Lection 7
Phase equilibrium conditions

The processes of high temperature materials treatment are accompanied inevitably by
phase transitions, including melting and crystallization, sublimation and condensation. Naturally
the necessity appears to calculate the temperature fields taking into account the heat release or
absorption connecting with phase transitions. Various phases can be in the equilibrium at the
conditions established in thermodynamics.

If the system consists of two phases, then for each of them we can write the Gibbs
equation

dlxlk = deSk _pdek + gdek , (1)

where g; are chemical potentials of phases, C;,k=1,2 are mass fractions of substances in
phases, so

g=g1C+ 2,6, ()

Generally, phase is homogeneous regions in the system separated from each other by the
interface. The chemical composition and physical properties change at the transition through the
interface. The question on phase equilibrium transition is important problem in the phase
transition theory and heat exchange.

If the interface is plane, then its energy characteristics do not effect on the equilibrium
conditions. Therefore we can neglect the properties of this surface.

If the system is isolated (that is it does not change with environment by mass and energy),
and do nothing work, then the its equilibrium condition leads to the equality ds =0, and the u
equalities are correct cripaBeIMBbI paBEHCTBA

u=uy +u, =const, duy =—du,,
V=V,+V, =const, dV, =-dV,, 3)
C=C1 +C2 =const , dCl =_dC2

If s, u s, are the entropies of first and second phases, then the additivity condition
allows to write down

dSl = _dS2 . (4)
Expressing ds;,ds, from (1), we shall find from (4)

1 1
_[d“1 + prdh —gldcl]+_[d“2 + prdV, —gde2]=0.
I T,

Taking into account (3), we obtain
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Differentials du;,dV; and dC; in (5) are independent. Then this equality takes a place,
when the multipliers near by the differential equal to zero:

I=T,, pp=p3, 81=8>-

Therefore, the equilibrium condition of two phase one-component system consists in the
following



g(T,p)=g(T,p) (6)

M O3HA4YaeT pPABEHCTBO XWMHUYECKUX IMOTCHIHMANOB a3 TNpH HEU3MEHHBIX MaBICHUU U
TEeMIIepaType.

Taking into consideration the properties of interface (the deduction of this condition is
contained in thermodynamical textbooks) we come to the equilibrium conditions in the form

PP Sr
L =T,,17,=T,, g=2,, — dv, — dr . =0.
1f2fg1g2[TlT2leff
where 2 ¢ is interface area, Gf is surface tension.

That is, at the equilibrium, chemical potentials of phases, their temperatures are the same;
but the pressures connect by the equality
2y (M)
=py+0C,——.
P1=Pr 16Oy av,

It can be expand for deformable medium.

Clausius-Clapeyron equation

In the case of phase transition accompanied by heat release or adsorption, the Clausius-
Clapeyron equation is correct. It has the form

dT, AV, AV, Ty,
dp ASph Qph

where AV, =V, =V u As,, =s, —s; are difference between the partial mol volumes of phases

; 8

and their mol entropies,
Opp =hy—hy :Tph(SZ —51) -
is difference in enthalpies of phases or transition heat. If Q,, <0, and phase 2 volume is large

then phase 1 volume, then d7),, / dp <0, that is the phase transition temperature diminishes with

the pressure. The equation (8) can be obtained from (6) without problems with the help of
expansin the chemical potentials into series relatively to deviations of temperature and pressure
on their equilibrium values.

Sometimes, the equation (8) can be integrated.

With the help of (8), ones can construct the state diagrams.
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Stephen problem

The simplest problem on phase
transition was formulated and solved by
Stephen, when he has study the change of the

arctic glaciers thickness. We have here the L/ =& ()
problem with motion interface, the rate of ?E] x=3f
which are not known. 1 2

Assume that the liquid with initial
temperature 7, touches with cold wall of Fig. 1

temperature 7, less then crystallization



temperature 7, <0. At 7>0, crystallization front starts from cold surface - the interface

between liquid and solid phases (Fig.1). It is necessary to find the interface position for any time
moment x = &(t)

Mathematical formulation of this problem has the form

T, o°T,
apr— o 7»18 L, 0<x<¥(r);
oT- O°T.
&)%) 8t2 Ay 8x2 X i()
x=0: I, =T);

x—w: I, =T,

ds

on o1,
-\ —; =T,=0;
25 g0 1R

x=E(t): n =L Lk

t=0: &=0; there is liquid only.

=Lp,

Index 1 relates to solid phase, 2 — to liquid one.
In the simplest formulation of Stephen problem it is taken p; =p, =p.

We seek the solution of one-dimensional problem in the form

T, = A+Bq{2m/_j, 9

where ®(z) = —j.exp(— y? )dy =erf(z)=1-erfe(z).

Boundary conditions allow determining the constants 4,,B;,i =1,2 and the rate of interface
motion.

From the conditions at x =0 and x — oo we shall find

We have from the boundary conditions in interface

€ & ||
T0+qu{2](l\/;j T, BZ|:1 q{sz\/_ﬂ 0. (11)

The last relation can be true for any time, hence we should taken

£=2uxt (12)

where 1, =2,/ (clpl), and L is constant that can be found from remind condition. That is , the

interface moves as \/? . As a result we find
0-T 0-Ty T o 0
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In particular case, when the liquid temperature equal to melting temperature, the equation
for W takes the simple form

n()explu” )= 4(6-1o) (14)
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The roots of this equation could be found graphically or approximately.

Elements of theory of two-phase zone
Two component systems with solid solutions are examples of the systems with the
interval of melting temperature (Fig.2), for which the theory of two — phase zone was suggested.

T A Here, the melting temperature of
component 4 diminishes at component B
liquid addition; the melting temperature of
component B increases with concentration 4
liquidus growths. .

tophass The curves of solidus and liquidus
Ll conjugate in the points corresponding to pure

M =~ &
SDHC'}M\ ' substances 4 and B. There is one phase
solid so{un’on solid solution below the solidus — curve, there

a| bl is the one phase liquid solution above the

- ' = liquidus-curve. Between these curves, the two

A composition B — phase mixture is located. Here solid and
Fig.2 liquid phases exist together.

The basic idea of two phase zone theory consists in the following.
Volume fractions of liquid and solid phases in two-phase zone m; and m, connects by
the relation
Ny +n, =1.
The correlation between the fractions depends on the temperatures of liquidus 7j;, and

solidus T,; , which depend on the composition of the solution:
2
Tsol =0+ Bsa + Ysa >

2
Tjig=0p +Br&+v.8,
where & is the part of one of component; the constants a;,B,,y;, i =L,s, could be found from

corresponding state diagrams (Fig.2).
In this case, effective heat capacity should be calculated by formula

0
(P)egr =P+ Oy % (15)

where

cp=(cp),(1-n.)+(cp),n; -



In turn the capacities of solid and liquid phases depend on the composition. In the
simplest case, one can use the approximation (the mixture rule)

(cp)s = (cp)A,s a + (1 - a)(cp)B,s 5
(cp)r =(cp) 4, E+A=E)(cP)p,L -
The heat capacities of individual substances can depend on temperature.

The volume part of liquid phase is calculated from the relation

n
T, —T
S [ (LA 16
ng [Tliq_T J (16)

N
where parameter n varies for different alloys.

The part of solid phase follows from n,=1-n; .

The examples of the simplest model of technology processes of thermal surface treatment
are analyzed during the lection with phase transition and without phase transition.



