УТВЕРЖДАЮ Директор ФТИ ТПУ

О. Ю. Долматов «20» О6 2014 г.

1

БАЗОВАЯ РАБОЧАЯ ПРОГРАММА УНИФИЦИРОВАННОГО МОДУЛЯ (ДИСЦИПЛИНЫ) МАТЕМАТИКА 3.1

Направление (специальность) ООП

	1	,				
	13.03.02	14.03.02	14.05.02	16.03.02	18.05.02	27.03.01
	13.03.01	14.05.04	12.03.01	27.03.02	27.03.04	27.03.05
200	13.03.03	03.03.02	12.03.02	15.03.01	15.03.02	15.03.05
	16.03.01	11.03.04	12.03.04	22.03.01	29.03.04	21.05.03

Номер кластера (*для унифицированных дисциплин*) Профиль(и) подготовки (специализация, программа)

Квалификация (степень)	бакалавр
•	2014 г.
Курс II семестр 3	
Количество кредитов 4	

Код дисциплины

Виды учебной	Временной ресурс по очной форме обучения
деятельности	
Лекции, ч	32
Практические занятия, ч	32
Лабораторные занятия, ч	0
Аудиторные занятия, ч	64
Самостоятельная работа, ч	80
ИТОГО, ч	144

Вид промежуточной аттестации _ ЭКЗАМЕН Обеспечивающее подразделение _ ВММФ, ВМ

Заведующий кафедрой

AAS

Трифонов А.Ю. Арефьев К.П._

Руководитель	ООП	(ФИО)	
		()	

Преподаватель

1. Цели освоения модуля Математика 3.1

Целями освоения данного модуля дисциплины в области обучения, воспитания и развития, соответствующие целям ООП, являются:

- подготовка в области основ математических и естественнонаучных знаний, получение высшего профессионально-профилированного (на уровне бакалавра), углубленного профессионального (на уровне магистра) образования, позволяющего выпускнику успешно работать в избранной сфере деятельности, обладать универсальными и предметно-специализированными компетенциями,
- формирование знаний о математике, как особом способе познания мира и образе мышления, общности её понятий и представлений,
- приобретение опыта построения математических моделей и проведения необходимых расчётов в рамках построенных моделей; употребления математической символики для выражения количественных и качественных отношений объектов,
- формирование социально-личностных качеств студентов: целеустремленности, организованности, трудолюбия, ответственности, гражданственности, коммуникативности, толерантности, повышение общей культуры, готовности к деятельности в профессиональной среде

2. Место модуля в структуре ООП

Модуль **Математика 3.1** входит в базовую часть математического и естественнонаучного цикла объединенного блока образовательных программ М1. Этот модуль является необходимым для освоения остальных дисциплин математического и естественнонаучного цикла и дисциплин профессионального цикла ООП.

Для освоения модуля необходимо знать:

- курс Математика 1.1
- курс Математика 2.1

Параллельно с данным модулем могут изучаться дисциплины гуманитарного, социального и экономического цикла, дисциплины естественнонаучного цикла, цикл «Физическая культура», дисциплины профессионального цикла.

3. Результаты освоения модуля Математика 3.1

Согласно декомпозиции результатов обучения по ООП в процессе освоения дисциплины с учетом требований ФГОС, критериев АИОР, согласованных с требованиями международных стандартов EURACE и FEANI, а также заинтересованных работодателей планируются следующие результаты:

P1	Применять глубокие естественнонаучные, математические и инженерные знания для			
	создания и обработки новых материалов			
Р5 Проводить теоретические и экспериментальные <i>исследования</i> в области совре технологий обработки материалов, нанотехнологий, создания <i>новых</i> матери <i>сложных</i> и <i>неопределенных</i> условиях				
P11	Самостоятельно учиться и непрерывно повышать квалификацию в течение всего периода профессиональной деятельности			

студент должен будет:

