
L e c t i o n  4
Thermal conduction equation in various coordinate systems

Thermal conductivity equation in the form
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is  suitable  for  Cartesian  coordinate  system.  In  praxis,  the  conditions  are  found  that  lead  to
necessity to write thermal conduction equation in other form more convenient for problem
solution and physical treatment. That relates for example to the bodies with the forms of rotation
figures. The items expressing the heat release and energy accumulation are invariant relatively to
coordinate system, but the items corresponding to resulting conductive flux depend on geometry.
There is the presentation form for differential equations in which the equations are invariant
relatively coordinate system change. We stop on cylindrical and spherical coordinate systems
additionally to (1).

The dependence of the equation form on coordinate system vanish if the conductive items
expresses through Laplace operator
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where ( )rl= ca . Instead D  ones used often the symbol 2Ñ . The record (2) is correct quite if
thermal conductivity coefficient is constant. If this condition is not hold, the equation is
presented in the form

( ) VqgradTdiv
t
Tc +l=
¶
¶

r ,      (3)

where ×Ñºdiv  is designation for divergence-operator (обозначение оператора дивергенции
(«nabla with point»); Ñºgrad  is designation for gradient-operator.

Form of operators depends on coordinate system. For Cartesian coordinate system
(Fig.1), for example, we have ( )tzyxTT ,,,=  and

2

2

2

2

2

2

zyx ¶

¶
+

¶

¶
+

¶

¶
ºD ;

zyx ¶
¶

+
¶
¶

+
¶
¶

¹Ñ kji

that is

Tgrad
x
T

y
T

x
T

l-=÷÷
ø

ö
çç
è

æ
¶
¶

+
¶
¶

+
¶
¶

l-= kjiq

In cylindrical coordinate system (Fig. 2) we have ( )tzrTT ,,,j= . Coordinates x  and y
connect with coordinates r  and j  of cylindrical coordinate system by simple relations

j= cosrx ; j= sinry . (4)
Operators of Laplace and gradient have a view
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Therefore thermal conduction equation (3) takes the form
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and components of heat flux vector – the form

Fig. 1.
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In spherical coordinate system we have ( )jq= ,,rTT  (Fig. 3),
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The coordinates jQ,,r  connects with the coordinates zyx ,,  by relations
jQ= cossinrx , jQ= sinsinry , Q= cosrz .

Thermal conduction equation for bodies of canonical forms
The various coordinate systems are convenient when it is necessary to find the

temperature in bodies of canonical form: for parallelepiped, cylinder, and sphere (fig.4). The
equation (1) describes the three-dimensional temperature distribution in parallelepiped. When the
heating is carried out so that temperature depends on one coordinate only (Fig.4,a), the thermal
conduction equation takes the form
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In the case of long cylinder heated from lateral surface (Fig.4,b) we have from (5) the
equation
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In the case of the ball surround by homogeneous heated liquid we com from (7) to the
equation.
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All three canonic equation can be written together
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where 210 ,,=n  for plate, cylinder , and sphere.
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In dimensionless variables
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where *T  is  some  specific  temperature  (for  example,  the  temperature  of  washed  liquid  or  hat
wall); 0T  is initial temperature; *r  is the size specific for the problem (for example characteristic
body size), the equation (9) takes the form
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Examples of stationary problems for cylindrical coordinate system
Consider the stationary process of thermal conduction in cylindrical wall with internal

diameter 11 2rd =  and external diameter 22 2rd =  (Fig.5).
We assume that cylinder is long, so heat losses from its ends are not essential. Boundary

conditions do not depend on coordinates j  and z . The thermal physical properties are constant.
The stationary temperature distribution follows from the equation
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The solution of this equation has the form
21 CrCT += ln , (12)

where 21 CC ,  - are integration constants.
The specific heat flux follows from (12)
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It diminishes in the direction of external surface
In the stationary conditions full neat flux passing though the section of cylindrical pipe of

given length l  and constant and equal to
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The second effect of cylindrical coordinate system –
temperature changes nonlinearly along the pipe thickness
oppositely to similar problem for Cartesian coordinate system.

The integration constants 1C  and 2C  can be found, if the
boundary conditions will given.

The boundary conditions of first kind

Let the temperatures 1T  and 2T  are given on the cylinder
surfaces 1rr =  and 2rr = . Then using (12) we shall find

( ) 21111 CrCrTT +== ln ;

( ) 22122 CrCrTT +== ln .

