	<i></i>	(долматов О.Ю.) 2015 г.
ДИ	ректор	ФТИ (Долматов О.Ю.)
П		ATH
УΊ	ВЕРЖД	ĮАЮ

РАБОЧАЯ ПРОГРАММА МОДУЛЯ (ДИСЦИПЛИНЫ)

Лабораторный практикум

Направление (специальности Номер кластера (<i>для унифиц</i>	ь) ООП <u>14.03.02 «Ядерные физика и технологии»</u> ированных дисциплин)
Профиль(и) подготовки (спе	ециализация, программа) «Ядерные реакторы и
энергетические установки»	
Квалификация (степень) Ака	адемический бакалавр
Базовый учебный план прие	ма 2015 г.
Курс <u>4</u> семестр <u>7</u>	
Количество кредитов 6	
Код дисциплины ДИСЦ.В.М	113.2
<u></u>	
Виды учебной	Временной ресурс по очной форме обучения

Виды учебной	Временной ресурс по очной форме обучения
деятельности	
Лекции, ч	16
Практические занятия, ч	-
Лабораторные занятия, ч	64
Аудиторные занятия, ч	80
Самостоятельная работа, ч	136
ИТОГО, ч	216

Вид промежуточной аттестации экзамен

Обеспечивающее подразделение кафедра ФЭУ ФТИ

Заведующий кафедрой	<u>Долматов О.Ю.</u> (ФИО)
Руководитель ООП	(ФИО)
Преподаватель	<u>Наймушин А.Г.</u>

1. Цели освоения модуля (дисциплины)

Цели освоения дисциплины: формирование у обучающихся практических знаний по экспериментальному определению физических параметров эксплуатации физико-энергетических установок, соответствующие цели ООП: подготовка выпускника к производственно-технологической деятельности в междисциплинарных областях, связанных с физическими основами и технологиями в ядерном топливном цикле.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина «Лабораторный практикум» относится к профессиональному циклу основной образовательной программы по направлению 140800 «Ядерные физика и технологии».

Дисциплине «Лабораторный практикум» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ):

- Введение в ядерную физику;
- Дозиметрия и защита от ионизирующих излучений;
- Атомная физика.

Содержание разделов дисциплины «Лабораторный практикум» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ):

- Физико-энергетические установки;
- Физическая теория ядерных реакторов.

Основой практически всех методов контроля безопасной эксплуатации физико-энергетических является установок радиометрия ионизирующих излучений. Радиометрия – это определение интегральных и дифференциальных параметров поля ионизирующего излучения. Радиометрия полей производится на основе анализа электрических сигналов, поступающих с первичных преобразователей – детекторов. По параметрам этих сигналов с использованием соотношений (законов) атомной, ядерной и физики, определяются параметры полей ионизирующих нейтронной излучений и решаются вопросы безопасной эксплуатации соответствующей установки.

Курс «Лабораторный практикум» включает сведения по формированию радиационных полей, физико-математической обработки данных и интерпретации полученных результатов. Полученные знания позволят самостоятельно решать экспериментальные научно-исследовательские и производственные задачи безопасной эксплуатации физико-энергетических установок.

3. Результаты освоения дисциплины (модуля)

В соответствии с требованиями ООП освоение дисциплины «Лабораторный практикум» направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты			авпающі авпающі	ие результатов обу	пениа	
обучения		Coci				Владение
(компетенци и из ФГОС)	Код	Знания	Код	Умения	Код	ОПЫТОМ
Р7 (ПК-1)	3.7.1	основные законы естественнонаучны х дисциплин	У.7.1	использовать основные законы естественнонаучны х дисциплин в профессиональной деятельности	B.7.1	математического анализа и моделирования, теоретического и экспериментальног о исследования
Р9 (ПК-10, 11,13)	3.9.1	правила разработки проектной и рабочей технической документации, оформления законченных проектно-конструкторских работ				
Р10 (ПК- 18,19,20)					B.10.1 B.10.2	эксплуатации современного физического оборудования и приборов; наладки, настройки, регулирования и опытной проверки оборудования и программных средств
Р11 (ПК-17,22)	3.11.1	способы организации метрологического обеспечения технологических процессов				
Р12 (ПК-5,7,8,9)			У.12.2	использовать технические средства для измерения основных параметров объектов исследования	B.12.3	составления отчета по выполненному заданию
Р13 (ПК- 4,14,27)	3.13.1	Методов стандартизации и сертификации технических средств, систем, процессов, оборудования и материалов	У.13.1	Подготовить исходные данные для выбора и обоснования научно-технических и организационных решений на основе экономического анализа.	B.13.1	Использования научно-технической информации, отечественного и зарубежного опыта по тематике исследования, современных компьютерных технологий и базы данных в своей предметной области