Знать

- о математике, как особом способе познания мира и образе мышления, общности её понятий и представлений; (3-3.1)
- основные понятия теории числовых и функциональных рядов; (3-3.2)
- условия сходимости числовых и функциональных рядов; (3-3.3)
- ряды Тейлора и Маклорена; (3-3.4)
- тригонометрические ряды Фурье; (3-3.5)
- комплексные числа и действия над ними; (3-3.6)
- основные элементарные функции комплексного переменного и их свойствах; (3-3.7)
- понятие аналитической функции, условия аналитичности; (3-3.8)
- дифференцирование и интегрирование функций комплексного переменного; (3-3.9)
- ряды Лорана, особые точки, вычеты; (3-3.10)
- преобразование Лапласа и его основные свойства; (3-3.11)
- основные приложения операционного исчисления; (3-3.12)
- место модуля среди других, изучаемых студентом дисциплин и его значение при изучении последующих курсов (3-3.13)

Уметь

- работать с учебной и справочной литературой; (У-3.1)
- исследовать на сходимость числовые ряды; (У-3.2)
- находить интервалы сходимости степенных рядов; (У-3.3)
- разлагать функции в ряд Тейлора; (У-3.4)
- разлагать функции в тригонометрический ряд Фурье; (У-3.5)
- работать с комплексными числами и функциями; (У-3.6)
- дифференцировать и интегрировать функций комплексного переменного; (У-3.7)
- разлагать функции в ряд Лорана; (У-3.8)
- применять теорию вычетов для нахождения интегралов; (У-3.9)
- находить изображение по оригиналу и оригинал по изображению; (У-3.10)
- решать задачу Коши для дифференциальных уравнений и систем с помощью операционного исчисления; (У-3.11)
- применять методы, изученные в курсе «Математика M3.1» к решению инженерных, исследовательских и других профессиональных задач; (У-3.12)
- использовать полученные знания при усвоении учебного материала последующих дисциплин (У-3.13)

Владеть

- математической символикой для выражения количественных и качественных отношений объектов; (В-3.1)
- основными понятиями курса; (В-3.2)
- методами исследования сходимости рядов; (В-3.3)
- методами разложения функций в ряды Тейлора и Фурье (В-3.4)
- методами исследования функций комплексного переменного; (В-3.5)
- основными приложениями теории вычетов; (В-3.6)
- методами отыскания изображения по оригиналу и оригинала по изображению; (В-3.7)
- методами решения задачи Коши для дифференциальных уравнений и систем с помощью операционного исчисления; (В-3.8)
- математическим аппаратом для описания, анализа, теоретического и экспериментального исследования и моделирования физических и химических систем, явлений и процессов, использования в обучении и профессиональной деятельности (В-3.9)

В процессе освоения модуля дисциплины у студента развиваются следующие компетенции:

- 1. Универсальные (общекультурные)
 - культура мышления, способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1);
 - способность логически верно, аргументировано и ясно строить устную и письменную речь (ОК-2);
 - способность представлять современную картину мира на основе целостной системы естественнонаучных и математических знаний (ОК-3);
 - способность к личностному развитию (в том числе способность самостоятельно приобретать и использовать в практической деятельности новые знания и умения, а также критически оценивать свои достоинства и недостатки, намечать пути и выбирать средства развития достоинств и устранения недостатков) и повышению профессионального мастерства (ОК-4);
 - способность работать в многонациональном коллективе в кооперации с коллегами (ОК-5);
 - способность осуществлять свою деятельность в различных сферах жизни на основе принятых в обществе моральных и правовых норм (ОК-6).

2. Профессиональные -

- способность демонстрировать базовые знания в области естественнонаучных дисциплин и готовность использовать основные законы в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1);
- способность и готовность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь для их решения соответствующий физико-математический аппарат (ПК-2);
- способность и готовность использовать физико-математический аппарат для решения расчетно-аналитических задач, возникающих в ходе профессиональной деятельности (ПК-3)
- способность и готовность анализировать научно-техническую информацию, изучать отечественный и зарубежный опыт по тематике исследования (ПК-4)
- способность к обучению на втором уровне высшего профессионального образования, получению знаний по одному из профилей в области научных исследований и педагогической деятельности (ПК-5);

Критерий 5 АИОР

- 1.1 Применять *базовые и специальные* математические, естественнонаучные, социальноэкономические и профессиональные знания *в широком* (в том числе междисциплинарном) контексте в *комплексной* инженерной деятельности.
- 1.2 Ставить и решать задачи комплексного инженерного анализа с использованием базовых и специальных знаний, современных аналитических методов и моделей.
- 1.3 Выполнять комплексные инженерные проекты с применением базовых и специальных знаний, современных методов проектирования для достижения оптимальных результатов, соответствующих техническому заданию с учетом экономических, экологических, социальных и других ограничений.
- 1.4 Проводить *комплексные* инженерные исследования, включая поиск необходимой информации, эксперимент, анализ и интерпретацию данных с применением *базовых и специальных* знаний и *современных* методов для достижения требуемых результатов.