Determining the constants, we come to the formulae
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Therefore, the heat quantity passing through the section
of length l  during unit time is
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That is, it really does not depend on radius. S. т.е., действительно, не зависит от радиуса.
Linear heat flux has been used in technical calculations
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Boundary conditions of third kind
When the temperatures of environments are given, and the wall temperatures are not

known, we come to boundary conditions of third kind. It is necessary to give the neat emissions
coefficients ka  also.

In this case, convective heat fluxes for the unit of the pipe length from external and
internal surfaces follow from Newton laws and should be equal to linear heat flux due tu thermal
conduction through cylindrical wall. We come to set of equations
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the solution of which gives linear heat flux density
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heat transfer coefficient for cylindrical wall, W/(m K). Coefficient cK  equals numerically to the
heat quantity transferring through the pipe wall of unit length during unit time, when temperature
drop equals to 1 К.

The reverse value

Fig. 5
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is called full thermal resistance of the pipe; называется полным термическим
сопротивлением трубы; ( ) 2121 ,,/ =a irii  are  thermal  resistances  of  heat  emission;
( ) ( )1221 rr /ln/ l  is thermal resistance of thermal conduction.

It is follows from the sane equation set
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That allows finding the temperature distribution.

Electrical analogy
The expression (16) can be written down in the form of Ohm law
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where denominator presents the thermal resistance of hollow cylinder
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The principles of successive and parallel
combination of thermal resistance in circuit (chain)
which  are  correct  for  plane  wall  can  be  use  in  the
problem on hollow cylinder.

For example, let a liquid flows in pipe with
isolation (Fig. 6). Here we can determine
convective heat resistance of liquid
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thermal resistance of hollow cylinder and isolation.
We have successive combination of convective
resistance of liquid with two conductive thermal
resistances.  If the temperatures of liquid and
external surface are given we have
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Thermal resistance in (19) is a sum of all listed thermal resistances.
The same principles are suitable for multilayer cylindrical wall.

Critical diameter of heat isolation
From  above  we  know  that  radial  heat  flux  in  pipe  inversely  to  logarithm  of  external

radius; but flux emission from external surface is proportional this radius. That indicates that
there is certain radius, when the heat losses are minimal.

If we increase the wall thickness due to the radius 2r  evaluation at the constant and small

1r , the action of logarithm item in heat flux will more strong. If 1r  is fixed, we have ( )2rqq = .
Therefore, the flux will maximal when

Fig.6. The cross-section of isolated pipe
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That is possible, when
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and leads to the interested effect: heat loss can be diminished due to isolation thickness reducing.
That  can  be  illustrated  for  two  layer  pipe,  the  full  thermal  resistance  of  which  follows

from formula
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where 11 2rd = ; 11 2rd = ; 11 2rd = ; 1l  is the heat thermal conductivity of pipe material,  ; 2l is
the heat thermal conductivity of isolation material.

The extreme condition for this function is
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Therefore the critical diameter of isolation does not depend on pipe diameter 2d
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and is determined by the value of thermal conductivity coefficient 2l  and the value 2a .
If ( )*32 dd >  and the heat exchange conditions are given, the pipe coatication diminishes

the heat losses. If ( )*32 dd < , then coating firstly leads to heat loss increase.

The solutions of the simplest problems in dimensionless variables
It is no difficult to find the solutions on temperature distributions for ball wall.
For boundary conditions of first kind the solution takes the form
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All obtained solutions can be presented

together in dimensionless variables. In the
variables
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the solutions will have following form
x-=q 1p , 10 £x£ ;

ex-=q lnlnc , 11 £x£e- ;

( ) ( ) x-ex-=q 11b , 11 £x£e- ,
where 112 >=e rr / . Fig. 7. The temperature distribution in plane (1),

cylindrical (2) and ball (3) wall. Solid lines -
ε=10; dotted lines – ε=5



The problems with volume heat sources
Along with the processes thermal conduction and heat exchange, the volume heat release

is possible in substance connecting with some physical-chemical phenomena: condensation,
Joule heating, nucleus and chemical reactions etc. From thermal physical point of view, we can
characterize theses processes by the heat quantity releasing or absorbing in unit volume during
unit time Vq , W/m2. This characteristic is volume heat release intensity. Assume this value is
constant and does not depend on time and space coordinates. It is very simplified approach. We
With meet more rigorous way of chemical reaction description in following lections.

Now we stop on the problem on the plate with volume source and given surface
temperatures (Fig. 8). The formulation of the stationary problem has a view
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The problem is solved by simple integration. But the solution way
with temperature maximum extraction and its position is possible.
The solution takes the form
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where d  is the sickness of the plate.
The maximum position from the right surface is
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Analogous problems take a place in cylindrical and spherical coordinate systems.
Many applied problems are contained in the scientific and school literature.
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