В результате освоения дисциплины «Лабораторный практикум» студентом должны быть достигнуты следующие результаты:

Таблица 2

Планируемые результаты освоения дисциплины (модуля)

№ п/п	Результат
P7	Использовать основные законы естественнонаучных дисциплин в профессиональной
	деятельности, применять методы математического анализа и моделирования,
	теоретического и экспериментального исследования.
P9	Уметь производить расчет и проектирование деталей и узлов приборов и установок в
	соответствии с техническим заданием с использованием стандартных средств
	автоматизации проектирования; разрабатывать проектную и рабочую техническую
	документацию, оформление законченных проектно-конструкторских работ; проводить
	предварительного технико-экономического обоснования проектных расчетов установок
7.10	и приборов.
P10	Готовность к эксплуатации современного физического оборудования и приборов, к
	освоению технологических процессов в ходе подготовки производства новых
	материалов, приборов, установок и систем; к наладке, настройке, регулировке и опытной
	проверке оборудования и программных средств; к монтажу, наладке, испытанию и сдаче
D11	в эксплуатацию опытных образцов приборов, установок, узлов, систем и деталей.
P11	Способность к организации метрологического обеспечения технологических процессов,
	к использованию типовых методов контроля качества выпускаемой продукции; и к
P12	оценке инновационного потенциала новой продукции.
P12	Способность использовать информационные технологии при разработке новых
	установок, материалов и приборов, к сбору и анализу информационных исходных данных для проектирования приборов и установок; технические средства для измерения
	основных параметров объектов исследования, к подготовке данных для составления
	обзоров, отчетов и научных публикаций; к составлению отчета по выполненному
	заданию, к участию во внедрении результатов исследований и разработок; и проведения
	математического моделирования процессов и объектов на базе стандартных пакетов
	автоматизированного проектирования и исследований.
P13	Уметь готовить исходные данные для выбора и обоснования научно-технических и
	организационных решений на основе экономического анализа; использовать научно-
	техническую информацию, отечественный и зарубежный опыт по тематике
	исследования, современные компьютерные технологии и базы данных в своей
	предметной области; и выполнять работы по стандартизации и подготовке к
	сертификации технических средств, систем, процессов, оборудования и материалов;

4. Структура и содержание дисциплины Семестр 7

<u>Раздел 1.</u> Определение влияния замедляющих сред на формирование поля нейтронов:

Лекции:

- 1. Экспериментальное определение длины экстраполяции в замедлителе. Влияние отражателя на распределения потоков нейтронов тепловой и надтепловой энергии.
- 2. Измерение доли поглощений тепловых нейтронов методом экспоненциальной призмы. Моделирование нейтронного потока в замедлителе.

Лабораторные работы:

- 1. Экспериментальное определение длины экстраполяции в полиэтилене.
 - 2. Влияние отражателя на распределения потоков нейтронов

тепловой и надтепловой энергии.

- 3. Измерение доли поглощений тепловых нейтронов методом экспоненциальной призмы.
 - 4. Моделирование нейтронного потока в графитовой призме.

<u>Раздел 2.</u> Использование пакетов прикладных программ для определения нейтронно-физических параметров активной зоны ядерного реактора.

