
Lection 6
Green function (sources method)

The physical sense of source method consists in following. The heat propagation process
in a body can be presented as set of the temperature smoothing processes from many elementary
sources distributed in space and in time. The problem solution using this method leads basically
to the correct choosing of sources and their distribution.

Elementary source action in infinite body for one dimensional heat flux is characterized
by formula
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called Green function of source (Green Function) in infinite straight line.  It is not difficult to test
that the green function ( )txG ,,x  satisfies to thermal conduction equation
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Usually, this function ( )txG ,,x  is called fundamental solution of thermal conduction
equation and presents the temperature in the point x ,  if  the  heat  quality rq= cQ  releases in
initial time moment in the point x . The heat quantity in the straight line follows from
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For body of infinite sizes and one dimensional heat flux, we have the green function
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that shows the temperature distribution in infinite plate ( )lx <<0  in time t , if temperature was
equal zero in initial time moment and the heat quantity rq= cQ  releases simultaneously in the
point x .

The simple example connects with temperature search in infinite body for arbitrary tome
at the condition for initial time

( ) ( )xfxT =0, . (5)
The thermal conduction equation (2) is correct for any time; the sources absent in infinity
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The particular solution of (2) has a form (correspondingly to above) (
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The temperature has a maximum in the point x=x . We shift the coordinate origin to this
point. The area under curve is the finite value and equals to integral on (6) in the limits from ¥-
to ¥+ .
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Using the function properties, we change the curve ( )xf  by infinite many curves of view
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Then full initial distribution will equal
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This relation is correct for any time. Hence the solution takes the form
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It is not difficult to generalize this method for two and three dimensional problems. This
method is applied to practical problems, when the surface treatment is carried out by moving
sources (for example, when the cutting and welding processes ate described).

Method of separation of variables
We illustrate the method of separation of variables with the help of examples.
It is necessary to find the solution of the problem
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10 << x ; ¥<< t0
( ) 0,0 =tT ; ( ) 0,1 =tT        (2)
( ) ( )xxT j=0, ; 10 ££ x         (3)

(thermal diffusivity coefficient k  is signed as 2a ).  It  is  the  problem  on  the  plate  of  unit
thickness cooling.

We look for the solution in the form
( ) ( )txXT q= (4)

Substituting (4) in (1), we come to the equations
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So the variables x  and t  are independent, we have instead (1) two equations
02 =qa-q¢ k ; (6)

0=-¢¢ kXX . (7)
Boundary conditions to (7) are written as

( ) 00 =X ; ( ) 01 =X , (8)
that follows from (2).

The problem (7), (8) is eigenvalue problem (Sturm-Liouville problem).
Mark that 0<k ; in opposite case the problem (7), (8) will have only trivial solution. The

function ( )tq  must diminishes for ¥®t , that is 02 ¹l-=k .
The solutions of the equations (6), (7) can be found by usual method:
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( ) ( ) ( )xBxAxX l+l= cossin ,
where CBA ,,  are arbitrary constants.

Hence
( ) ( ) ( ) ( )[ ]xBxAttxT l+lal-= cossinexp, 22 .

Substituting that in the condition (2), we shall find:



( ) ( ) 0exp,0 22 =al-= tBtT , if 0=B .

( ) ( ) ( ) 0sinexp,1 22 =lal-= tAtT , if 0sin =l

The last gives the restrictions for values of l :
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From initial conditions, we have
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The function system ( ){ },...2,1,sin =p nnx  obeys the property of orthogonality, that is
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Using this property, we come to the solution
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It is no difficult to obtain from (12), (13) the solution in the form
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Green function for instantaneous source of capacity r= cQ .
This method with some modifications can be used for more complex problem solution,

for example:
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Radiation heat transfer
Heat radiation is the process of internal energy propagation of emitting body by

electromagnetic oscillations and photons. Any bodies with temperature more the absolute zero
emit the electromagnetic oscillations. Electrons, ions entering into the composition of substance
are generators of electromagnetic waves. Additionally to wave properties, the radiation obeys
corpuscular properties. That is the energy emits and absorbs by substances by discrete portions –
photons.

The heat radiation intensity depends on material and body temperature, surface state, and
for  gases,  on  the  thickness  of  the  layer  and  pressure.  The  radiation  energy  increases  with
temperature growth because the body internal energy increases. At high temperatures, heat
radiation can be basic mechanisms of heat transfer because radiation intensity depends on the
temperature more strongly then convection and thermal conduction ones.

As opposed to another ways of heat exchange, radiation energy flux is transparent both
on  more  heated  body  to  less  heated  body  and  on  the  contrary  ones.  Finally  result  of  this
interrelation consists in the heat quantity transferred by radiation.

All types of radiation differ by wave length.
Summary energy emitted from the body surface in full interval of wave lengths during

unit time is called integral or full radiation flux. This value is measured in Watt – W:
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where E  is energy emitted from unit body surface during unit time in all directions of half –
spherical space, W/cm2.

The value E  depends only on temperature and physical properties of the body and is
called self-radiation or body transmissibility. This value is flux density of integral radiation

qE = .
Consider the body participates in the radiation heat exchange with other bodies (Fig. 1).

The radiation energy Q  falls on the surface of given body from the other body’s. This energy is
absorbed  by  body  partly,  partly  reflects  and  partly  passes  through  the  body.  Each  from  these
parts is characterized by corresponding flux – the flux of absorbed radiation AQ ; the flux of
reflected radiation RQ ; the flux of emitted radiation DQ . We can write down

AQQA = ; RQQR = ; DQQD = ,
where A  is absorptance of body; R  is radiant
reflectance of body; D  is transmittance of the
body.

