

СИСТЕМНЫЙ АНАЛИЗ

27.03.02 «Управление качеством» ЛК №1

Ирина Андреевна Абрашкина

abrashkinaia@tpu.ru

о дисциплине

СТРУКТУРА (МОДУЛИ)

Модуль 1. Общие сведения о системном анализе

Модуль 2. Принципы и методы системного анализа

Модуль 3. Практика системного анализа

Модуль 4. Прикладной системный анализ

Формат занятий:

- 1) лекции-дискуссии;
- 2) проектная работа в разных составах (определено заранее);
- 3) публичные защиты результатов работы;
- 4) решение практических задач;

АБРАШКИНА ИРИНА АНДРЕЕВНА главный эксперт ОО ИШНКБ

преподаватель ОЭИ, ОКД ИШНКБ <u>abrashkinaia@tpu.ru</u>

Всего часов: аудиторных – 56, СРС – 88. **Лекции**: 16 часов (8 недель × 2 часа)

Практические занятия: 16 часов (8 недель × 2 часа) **Лабораторные работы**: 24 часа (6 работ × 4 часа)

Форма контроля: зачет на основе защиты мини-проекта.

материалы:

https://portal.tpu.ru/SHARED/a/ABRASHKINAIA/Disziplins/Tab7

РЕЙТИНГ-ПЛАН

(все задания обязательны к выполнению)

ПР№1 – 5 баллов **ЛБ№1,2** – 10 баллов

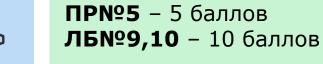
ПР№2 – 5 баллов **ЛБ№3,4** – 10 баллов

ПР№3 – 5 баллов **ЛБ№5,6** – 10 баллов

1 (10) неделя

2 (11) неделя

3 (12) неделя


ПР№4 – 5 баллов **ЛБ№7,8** – 10 баллов

5 (14) неделя

4 (13) неделя

ПР№6 – 5 баллов **ЛБ№11,12** – 10 баллов

ПР№7,8 – 10 баллов МИНИ-ПРОЕКТ

6 (15) неделя

7 (16) неделя

ВВЕДЕНИЕ

ЧТО ТАКОЕ СИСТЕМА?

СИСТЕМА

(от греч. σύστημα — целое, составленное из частей) – совокупность взаимосвязанных элементов, объединенных общей целью, единством управления и выступающая как единое целое по отношению к среде

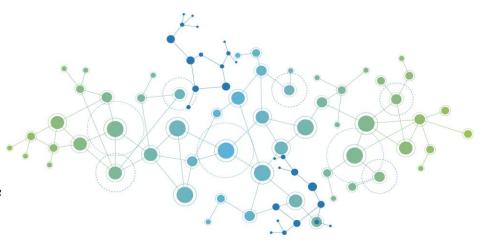
КЛЮЧЕВЫЕ ПРИЗНАКИ

Целостность и делимость выступает как единое целое

Структурность

упорядоченная совокупность элементов

Взаимосвязь с внешней средой


части связаны между собой

Иерархичность

любая система – элемент более крупной системы

Функциональность и целенаправленность

существует для достижения цели, общая функция или задача

ЭМЕРДЖЕНТНОСТЬ (англ. emergence — возникновение) — наличие у системы качеств, не присущих ни одному из ее элементов в отдельности

ОПРЕДЕЛЕНИЯ

ЧТО ТАКОЕ СИСТЕМНЫЙ АНАЛИЗ?

Системный анализ — это научная методология, представляющая собой совокупность концепций, принципов, методов и моделей для изучения, проектирования и управления **сложными системами**.

ПРИМЕНЕНИЕ

- проблема имеет много аспектов (технических, экономических, социальных, экологических);
- взаимосвязи между элементами проблемы неочевидны;
- существует множество заинтересованных сторон (стейкхолдеров) с разными, часто противоречивыми, целями;
- имеется неопределенность или недостаток информации.

СИСТЕМНЫЙ АНАЛИЗ

это не просто набор методов, а особый способ мышления, это дисциплинированный подход к пониманию и изменению сложного мира

ИСТОРИЯ

предпосылки возникновения

Аристотель (384 до н. э. - 322 до н. э., философ): «Целое больше суммы его частей.»

Как формализованная методология системный анализ сформировался в середине XX века, этом способствовали:

- вторая мировая война: острая необходимость решения сложных военно-стратегических и логистических задач;
- научно-техническая революция: резкое усложнение технических систем;
- «холодная» война, ядерное оружие;
- развитие кибернетики: сформулированы принципы управления и связи в живых организмах и машинах;
- работы в RAND CORPORATION;

RAND Corporation («Research ANd Development» — «Исследования и разработки») — американский стратегический исследовательский центр («фабрика мысли», «think tank»), 1948 г. формализация и систематизация термина **«systems analysis»** (системный анализ)

Норберт Винер американский математик, создатель кибернетики и теории искусственного интеллекта

ОСНОВЫ

ПРИНЦИПЫ СИСТЕМНОГО АНАЛИЗА

Принцип целостности

- целое больше суммы его частей;
- анализируем систему в целом, а не по частям;
- главное выявить её интегральные, системные свойства

Принцип иерархичности

- сложную проблему можно разбить на простые;
- декомпозиция: от общего к частному;
- иерархия упрощает анализ и управление.