4. Структура и содержание модуля Математика М3.1

4.1. Наименование разделов модуля:

4.1.1. Числовые ряды

Понятие числового ряда. Определение сходящегося и расходящегося ряда. Теоремы о свойствах сходящихся рядов. Необходимый признак сходимости ряда. Понятие знакоположительного ряда, необходимое и достаточное условие его сходимости. Достаточные признаки сходимости знакоположительных рядов: Д'Аламбера, радикальный Коши, интегральный Коши, признаки сравнения. Эталонные ряды и их сходимость. Знакопеременные ряды: понятие условной и абсолютной сходимости. Теорема Лейбница. Признак Дирихле. Схема исследования знакочередующихся рядов на сходимость.

4.1.2. Функциональные ряды

Определения функционального ряда и области его сходимости. Понятие равномерной сходимости. Признак Вейерштрасса. Свойства равномерно сходящихся рядов. Степенные ряды. Теорема Абеля и ее геометрическая иллюстрация. Интервал и радиус сходимости степенного ряда. Основные свойства степенных рядов. Ряды Тейлора и Маклорена. Теорема о необходимых и достаточных условиях разложения функции в ряд Тейлора. Таблица разложения основных элементарных функций в ряд Маклорена.

4.1.3. Ряды Фурье

Ортогональные и нормированные системы функций. Тригонометрическая система функций. Понятие тригонометрического ряда Фурье. Теорема о коэффициентах ряда Фурье. Сумма ряда Фурье. Теорема Дирихле. Разложение четных и нечетных функций в ряд Фурье. Разложение в ряд Фурье функций, заданных на полуинтервале. Ряд Фурье для функций с произвольным периодом. Сдвиг сегмента разложения. Понятие об интеграле Фурье.

4.1.4. Комплексные числа и функции

Комплексные числа и действия над ними. Определение ФКП. Реальная и мнимая части функции. Основные элементарные функции комплексного переменного и их свойства. Однозначные и многозначные функции. Точки ветвления и их классификация. Производная ФКП. Дифференцируемость. Теорема о необходимом и достаточном условиях дифференцируемости функции в точке. Условия Коши - Римана. Геометрический смысл производной. Понятие аналитичности ФКП. Интеграл от ФКП вдоль кривой и его свойства. Теорема о независимости интеграла от пути интегрирования. Интегральная формула Коши.

4.1.5. Ряды в комплексной области

Числовые ряды с комплексными членами. Абсолютная сходимость. Степенные ряды. Теорема Абеля. Круг и радиус сходимости. Ряд Тейлора. Теорема о разложении аналитической функции в ряд Тейлора. Ряды Лорана, определение. Главная и правильная части ряда Лорана. Кольцо сходимости ряда Лорана. Теорема Лорана о разложении аналитической функции в кольце в ряд. Нули аналитической функции. Порядок нуля. Теорема о нулях функции. Понятие аналитического продолжения. Особые точки и их классификация. Поведение функции в окрестности особой точки.

4.1.6. Теория вычетов и её приложения.

Вычет функции в изолированной особой точке. Формулы для вычисления вычетов. Основная теорема о вычетах. Применение вычетов к вычислению определённых интегралов.

4.1.7.

Преобразование Лапласа.

Операционный метод решения дифференциальных уравнений

Операционное исчисление: основные понятия и определения. Свойства преобразования Лапласа. Таблица оригиналов и изображений. Отыскание оригинала по изображению. Интеграл Меллина. Решение линейных дифференциальных уравнений с постоянными коэффициентами операционным методом. Интеграл Дюамеля и его применение к решению дифференциальных уравнений. Решение систем однородных и неоднородных дифференциальных уравнений операционным методом.

4.2. Структура модуля по разделам и формам организации обучения представлена в таблице 1.

