Knyazeva A.G.

INTRODUCTION TO DIFFERENCE METHODS OF SOLUTION OF THERMAL CONDUCTIVITY PROBLEMS WITH EXAMPLES

Part 1

TOMSK 2015

Outline

	Introduction	3
1.	Classification of thermal conductivity problems	3
2.	The simplest problem for plane plate	6
3.	Primitive concepts of difference methods	9
3.1	Mesh functions	9
3.2	Approximation accuracy	11
4.	Examples of problems of mathematical physics	14
4.1	Dirichlet's problem for one dimensional Poisson Equation	14
4.2	One dimensional Neumann problem	15
4.3.	Examples of stationary thermal conductivity problems	17
4.3.1.	One dimensional nonlinear problem	17
4.3.2.	Linear two dimensional problem	20
5.	The simplest difference schemes for one dimensional non stationary thermal conduction problems	24
6.	The simplest difference schemes for one dimensional wave equation	29
7.	Solution algorithm for the simplest thermal conductivity problem using explicit difference scheme	31
8.	Stability of difference schemes	33
8.1.	Basic conceptions	33
8.2.	Stability investigation for some difference schemes	36
9.	Linear equation system with three-diagonal matrix	37
10.	The double-sweep method	40
10.1	Right marching	40
10.2.	Example of the simplest problem solution	41
10.3.	Anew about stability. Principle of maximum	45
10.4.	The problems with heat source depending on temperature	49
10.4.1.	Example 1	49
10.4.2.	Example 2	55
11.	Other variants of double sweep method	61
11.1.	Left marching	61
11.2.	The method of opposite marching	62

11.3.	The stream variant of double-sweep method	63
11.4.	Cyclical marching	66
11.5.	Matrix double-sweep method	68
12.	More complex non-stationary equations	70
12.1.	Equation with variable coefficients	70
12.2.	Thermal conductivity together with convective heat transfer	71
12.3.	Thermal conductivity equations in cylindrical and spherical coordinate system	72
12.4.	What difference scheme is the most suitable?	75
13.	Examples of different one-dimensional problems	75
13.1.	Conjugate problem for Cartesian coordinate system	75
13.2.	Conjugate problem for cylindrical coordinate system	83
13.3	The example of the problem with phase transition	90
13.4.	The problem with moving heat source	97
14.	Two- and three-dimensional equations of thermal conduction theory	102
14.1.	Explicit scheme for two-dimensional equation	102
14.2.	Method o coordinate-wise splitting	104
14.3.	Method of transversal-longitudinal marching	105
14.4.	Three-dimensional equations	106
15.	Examples of tasks for students	107
	Additional literature	107

Outline of next parts

- parallel algorithm of matrix marshing
- Reduction method
- Iterative methods
- Relaxation method
- Method of lines
- Nonuniform mesh
- Algorithm with variable time step
- Problems with moving bondaries
- Integro-interpolation method
- Examples of problems with convective heat
- Factorization method for different problems
- Coupling problems
- Equations with mixed derivatives
- Method of finite volumes
- Introduction to Fnite elemets method Введение в методы конечных элементов
- Examples of two- and three-dimensional problems