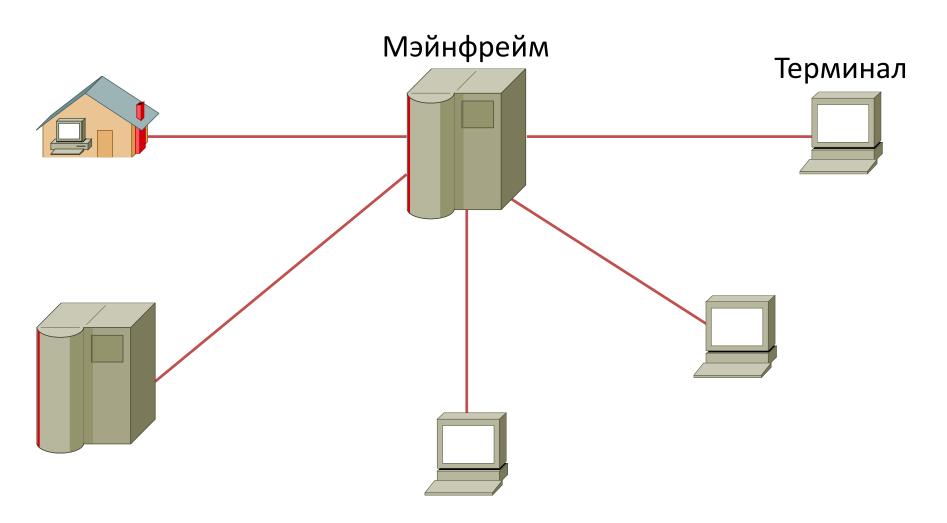
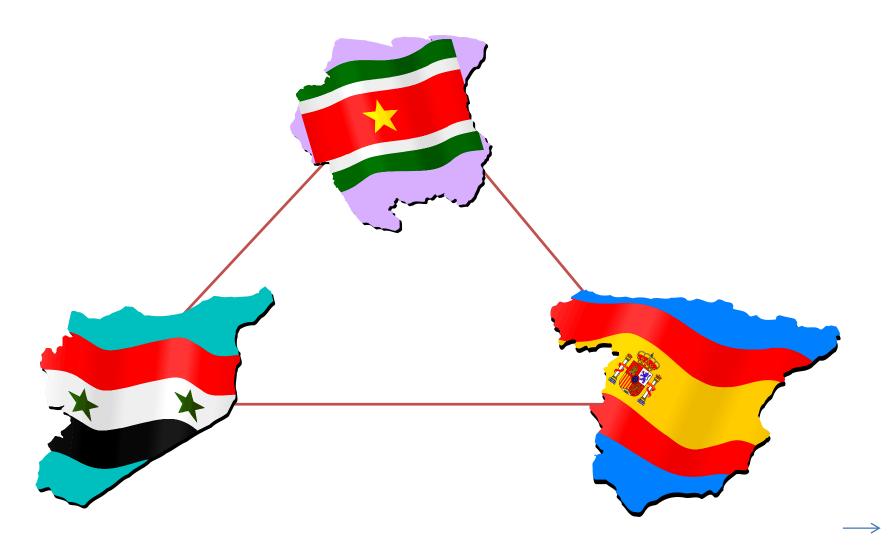

Введение в сети ЭВМ и телекоммуникации

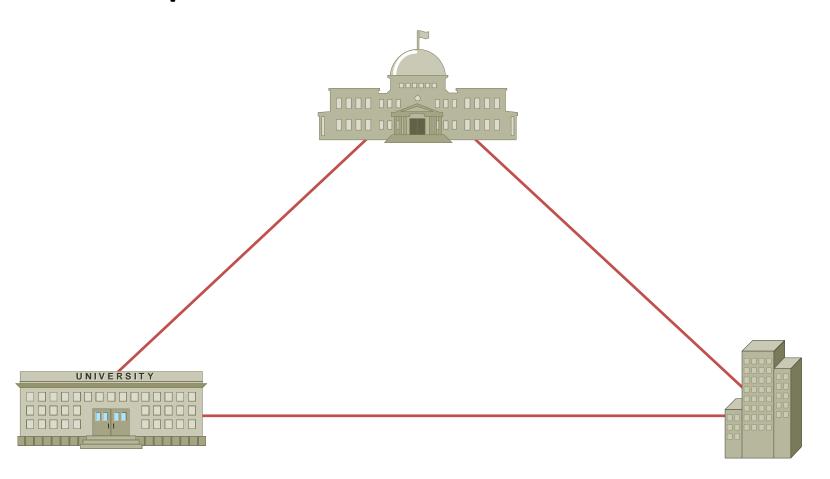
Компьютерная сеть


Компьютерная сеть — это система связи двух или более компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило – различные виды электрических сигналов или электромагнитного излучения.