Таблица 1.

Структура модуля **Математика 3.1** по разделам и видам учебной деятельности

Название раздела/ темы	Аудиторная работа (час)			CPC	контр. р.	Итого
	Лекции	Практ./сем.	Лаб.	(час)	(вкл. в	
		Занятия	Зан.		практ.	
					зан.+	
					конф.	
					неделя)	
Числовые ряды	4	4	0	12		20
Функциональные ряды	6	6	0	12		24
Ряды Фурье	4	4	0	12	2	20
Комплексные числа и функции	6	6	0	12		24
Ряды в комплексной области	4	4	0	10		18
Теория вычетов и её приложения	4	4	0	10	2	18
Преобразование Лапласа.	4	4	0	12	1	20
Операционный метод решения						
дифференциальных уравнений						
Итого	32	32		80	5	144

5. Образовательные технологии

Для успешного освоения модуля дисциплины применяются как предметно — ориентированные технологии обучения (технология постановки цели, технология полного усвоения, технология концентрированного обучения), так и личностно — ориентированные технологии обучения (технология обучения как учебного исследования, технология педагогических мастерских, технология коллективной мыследеятельности, технология эвристического обучения) которые обеспечивают достижение планируемых результатов обучения согласно основной образовательной программе.

Перечень методов обучения и форм организации обучения представлен в таблице 2. Таблица 2.

Методы и формы организации обучения

ФО	Ó	Лекц.	Пр. зан./сем.	Тр.*, Мк**	CPC
Методы					
ІТ-методы					

Работа в команде		X		X
Case-study				
Игра				
Методы проблемного обучения		X	X,X	X
Обучение на основе опыта	X	X	x,x	X
Опережающая самостоятельная работа			X,X	X
Проектный метод				
Поисковый метод	X	X	x,x	X
Исследовательский метод	X	X	x,x	X

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

- 6.1. Общий объем самостоятельной работы студентов по модулю включает две составляющие: текущую СРС и творческую проектно-ориентированную СР (ТСР).
- 6.1.1. Текущая СРС направлена на углубление и закрепление знаний студентов, развитие практических умений и представляет собой:
- работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- выполнение домашних заданий
- опережающая самостоятельная работа;
- изучение тем, вынесенных на самостоятельную проработку;
- подготовка к практическим и семинарским занятиям;
- подготовка к контрольной работе и коллоквиуму, к зачету, к экзамену
- 6.1.2. Творческая проектно-ориентированная самостоятельная работа (TCP), ориентирована на развитие интеллектуальных умений, комплекса общекультурных и профессиональных компетенций, повышение творческого потенциала студентов и представляет собой:
 - выполнение расчетно-графических работ;
- участие в научных студенческих конференциях, семинарах и олимпиадах; качества.
 - 6.2. Содержание самостоятельной работы студентов по дисциплине
 - 6.2.1.Темы индивидуальных заданий:
 - 1. Числовые и функциональные ряды.
 - 2. Ряды Фурье
 - 3. Комплексные числа и функции.
 - 4. Вычеты и их приложения.
 - 5. Операционный метод.
 - 6.2.2 Темы работ выносимые на самостоятельную проработку:
 - 1. Приложения степенных рядов
 - 2. Интеграл Фурье
 - 3. Приложения теории вычетов к вычислению определенных интегралов

6.3 Контроль самостоятельной работы

Контроль СРС студентов проводится путем проверки работ, предложенных для выполнения в качестве домашних заданий согласно разделу 6.2. и рейтинг - плану освоения модуля дисциплины. Одним из основных видов контроля СРС является защита индивидуальных домашних заданий. Наряду с контролем СРС со стороны преподавателя предполагается личный самоконтроль по выполнению СРС со стороны студентов.

6.4 Учебно-методическое обеспечение самостоятельной работы студентов

Для организации самостоятельной работы студентов рекомендуется использование литературы и Internet-ресурсов согласно перечню раздела 9. Учебно-методическое и информационное обеспечение дисциплины.

7. Средства (ФОС) текущей и итоговой оценки качества освоения модуля (дисциплины).