Corresponding to energy conservation law,
integral radiant flux falling on the body equals to a
sum all parts

DRA QQQQ ++= . (16)
It if follows from (16)

1=++ DRA . (17)
Each from these coefficients can change in

the limits from 0 to 1.
If absorptance of body 1=A , two other coefficients equal to zero ( 0== DR ). The

bodies, absorbed all falling energy, are called absolutely black bodies.
The body with 1=R  and, correspondingly 0== DA , reflects all radiation energy. If the

reflection occurs by laws of geometrical optics, then its surface is called mirror surface; if the
reflection is scattered radiation, then its surface is called absolutely white.

The body with 1=D , and 0== RA ,  transmits  all  radiant  energy.  It  is  called  the
absolutely transparent body.  The body’s with 10 << D , are called half – transparent ones.

Fig.1. Constituents of integral
radiation flux.



The  sum  of  self  radiation  and  reflected  radiation  gives  the flux of effective body
radiation  (Fig. 1)

Rselfeff QQQ += . (18)
So, the combined process of emission, absorption, reflection and transmission of the

radiant energy in the system of various bodies is radiation heat exchange The bodies can have
the same or different temperatures.

There are not absolutely white and black bodies in the reality. these notions are
conditional.

The basic laws of heat radiation

Planck law.  In year 1900 M.Plank, on the
basis of electromagnetic nature of radiation and
developed them quantum theory, establishes for
absolutely black body (index 0) the dependence of
self-radiation intensity on the wave length and
temperature
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where l  is wave length, m; T  is absolute body
temperature, К; 21 C,C  are constant: 16

1 10743 -×= ,C
W.m2; 014402 ,C =  m.К. This law is illustrated with
the help of Fig.2.

Wien displacement law. From Planck law one can obtain the wave length corresponding to
maximal density of radiant flux solving the equation

00 =ll ddE .    (20)
We obtain the formulae

T,max
31092 -×=l ,     (21)

presenting the mathematical formulation of Wien law.
It is evidently that maximal spectral density of radiant flux shifts to the side of mire short

lengths of wave.
One can see from Fig.2 that if 123 TTT >> , so max,max,max, 123 l>l>l .

Stefan-Boltzmann law, open in year 1879 by Czech scientist I. Stefan and based theoretically in
year 1884 by Austrian scientist L. Boltzmann establishes the dependence of emissivity of
absolutely black body on its temperature:
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where 8
0 10775 -×=s ,  W/(m2К4) is Stefan-Boltzmann constant.

So, the density of radiant flux of absolutely black body is proportional to four degree of
its absolute temperature.

Integral emission of absolutely black body at given temperature in the limits from 0=l
to ¥=l  is presented graphically by the area restricted the curve for constT =  and abscissa-
axis.

Sometimes, ones present the law (22) in the form

Fig. 2



( )400 100TCE = ,            (23)

where 7750 ,C =  W/(m2К4) is the emissivity of absolutely black body.
For real bodies, that is for no absolutely black bodies (gray bodies), the flux density of

radiation is expressed by the same formulae

( )4100TCE = ,

but the value C  relates to the gray bodies.
To compare the flux densities of real and absolutely black body for the same temperature

the body characteristics e  called by blackness degree is used

00 CCEE ==e

The Stefan-Boltzmann law for gray body is described as
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The value e  for gray bodies as less then unity; it depends on body nature, surface state,
temperature and is found from experiment.

Lambert's law. Radiant energy distribution emitted by absolutely black body in various
directions is no identical.  In year 1760 German

scientist I Lambert establishes the dependence of the
value of radiant energy on propagation direction.
Mathematical formulation of Lambert’s law for
density of radiant energy in the direction m  made  an
angle j  with the normal n  to the emitting area has the
form (Fig. 3)

j=j cosEE n00 ,       (24)

where nE0  is the radiant flux density of absolutely
black body in the direction of normal to the surface
( )0=j .

Kirchhoff law establishes Зthe interrelation between the body abilities to emission and
absorption of energy. This interrelation can be obtained from thermodynamical equilibrium at
radiant heat exchange between two parallel surface.

Kirchhoff law is formulated in following manner: the relation of radiant flux density of
gray body to their absorbability does not depend on body nature and equals to the radiant flux
density of absolutely black body at the same temperature.

At the thermodynamical equilibrium absorbability and blackness degree are equal to each
other

e=A
In real conditions, the radiant heat transfer is accompanied by other forms of heat transfer

– by convection and thermal conduction. Such combined heat transfer process is called complex
heat exchange. It is very important to evaluate the contribution of each part of heat exchange in
the real conditions.

The Lambert-Bouguer law describes the gradual weakening of parallel monochromatic
of optical beam in absorbing substance:

( ) ( )xexpAExexpqqA k-=k-= 0 ,        (25)

Fig. 3.



where k  is the absorption index depending on substance nature and state and on wave length of
transmitted light.

Lambert-Bouguer-Beer law connects the light weakening with the absorbing centers
presence and mathematically follows from the assumption that the relative light weakening for
infinite thin layer does not depend on light intensity and proportional to the concentration of
absorbing substance and thickness of this layer dx

Cdx
q
dq

0k-= .

The assumptions are approximate.