Компьютерные сети



Многотерминальные системы

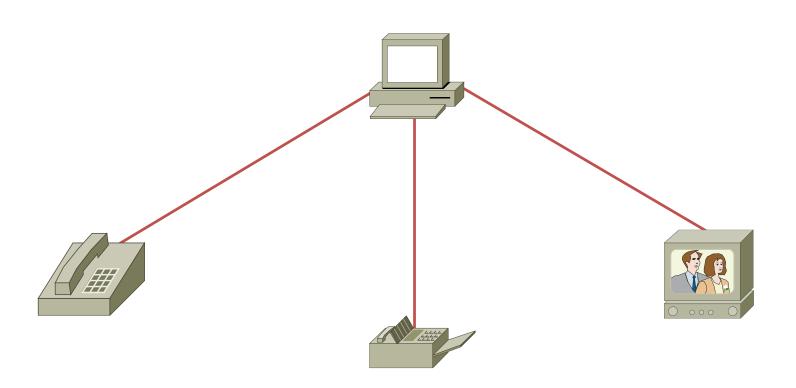


Глобальные сети Wide Area Network, WAN

Глобальные сети (Wide Area Network, WAN) — это сети, объединяющие территориально рассредоточенные компьютеры (возможно, находящиеся в разных городах и странах).

Городские сети Metropolitan Area Network, MAN

Городские сети, или сети мегаполисов (Metropolitan Area Network, MAN) — это сети, предназначенные для обслуживания территории крупного города. Как правило, используют цифровые линии связи со скоростями на магистрали от 155 Мбит/сек и выше.


Локальные сети Local Area Network, LAN

Локальные сети (Local Area Network, LAN) — это объединения компьютеров, сосредоточенных на небольшой территории, обычно в радиусе не более 1-2 км.

Персональные сети Personal Area Network, PAN

Персональные сети (Personal Area Network, PAN) — это сети, предназначенные для взаимодействия устройств, принадлежащих одному владельцу, на небольшом расстоянии, обычно в радиусе до 10 м.

Сети тела Body Area Network, BAN

Сети тела (Body Area Network, BAN) — эти сети, предназначенные для связи на небольших дистанциях с малыми затратами энергии, с учётом особенностей распространения радиоволн внутри человеческого тела и в его окрестностях.

Что такое интернет?

- 1. Интернет <u>всемирная</u> система объединённых компьютерных сетей (техническая точка зрения).
- 2. Интернет всемирное хранилище информации.
- 3. Интернет компьютерная сеть в которой предоставляются различные информационные услуги.
- 4. Интернет это общество людей со своей культурой, языком и традициями (гуманитарная точка зрения).

Глобальная компьютерная сеть

Число устройств (компьютеров подключенных к сети):

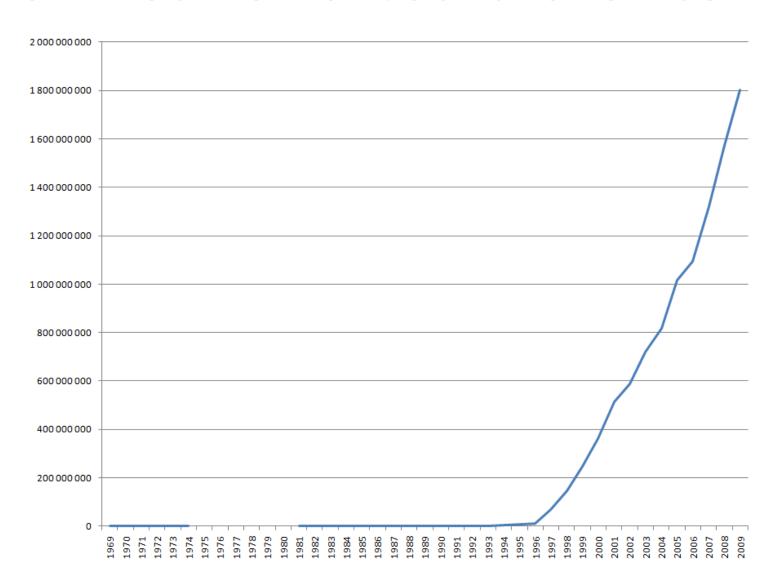
- 1969 4 компьютера
- 1984 1000
- 1993 1.31 млн.
- 1997 21.82 млн.
- 2000 72.40 млн.
- 2001 100 млн.
- 2008 1,5 млрд.
- 2010 5 млрд. (из них 2млрд. компьютеры)
- 2012 9,6 млрд., из 7 млрд человек 2,5 млрд. используют Интернет (34 %), всего 663 млн. сайтов или блогов
- К 2020 году 28 млрд.!