- **7.1. Текущий контроль.** Средствами оценки текущей успеваемости студентов по ходу освоения дисциплины являются:
- 7.1.1. Перечень вопросов, ответы на которые дают возможность студенту продемонстрировать, а преподавателю оценить степень усвоения теоретических и фактических знаний на уровне знакомства
- 1. Приведите определение сходящегося и расходящегося числового ряда и основные теоремы о свойствах сходящихся рядов.
- 2. Сформулируйте достаточные признаки сходимости знакоположительных рядов: Д'Аламбера, радикальный Коши, интегральный Коши, признаки сравнения.
- 3. Знакопеременные ряды: понятие условной и абсолютной сходимости.
- 4. Сформулируйте теорему Лейбница и признак Дирихле
- 5. Дайте определения функционального ряда и области его сходимости. Что такое сумма и *n*-частичная сумма функционального ряда?
- 6. В чем состоит понятие равномерной сходимости?
- 7. Сформулируйте признак Вейерштрасса.
- 8. Перечислите свойства равномерно сходящихся рядов
- 9. Сформулируйте теорему Абеля.
- 10. Перечислите основные свойства степенных рядов
- 11. Какие ряды называют рядами Тейлора и Маклорена?
- 12. Ортогональные и нормированные системы функций
- 13. Понятие тригонометрического ряда Фурье.
- 14. Сформулируйте теорему Дирихле
- 15. Что называется интегралом Фурье?
- 16. Что такое алгебраическая, тригонометрическая и показательная форма комплексного числа? Как они связаны?
- 17. Реальная и мнимая части функции. Основные элементарные функции комплексного переменного
- 18. Производная ФКП. Дифференцируемость. Геометрический смысл производной.
- 19. Сформулируйте условия Коши Римана.
- 20. Понятие аналитичности функции комплексного переменного
- 21. Интеграл от ФКП вдоль кривой. Свойства интеграла
- 22. Сформулируйте теорему о независимости интеграла от пути интегрирования.
- 23. Интегральная формула Коши.
- 24. Степенные ряды в комплексной области. Сформулируйте теорему Абеля.
- 25. Сформулируйте теорему о разложении аналитической функции в ряд Тейлора.
- 26. Какой ряд называется рядом Лорана? Что такое главная и правильная его части?
- 27. Сформулируйте теорему Лорана о разложении аналитической функции в кольце в ряд
- 28. Какие существуют изолированные особые точки у аналитической функции? Каково поведение аналитической функции в окрестности таких точек?
- 29. Вычет функции в изолированной особой точке. Формулы для вычисления вычетов
- 30. Сформулируйте основную теорему теории вычетов.
- 31. Приведите примеры применения теории вычетов к вычислению определённых интегралов.
- 32. Что такое преобразование Лапласа? Для каких функций оно определяется?
- 33. Перечислите основные свойства преобразования Лапласа.
- 34. Отыскание оригинала по изображению. Интеграл Меллина

- 35. В чем состоит решение линейных дифференциальных уравнений с постоянными коэффициентами операционным методом?
- 36. Интеграл Дюамеля и его применение к решению дифференциальных уравнений.

7.1.2. Индивидуальные задания

Пример варианта индивидуальных заданий.

Числовые и функциональные ряды

Вариант 1

1. Найти суммы числовых рядов

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n}$$
 2) $\sum_{n=1}^{\infty} \frac{7}{49n^2 - 7n - 12}$ 3) $\sum_{n=1}^{\infty} \frac{n+3}{(n+2)(n+4)}$

2. Исследовать ряды на сходимость

$$\begin{array}{lll} 1) & \sum\limits_{n=1}^{\infty} \frac{n^n}{(n!)^2} & 2) & \sum\limits_{n=1}^{\infty} (-1)^n \frac{\cos^2 \frac{\pi n}{3}}{n^2 + 2^n} \\ 3) & \sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n-1} \operatorname{arctg} \frac{1}{\sqrt[3]{n-1}} & 4) & \sum\limits_{n=1}^{\infty} \operatorname{arcsin}^{2n} \left(\frac{n+1}{2n+3} \right) \\ 5) & \sum\limits_{n=1}^{\infty} \left(\frac{7n+4}{7n+5} \right)^{-n^2} & 6) & \sum\limits_{n=1}^{\infty} (-1)^n \sqrt[3]{\ln \left(1 + \frac{1}{n^2} \right)} \\ 7) & \sum\limits_{n=2}^{\infty} \frac{(-1)^n}{(n/3) \ln^2(n+7)} & 8) & \sum\limits_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots (3n-2)}{2^{n+1} \cdot n!} \end{array}$$