Принцип интеграции

- учитываем все связи и взаимодействия; • система — это
 - сеть взаимосвязей с внешней средой; •
- ни один значимый элемент не существует изолированно.

Принцип целевой ориентации

- начинайте с чёткой цели;
- «если не знаешь куда идти, можно прийти не • туда» (М. Твен); правильная цель
- основа всего анализа.

PRINCIPLES

Принцип неопределенности и многовариантности ресурсов и целей

- нет одного «правильного» ответа;
- сравниваем несколько альтернатив;
- ищем лучшее из возможных решений.

Принцип согласования

ресурсов — это

цель без

- мечта; проверяем цели на реализуемость;
- ресурсы определяют достижимость целей.

ОСНОВЫ

ЭТАПЫ СИСТЕМНОГО АНАЛИЗА (ОБОБЩЕННАЯ СХЕМА)

Постановка проблемы:

Выявление и содержательное описание проблемной ситуации. Правильно сформулированная проблема— это уже 50% решения. Фокус на причине, а не на следствиях

Цели и критерии:

Без четкой цели нет направления, без измеримых критериев — нет понимания успеха.

Анализ структуры:

Понимание внутренних связей и внешних влияний позволяет управлять системой, а не просто изменять её части.

Моделирование:

Модель (математическая, имитационная, словесная и пр.) — это полигон для испытаний. Она позволяет находить ошибки дешево и быстро, до реальных затрат.

«Что не так и почему это нас не устраивает?»

«Чего мы хотим достичь. Каким образом мы будем измерять успех?»

«Что является элементами системы и как они связаны между собой?»

«Какая упрощенная модель позволит проверить наше ключевое предположение о системе?»

ОСНОВЫ

ЭТАПЫ СИСТЕМНОГО АНАЛИЗА (ОБОБЩЕННАЯ СХЕМА)

«Как еще можно достичь цели, кроме очевидного способа?»

«Как каждая альтернатива проявляет себя против наших ключевых критериев?»

«Какой вариант предлагает наилучший баланс между результатом, затратами и рисками?»

«Что покажет нам, что решение работает, и что мы будем делать, если оно отклоняется от плана?»

Генерирование альтернатив: Один вариант — это ловушка. Истинный выбор появляется только при наличии множества путей.

Сравнительный анализ: Решение принимается не на основе интуиции, а на основе объективного сравнения по единым правилам (критериям).

Выбор решения: Итоговое решение часто является не идеальным, а оптимальным компромиссом в условиях ограничений и неопределенности.

Реализация и контроль: Лучшая стратегия бесполезна без эффективного выполнения. Контроль обеспечивает обратную связь и возможность корректировки.

ПРИМЕНЕНИЕ

ОБЛАСТИ ПРИМЕНЕНИЯ СИСТЕМНОГО АНАЛИЗА

Управление бизнесом: разработка бизнес-стратегий, реинжиниринг бизнес-процессов, проектирование организационных структур, управление проектами.

Информационные технологии: проектирование архитектуры корпоративных информационных систем, разработка сложного программного обеспечения, анализ требований к по.

Государственное и муниципальное управление: разработка социальных и экономических программ, анализ эффективности госрасходов, городское планирование.

Техника и инженерия: проектирование сложных технических комплексов (самолетов, космических аппаратов, энергосистем).

Экология и природопользование: моделирование экосистем, оценка воздействия на окружающую среду, разработка стратегий устойчивого развития.

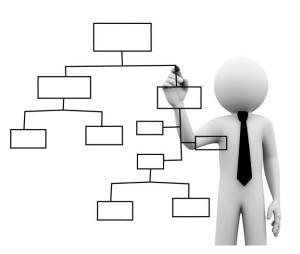
Наука: планирование крупных научных экспериментов.

КЛАССИФИКАЦИЯ

КЛАССИФИКАЦИЯ СИСТЕМ

Классификация помогает выбрать адекватные методы исследования и управления.

По происхождению:


- естественные: созданы природой (лес, планета);
- искусственные: созданы человеком для цели (завод, сайт);
- виртуальные: существуют в информационной среде (соцсеть, метавселенная);
- смешанные: включают человека и технику (система "пилот-самолет").

По степени сложности:

- простые: мало элементов, поведение предсказуемо (механические часы);
- *сложные:* много элементов и связей, поведение трудно предсказать (город, предприятие);
- сверхсложные (ультрасложные): способны к самообучению и адаптации, поведение непредсказуемо (мозг, общество).