- 1958 Агентство Передовых Исследовательских Проектов
- 1961 первая детальная концепция компьютерной сети
- 1967 идея связать между собой компьютеры ARPA
- 1969 запуск ARPANET

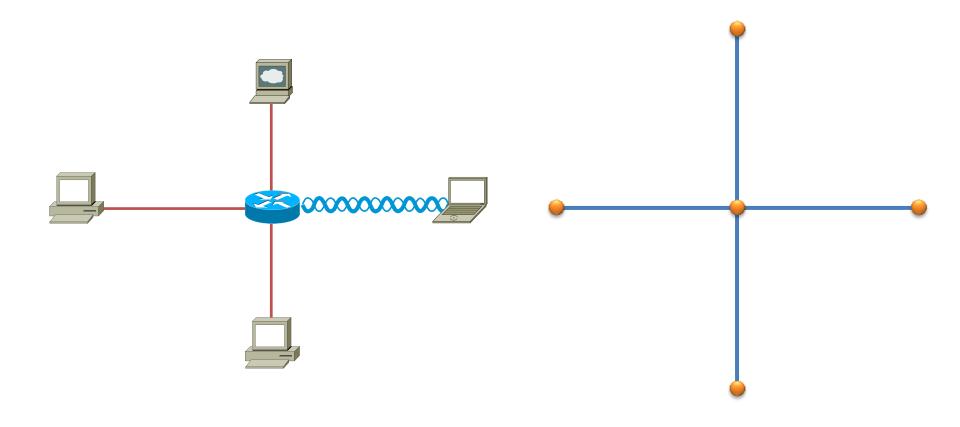
• 1971 – система электронной почты

- 1973 подключение иностранных государств, TCP, FTP
- 1974 первая коммерческая версия ARPANET – сеть Telenet
- 1976 создание технологии Ethernet
- 1978 первая спам-рассылка
- 1982 TCP/IP объявлен сетевым стандартом

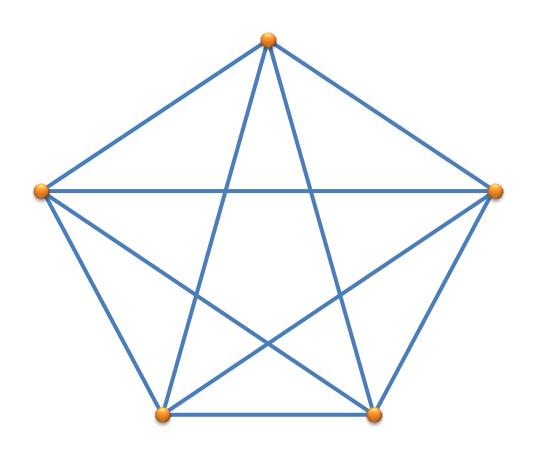
- 1984 запущена система DNS
- 1987 первый компьютерный вирус
- 1988 первый эффективный компьютерный вирус поражено 10% сети
- 1989 изобретен URI
- 1990 прекращение существования сети ARPANET. Протокол HTTP


- 1991 первый web-сайт: http://info.cern.ch/
- 1992 первые потоковые видео и аудио
- 1993 первый браузер NCSA Mosaic
- 1994 W3 консорциум, первые online-заказы
- 1995 домены становятся платными

- 1996 запущен сервис ICQ
- 1999 запущена сеть Napster
- 2001 открыта Wikipedia
- 2003 запуск магазина iTunes
- 2005 открытие YouTube
- 2009 мобильный трафик превзошёл голосовой