3. Найти интервалы сходимости функциональных рядов

1)
$$\sum_{n=1}^{\infty} \frac{2^n x^n}{n^2 + 1}$$
 2) $\sum_{n=1}^{\infty} (-1)^n \frac{(x-5)^n}{n3^n}$
3) $\sum_{n=1}^{\infty} (\ln x)^n$ 4) $\sum_{n=1}^{\infty} (-1)^n e^{-n(x-2)}$

4. Найти суммы функциональных рядов

1)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(\frac{1}{n} + \frac{1}{n+1} \right) x^n$$
 2) $\sum_{n=0}^{\infty} (n^2 + 5n + 3) x^n$

5. Разложить в ряд Тейлора по степеням $(x-x_0)$ функции

1)
$$y = \ln \left(\sqrt{1 + 5x} \cdot (1 - 2x)\right)$$
, $x_0 = 0$, 2) $y = \frac{\cosh 3x - 1}{x^2}$, $x_0 = 0$
3) $y = x \cdot e^{2x}$ $x_0 = 3$, 4) $y = \sqrt[5]{x}$ $x_0 = -1$.

Вычислить интегралы с точностью до 0,001

1)
$$\int_{0}^{0.1} \sin 8x^2 dx$$
 2) $\int_{0}^{0.5} \frac{1}{\sqrt[3]{27 + x^3}} dx$

 Заданную на интервале (-l; l) функцию разложить в тригонометрический ряд Фурье. Построить график суммы полученного ряда.

1)
$$f(x) = 2x - 3$$
, $x \in (-\pi; \pi)$,

2)
$$f(x) = 2 + \cos^2 3x$$
, $x \in (-1; 1)$

3)
$$f(x) = \begin{cases} \pi - 2x, & -\pi < x < 0, \\ \pi/2, & 0 \le x < \pi \end{cases}$$

- 2. Функцию $f(x) = \begin{cases} 1-x, & 0 < x < 1, \\ 0, & 1 \le x < 3 \end{cases}$ разложить в ряд Фурье по ортогональной системе функций $\left\{\sin\frac{n\pi x}{3}, & n=1,2,...\infty\right\}$. Построить график суммы полученного ряда.
- **3.** Функцию $f(x) = \begin{cases} 0, & 0 < x < 1, \\ x 2, & 1 \le x < 2 \end{cases}$ разложить в ряд Фурье по ортогональной системе $\left\{\cos\frac{n\pi x}{2}, & n = 0, 1, 2, ...\infty\right\}$. Построить график суммы полученного ряда.
- 4. Функцию $f(x) = e^x$, $x \in (-1; 1)$ представить тригонометрическим рядом Фурье в комплексной форме. Записать:
 - а) спектральную функцию $S(\omega_n)$,
 - b) амплитудный спектр $A(\omega_n) = |S(\omega_n)|$
 - c) фазовый спектр $\varphi(\omega_n) = \arg S(\omega_n)$.
- 5. Функцию $f(x) = \frac{x}{1 + x^2}$, $x \in (-\infty; \infty)$ представить интегралом Фурье.
- 6. Найти преобразование Фурье $F(\omega)$ функции

$$f(x) = \begin{cases} x^2, & |x| \leq 2\\ 0, & |x| > 2 \end{cases}$$

7. Найти синус преобразование Фурье $F_s(\omega)$ функции

$$f(x) = \begin{cases} x + 2, & 0 < x \le 1, \\ 0, & x > 1 \end{cases}$$

Комплексные числа и функции

1. Даны числа $z_1 = \sqrt{3} + i$, $z_2 = 2 + 2i$. Вычислить:

1)
$$2z_1 - 3z_2$$
, 2) $(z_2)^2$, 3) $\frac{\overline{z_1} - z_2}{z_2}$, 4) $\frac{z_1 \cdot z_2}{z_1 + z_2}$,

5)
$$\sqrt[3]{z_1^2 z_2}$$
, 6) $\ln z_1$, 7) $\cos z_2$, 8) $\sin \overline{z}_1$.