По характеру взаимодействия с окружающей средой:

- открытые системы: активно обмениваются с внешней средой (организм, компания);
- закрытые системы: обмен со средой минимален, жесткие границы (закрытый термос);
- изолированные системы: теоретическая модель, обмен отсутствует (Вселенная в модели).

КЛАССИФИКАЦИЯ

КЛАССИФИКАЦИЯ СИСТЕМ

По типу поведения:

- *детерминированные:* поведение предсказуемо и строго задано (станок с ЧПУ);
- стохастические: поведение вероятностно, есть элемент случайности (фондовый рынок);

По способу управления:

- *управляемые извне:* есть выделенный внешний орган управления (предприятие под руководством директора);
- *самоуправляемые:* самостоятельно поддерживают стабильность за счет обратных связей (автопилот, организм);
- *самоорганизующиеся:* способны кардинально меняться для адаптации (научное сообщество, иммунная система).

По структуре:

- централизованные: единый центр управления (армия, иерархия);
- децентрализованные: управление распределено между автономными элементами (рыночная экономика);
- *распределенные (сетевые):* нет центра, элементы взаимодействуют напрямую (блокчейн, социальные сети).

ХАРАКТЕРИСТИКИ

ХАРАКТЕРИСТИКИ СИСТЕМ: ОСНОВНЫЕ

- размер (количество элементов): определяет масштаб системы;
- сложность структуры: определяется количеством и разнообразием связей между элементами;
- связность: уровень взаимозависимости элементов системы;
- уровень организации (организованность): степень упорядоченности системы, противоположность энтропии (хаосу);
- функциональное разнообразие: количество и разнообразие функций, которые может выполнять система;
- надежность и живучесть: способность системы сохранять работоспособность при выходе из строя части элементов или при внешних воздействиях;
- управляемость: степень, в которой система поддается целенаправленному изменению ее поведения;
- **наблюдаемость:** возможность определять состояние системы по ее выходным сигналам.

СВОЙСТВА

СВОЙСТВА СИСТЕМ (СИСТЕМНЫЕ ЭФФЕКТЫ)

Эмерджентность

Возникновение у системы новых свойств, которых нет у её отдельных частей

Синергичность

Однонаправленные действия элементов приводят к многократному увеличению общего результата (эффект (2+2=5))

Целостность

Система реагирует на воздействия как единое целое; изменение одного элемента влияет на все остальные

Иерархичность

Любую систему можно рассматривать как часть более крупной системы и делить на подсистемы

Вода (H₂O) — жидкость, а её составляющие газы. Компьютер выполняет программы, а отдельный транзистор — нет.

Слаженная работа команды, синергия от слияния компаний.

Повышение цены на нефть вызывает рост цен на множество других товаров.

Клетка ightarrow Орган ightarrow Организм ightarrow Общество.

СВОЙСТВА

СВОЙСТВА СИСТЕМ (СИСТЕМНЫЕ ЭФФЕКТЫ)

Адаптивность

Способность изменяться, чтобы сохранить себя в новых условиях

Интегративность

Стремление сохранить целостность и противостоять разрушению

Эквифинальность

Способность достигать одного итога разными путями и из разных начальных условий

Мультипликативность

Эффекты в системе не складываются, а умножаются (как позитивные, так и негативные)

Компания внедряет новые технологии. Иммунитет вырабатывает защиту от вируса.

Организм борется с болезнью. Здоровая корпоративная культура отталкивает токсичное влияние.

Успешный бизнес можно построить разными способами. Студенты с разным стартовым уровнем могут сдать экзамен одинаково хорошо. Незначительная ошибка в проекте приводит к огромным убыткам.

Небольшая, но своевременная инновация ведет к прорыву на рынке.

выводы

ЗАКЛЮЧЕНИЕ

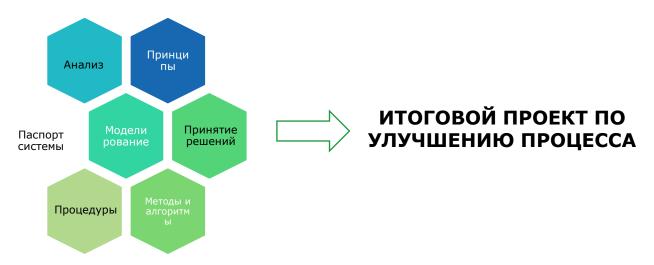
Инженер по требованиям

Бизнес аналитик

Бизнес архитектор (Enterprise architect)

Системный аналитик

Системный архитектор



Инженер по верификации и валидации (инженер по тестированию)

Технический менеджер, главный конструктор (product manager)

- владение основами системного анализа является критически важной компетенцией для современного специалиста в любой области, связанной с управлением, проектированием и принятием решений;
- возможны различные системно-инженерный роли;

СПАСИБО ЗА ВНИМАНИЕ!