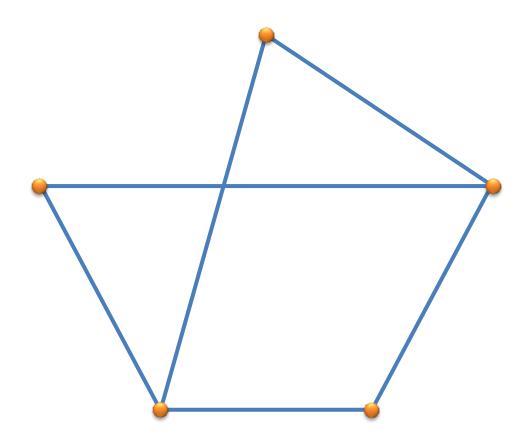


Количество пользователей сети


Топологии компьютерных сетей

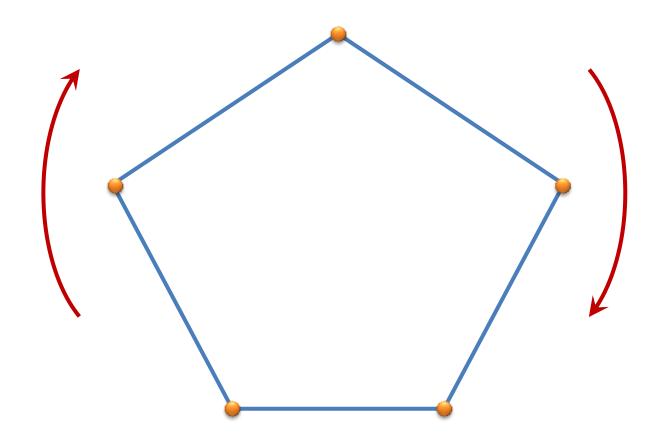
Топология сети — это конфигурация графа, вершинам которого соответствуют конечные узлы и коммуникационное оборудование сети, а ребрам — физические или информационные связи между вершинами.

Полносвязная топология (full)

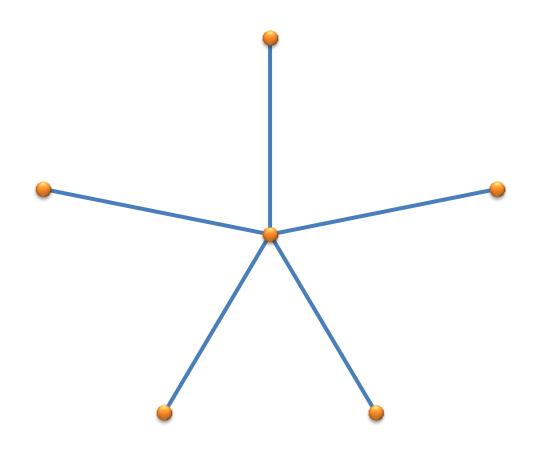

Полносвязная топология — это топология сети, в которой каждый компьютер непосредственно связан со всеми остальными.

Точка-точка (point-to-point)

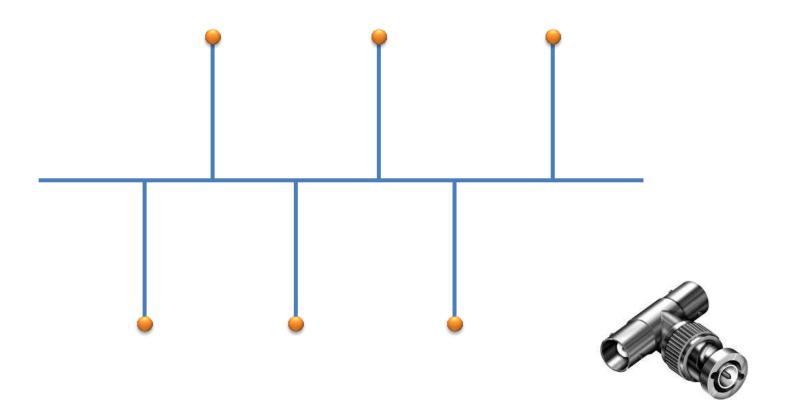
Топология **точка-точка** (point-to-point) — это простейшая топология сети, в которой два компьютера соединяются между собой напрямую через коммуникационное оборудование. Преимуществом данной топологии являются простота и дешевизна, недостатком – возможность подключения только двух узлов.


