3. 25-40 pp.

Ex. 3.5, 3.15 and 3.16