Результаты вычислений представить в показательной и алгебраической формах.

Определить и построить на комплексной плоскости семейства линий, заданных уравнениями

1) Im
$$\frac{1}{z+i} = C$$
, 2) Re $z^2 = C$.

3. Решить уравнения

1)
$$\sin z + \cos z = 1$$
, 2) $i \cdot e^{2z} = 2 - 2i$

4. На комплексной плоскости заштриховать области, в которых при отображении функцией $f(z) = \frac{2z+3i}{iz+4}$ имеет место

- а) сжатие k < 1;
- в) поворот на угол 0 < α < 90°.

5. Доказать, что функция $v(x;y)=x^2-y^2$ может служить мнимой частью аналитической функции f(z)=u+iv и найти ее.

6. Вычислить интегралы

$$\begin{array}{lll} 1) \int\limits_{(L)} \frac{dz}{\sqrt{z}}, & \text{где} & L: \{ \ | \ z \ | = 1, \ \text{Im} \ z < 0 \ \}; \\ 2) \int\limits_{(L)} \left(\text{Re} \ z + \text{Im} \ z \right) dz, \\ \text{где} & \text{L} \ - \ \text{ломаная} \ (0; \ 1; \ 1 + 2i). \end{array}$$

7. Вычислить, используя интегральную формулу Коши

$$\oint_{(L)} \frac{z^2 dz}{(z-1)^2(z+1)}$$
 где $(L): \begin{cases} 1) & |z-1|=1/2; \\ 2) & |z+1|=1/2; \\ 3) & |z|=2 \end{cases}$

Комплексные ряды и вычеты

- 1. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2}{5n-1+n-i}$.
- 2. Найти область сходимости ряда $\sum_{n=0}^{\infty} (-1)^n z^{2n} \sum_{n=0}^{\infty} \frac{z^{2n}}{4^{n+1}}$.
- 3. Записать разложения функций в ряды Лорана в окрестностях указанных точек. Найти области сходимости каждого ряда.

1)
$$f(z) = \frac{z}{(z-4)^2}$$
 2) $f(z) = \frac{\text{ch } (iz)}{z(z-\pi)^3}$
 $z_1 = 0$, $z_2 = 4$, $z_3 = \infty$

$$f(z) = \frac{\operatorname{ch}(iz)}{z(z-\pi)^3}$$

4. Найти вычеты функций в указанных точках

1)
$$\frac{e^{2iz} - 1}{z + \pi}$$
, $z_0 = \pi$.
2) $\frac{11ze^{z/(z-4)}}{121 + 11z - 2z^2}$, $z_0 = \infty$.
3) $\frac{z^3 + 1}{z}e^{1/z}$, $z_0 = 0$.
4) $\frac{e^{5z} - 1}{\sin z - z + z^3/6}$, $z_0 = 0$.

2)
$$\frac{11ze^{z/(z-4)}}{121+11z-2z^2}$$
, $z_0 = \infty$.

3)
$$\frac{z^{\frac{z}{3} + \pi}}{z}e^{1/z}$$
, $z_0 = 0$.

4)
$$\frac{e^{5z}-1}{\sin z-z+z^3/6}$$
, $z_0=0$

5)
$$z^5 \ln(1 + a/z)$$
, $z_0 = \infty$.

6)
$$\frac{1}{z^3 - z^6}$$
, $z_0 = 0$.

5. Вычислить интегралы по замкнутому контуру, считая что контур интегрирования обходится в положительном направлении

1)
$$\int_{|z-1|=2} \frac{\sin^2 z}{z^3} \, dz$$

2)
$$\int_{|z-1|=1} \frac{dz}{(z-3)(z^3-1)}$$

3)
$$\int_{|z|=3} \frac{(1+e^{2iz})dz}{z-\pi}$$
4)
$$\int_{|z|=3} z^{5} \exp(2/z) dz$$
5)
$$\int_{|z+2|=2} \frac{e^{-iz} dz}{(z+3)^{2}}$$
6)
$$\int_{|z|=2} \frac{z^{2} dz}{z^{3}+16z}$$