Лекции:

- 1. Расчеты элементарных ячеек. Выгорание топлива и его влияние на параметры элементарной ячейки.
- 2. Макроконстанты. Расчет макроконстант элементарных и сложных ячеек.
- 3. Оптимизация элементарной ячейки. Одномерные расчеты ядерных реакторов.
- 4. Влияние отражателя на параметры ядерного реактора. Эффективность стержней управления.
- 5. Методы выравнивания распределения энерговыделения. Расчет стационарного отравления и температурного эффекта в ядерном реакторе.
 - 6. Гомогенный и гетерогенный выгорающий поглотитель.

Лабораторные работы:

- 1. Расчеты элементарных ячеек: коэффициент размножения, спектр нейтронов, распределение нейтронного потока по радиусу ячейки, распределение энерговыделения по радиусу ячейки.
- 2. Выгорание топлива и его влияние на параметры элементарной ячейки. Коэффициент воспроизводства. Расчет изменения нуклидного состава топлива в процессе работы ядерного реактора.
- 3. Макроконстанты. Расчет макроконстант элементарных ячеек и их изменения при выгорании топлива.
- 4. Расчет макроконстанты сложных ячеек и их изменения при выгорании топлива.
- 5. Оптимизация размеров и материального состава элементарной ячейки.
- 6. Одномерные расчеты ядерных реакторов: коэффициент размножения, спектры нейтронов, распределение нейтронного потока по радиусу реактора, распределение энерговыделения по радиусу реактора.
 - 7. Влияние отражателя на параметры ядерного реактора.
 - 8. Эффективность стержней управления.
 - 9. Методы выравнивания распределения энерговыделения.
- 10. Расчет стационарного отравления и температурного эффекта в ядерном реакторе.
 - 11. Гетерогенный выгорающий поглотитель: расчет изменения

ядерных концентраций и его влияние на параметры ядерного реактора.

12. Гомогенное размещение выгорающего поглотителя.

5. Образовательные технологии

При изучении дисциплины «Лабораторный практикум» следующие образовательные технологии:

Методы и формы организации обучения

Таблица 3

			пизации оо			
ФОО Методы	Лекц.	Лаб. раб.	Пр. зан./ сем.,	Тр.*, Мк**	СРС	К. пр.***
ІТ-методы			+			
Работа в команде		+			+	
Case-study						
Игра						
Методы проблемного	1		1			
обучения	+		+			
Обучение	-	+				
на основе опыта	+	+	+		+	
Опережающая самостоятельная работа		+			+	
Проектный метод						
Поисковый метод		+			+	
Исследовательский метод	+	+	+		+	
Другие методы	+		+			

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и заключается в самостоятельном изучении теоретических разделов лабораторных работ: основы теории проведения эксперимента; экспериментальное оборудование; порядок проведения лабораторной работы.

Творческая самостоятельная работа позволяет развить интеллектуальные умения, комплекс универсальных (общекультурных) и профессиональных компетенций, повысить творческий потенциал студентов.

- обработка данных, полученных в лабораторных работах, для определения требуемых в задании физических величин;
- анализ и структурирование полученных результатов;
- составление отчетной документации.

6.2. Содержание самостоятельной работы по дисциплине

Программа самостоятельной познавательной деятельности включает следующие разделы

Самостоятельное изучение теоретического материала

Внеаудиторная работа студентов состоит в проработке теоретического материала к лабораторным работам: основы теории проведения эксперимента; экспериментальное оборудование; порядок проведения лабораторной работы.

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется посредством защиты лабораторной работы.

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам

следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты
	обучения по
	дисциплине
Защита лабораторной работы	P7, P9, P10,
	11, P12, P13,

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств): контрольные вопросы, задаваемых при выполнении и защитах лабораторных работ

8. Рейтинг качества освоения дисциплины (модуля)

качества Оценка освоения дисциплины ходе текущей В промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной И итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

 текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах

- (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины Основная литература:

- 1. Моделирование физических процессов в ядерных реакторах. Лабораторный практикум / А.Г. Наймушин, Ю.Б. Чертков, А.Н. Аникин, И.И. Лебедев; Томский политехнический университет (ТПУ). Томск: Изд-во ТПУ, 2015. Заглавие с титульного экрана. 110 стр.: ил..
- 5. Беденко, Сергей Владимирович Основы управления нейтронным
- 2. Лабораторный практикум на реакторе ИРТ-Т / Томский политехнический университет; ГНУ НИИ ядерной физики при ТПУ. Томск: Изд-во ТПУ, 2003-Ч. 1. 2003. 96 с.: ил..
- 3. Лабораторный практикум на реакторе ИРТ-Т / Томский политехнический университет; ГНУ НИИ ядерной физики при ТПУ. Томск: Изд-во ТПУ, 2003-Ч. 2. 2004. 88 с.: ил.. Библиография в конце глав..
- 4. Долгополов, Сергей Юрьевич Определение нейтронно-физических свойств замедляющих сред [Электронный ресурс]: методические указания / С. Ю. Долгополов, В. Н. Нестеров, Ю. Б. Чертков; Томский политехнический университет (ТПУ). 1 компьютерный файл (pdf; 6.3 Mb). Томск: Изд-во ТПУ, 2008. Заглавие с титульного экрана. Электронная версия печатной публикации. Доступ из корпоративной сети ТПУ. Системные требования: Adobe Reader..

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2010/m156.pdf

5. Беденко, Сергей Владимирович Основы управления нейтронным полем в ядерном реакторе [электронный ресурс]: учебное пособие / С. В. Беденко, В. Н. Нестеров, И. В. Шаманин; Национальный исследовательский Томский политехнический университет (ТПУ). — 1 компьютерный файл (pdf; 1.96 МВ). — Томск: Изд-во ТПУ, 2009. — Заглавие с титульного экрана. — Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m134.pdf

Дополнительная литература:

1. Беденко, Сергей Владимирович Основы управления нейтронным полем в ядерном реакторе [электронный ресурс]: учебное пособие / С. В. Беденко, В. Н. Нестеров, И. В. Шаманин; Национальный исследовательский Томский политехнический университет (ТПУ). — 1 компьютерный файл (pdf; 1.96 МВ). — Томск: Изд-во ТПУ, 2009. — Заглавие с титульного экрана. —

Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m134.pdf

2. Введение в ядерную физику [Электронный ресурс] : учебное пособие / С. В. Беденко [и др.]; Национальный исследовательский Томский политехнический университет (ТПУ). — Электрон. дан.. — Томск: 2010. — Заглавие с титульного экрана. — Свободный доступ из сети Интернет. — Системные требования: Производительность СРU: P-II, монитор с разрешением 800/600; Объем ОЗУ: 62 Мb; Программное обеспечение: Internet Explorer 5.0 и выше.

Схема доступа: http://www.lib.tpu.ru/fulltext/m/2010/m2/main.html

3. Беденко, Сергей Владимирович Основы физики деления и синтеза атомных ядер [Электронный ресурс] : учебное пособие / С. В. Беденко, В. Н. Нестеров; Национальный исследовательский Томский политехнический университет (ТПУ). — 1 компьютерный файл (pdf; 3.23 МВ). — Томск: Издво ТПУ, 2010. — Заглавие с титульного экрана. — Доступ из корпоративной сети ТПУ. — Системные требования: Adobe Reader.

Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2012/m135.pdf

10. Материально-техническое обеспечение дисциплины

Указывается материально-техническое обеспечение дисциплины: технические средства, лабораторное оборудование и др.

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)		Корпус, ауд количество установок	0
1	Пакеты программ: - WIMS-D4; - MCU; - TIGRIS; - DYNCO Lab; - тренажер реактора ВВЭР-1000. Имитация работы ЯР тренажер реактора БН-800. Имитация работы ЯР.	10 ауди	корпус, тория	321

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению и профилю подготовки 14.03.02 Ядерные физика и технологии (уровень бакалавриата).

программа одоорена на заседании н	кафедр —	Di
(протокол № от «»	_201	_ г.).
Автор(ы)		

Программа одобрена на заседании кафедры

ы)
y)