Ячеистая топология (mesh)

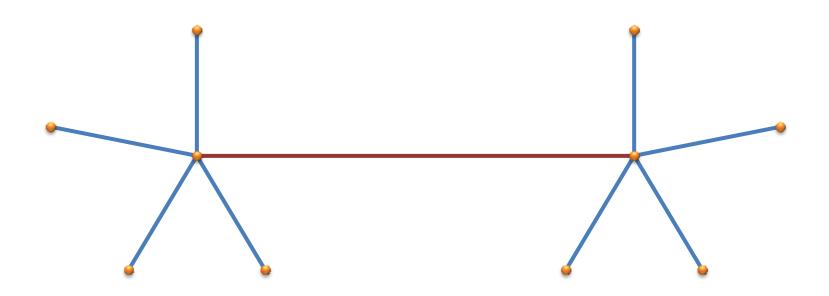
Ячеистая топология (mesh) — это топология сети, которая получается из полносвязной путём удаления некоторых связей. Непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы.


Кольцевая топология (ring)

Кольцевая топология (ring) — это топология сети, данные в которой передаются по кольцу от одного компьютера другому. Передача данных, как правило, организована в одном направлении.


Звездообразная топология (star)

Звездообразная топология (star) — это топология сети, при которой каждый компьютер подключается непосредственно к общему центральному устройству, условно называемому концентратором, который направляет передаваемую информацию одному или всем остальным компьютерам сети.


Общая шина (bus)

Топология **общая шина** (bus) — это частный случай топологии «звезда». В качестве центрального элемента здесь выступает пассивный кабель с подключенными по схеме «монтажное ИЛИ» компьютерами. Передаваемая информация распространяется по кабелю и доступна одновременно всем узлам сети.

Смешанная топология

Смешанная топология преобладает в крупных сетях с произвольными связями между компьютерами. В таких сетях можно выделить отдельные произвольно связанные фрагменты, имеющие типовою топологию, поэтому их называют сетями со смешанной топологией.

Конечные устройства

- Компьютер (персональный, рабочая станция или сервер)
- ІР-телефон
- Периферия (сетевые принтеры и сканеры)
- Камеры безопасности
- Мобильные устройства (сотовые телефоны, часы и другие гаджеты)
- Бытовая техника (телевизоры, холодильники, стиральные машины)

Промежуточные устройства

- Повторитель
- Концентратор
- Коммутатор
- Маршрутизатор
- Точка беспроводного доступа
- Модем
- Брандмауэр

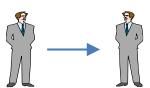
Передающие среды

- Металлические провода в кабелях
- Пластик или стекло (оптические кабели)
- Беспроводная передача

Многоуровневые модели

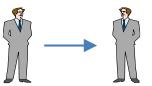
Определения

Межуровневый интерфейс — это набор функций, которые нижележащий уровень предоставляет вышележащему.



Определения

Протокол — это набор функций для взаимодействия с другой стороной, расположенной на том же уровне иерархии.



Определения

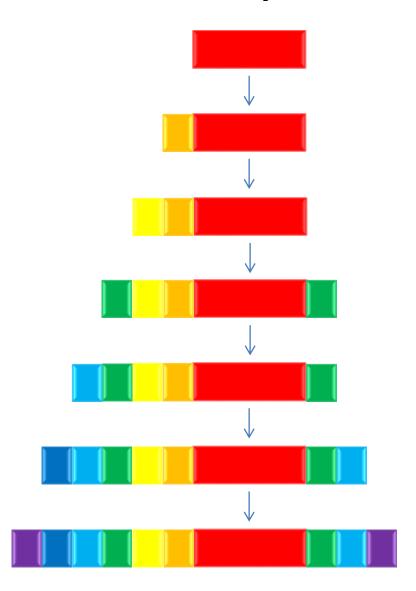
• Стек протоколов — это иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети.

Базовая эталонная модель взаимодействия открытых OSI

- абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов.
- уровни взаимодействия систем
- стандартные названия уровней
- функции, которые выполняет каждый уровень

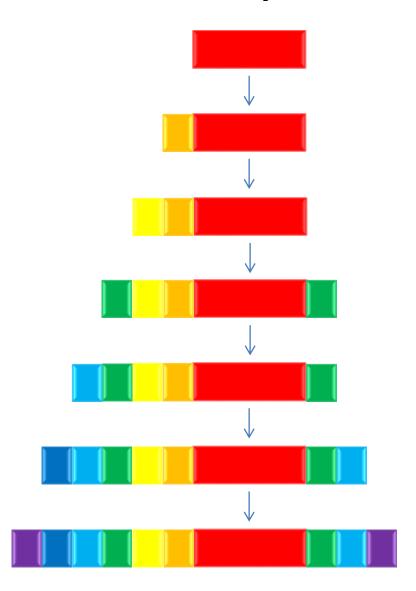
Уровни модели OSI

Прикладной	Application
Представления	Presentation
Сеансовый	Session
Транспортный	Transport
Сетевой	Network
Канальный	Data Link
Физический	Physical



Определение

Инкапсуляция в компьютерных сетях — это метод построения модульных сетевых протоколов, при котором логически независимые функции сети абстрагируются от нижележащих механизмов путём включения или инкапсуляции в более высокоуровневые объекты.



Инкапсуляция



Инкапсуляция

Инкапсуляция

Прикладной уровень

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Обеспечивает взаимодействие сети и пользователя. Уровень предоставляет приложениям пользователя доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты.

Примеры протоколов:

- HTTP
- POP3
- SMTP
- FTP
- BitTorrent

Уровень представления

Прикладной

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Отвечает за представление передаваемой по сети информации, не меняя её содержания.

Примеры протоколов:

- ASCII / Unicode
- SSL
- Big-Endian / Little-Endian

Сеансовый уровень

Прикладной

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время.

Примеры протоколов:

– NetBIOS

Транспортный уровень

Прикладной Представления Сеансовый Транспортный Сетевой Канальный

Физический

Предназначен для передачи данных с той степенью надежности, которая требуется верхним уровням.

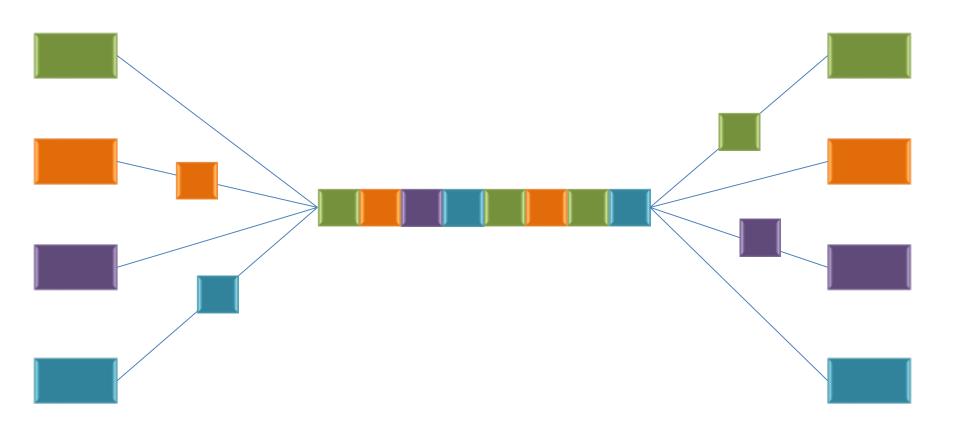
Примеры протоколов:

- TCP
- UDP

Классы транспортного сервиса

• Протоколы без установки соединения 🌡

• Протоколы с установкой соединения



Определение

Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами.

Мультиплексирование

Сетевой уровень

Прикладной

Представления

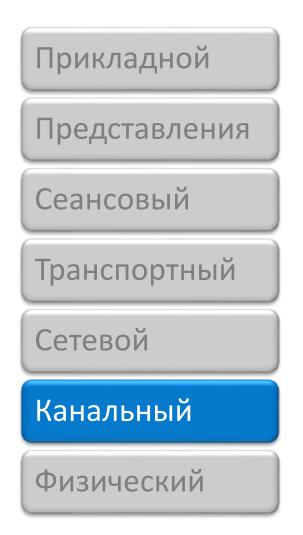
Сеансовый

Транспортный

Сетевой

Канальный

Физический


Служит для образования единой транспортной системы, объединяющей несколько сетей, и называемой **составной сетью**.

Примеры протоколов:

- IP:
 - IPv4
 - IPv6
- ICMP
- RIP

Канальный уровень

Обеспечивает взаимодействие сетей на физическом уровне и осуществляет контроль за ошибками, которые могут возникнуть.

Примеры протоколов:

- Ethernet
- IEEE 802.11

Физический уровень

Прикладной Представления Сеансовый Транспортный Сетевой Канальный Физический

Предназначен для передачи потока данных по физическим каналам связи, таким как коаксиальный кабель, витая пара, оптоволоконный кабель или беспроводная сеть.

- Примеры протоколов:
 - USB
 - Ethernet
 - IEEE 802.11
 - DSL
 - GSM

Вопросы?