4)
$$\int_{|z|=2}^{2} z^5 \exp(2/z) dz$$

5)
$$\int_{|z+2|=2}^{|z|-4} \frac{e^{-iz} dz}{(z+3)^2}$$

6)
$$\int_{|z|=2}^{z^2} \frac{z^2 dz}{z^3 + 16z}$$

6. Найти с помощью вычетов

1)
$$\int_{-\infty}^{\infty} \frac{e^{-x^2} dx}{(x^2 + 3)^2}$$
 2)
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{x^4 + 16}$$
 3)
$$\int_{a}^{2\pi} \frac{dt}{4\sqrt{2}\sin t + 6}$$
 4)
$$\int_{-\infty}^{\infty} \frac{z e^{-z}}{z^2 + 9} dz$$

2)
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{x^4 + 16}$$

3)
$$\int_{0}^{2\pi} \frac{dt}{4\sqrt{2} \sin t + 6}$$

$$4) \int_{-1-i\infty}^{-\infty} \frac{z e^{-z}}{z^2 + 9} dz$$

1. Найти изображения следующих функций

1)
$$f(t) = \cos^2 t$$
. 3) $f(t) = \int_0^t \tau^2 e^{-3\tau} d\tau$.

$$2) \quad f(t) = t + \frac{1}{2}e^{-t}. \qquad 4) \quad f(t) = \left\{ \begin{array}{ll} 0, & t < 3, \\ e^{-(t-3)}, & 3 \leq t \leq 4, \\ 0, & t > 4. \end{array} \right.$$

2. Найти оригиналы функций по заданным изображениям

1)
$$F(p) = \frac{p}{(p-1)(p-2)}$$
. 2) $F(p) = \frac{e^{-p/2}}{p(p^2+1)}$.

3. Найти решение задачи Коши операционным методом

1)
$$\dot{x} + 5x = e^t$$
, $x(0) = 0$.

2)
$$\ddot{x} - 2\dot{x} + x = t - \sin t$$
, $x(0) = 0$, $\dot{x}(0) = 0$.

3)
$$\ddot{x} + 7\dot{x} + 6x = t^2 + 3t$$
, $x(0) = 0$, $\dot{x}(0) = 2$.

4)
$$9\ddot{x} + x = e^{3t} + 2$$
, $x(0) = 2$, $\dot{x}(0) = 0$.

4. Решить уравнения, используя формулу Дюамеля

1)
$$\ddot{x} + x = \frac{1}{1 + e^t}$$
, $x(0) = 0$, $\dot{x}(0) = 0$.

2)
$$\ddot{x} + 4x = \begin{cases} 0, & t < 2 \\ 1, & 2 \le t \le 3, \\ -1, & 3 < t \le 4, \\ 0, & t > 4, \end{cases}$$
 $x(0) = 0, \quad \dot{x}(0) = 0.$

5. Найти решение систем операционным методом

1)
$$\begin{cases} \dot{x} = 7x - 2y & x(0) = 0, \\ \dot{y} = -x + 3y & y(0) = 2. \end{cases}$$
 2)
$$\begin{cases} \dot{x} = 6x + 5y & x(0) = 1, \\ \dot{y} = -2x + 4y & y(0) = 0. \end{cases}$$

7.2. Рубежный контроль. Данный вид контроля производится на основе баллов, полученных студентом при выполнении контрольных и индивидуальных заданий. Данный вид деятельности оценивается отдельными баллами в рейтинг - листе.

Образцы контрольных заданий

Контрольная работа по теме «Ряды»

I. Исследовать на сходимость ряды:

$$1. \sum_{n=1}^{\infty} \frac{1}{n+1-\cos^2 na}, \quad 2. \sum_{n=1}^{\infty} \frac{(n+1)^2}{(n+2)^2 3^n}, \quad 3. \sum_{n=1}^{\infty} \frac{n!(n+1)!}{(2n)!},$$
$$4. \sum_{n=1}^{\infty} \left(\frac{n-1}{3n+2}\right)^n, \quad 5. \sum_{n=1}^{\infty} \frac{(-1)^n n^4}{n^5+5}.$$

II. Найти интервал сходимости ряда, исследовать ряд на концах интервала:

$$\sum_{n=1}^{\infty} \frac{n}{n+2} \left(\frac{x-5}{2} \right)^n.$$

III. Разложить в ряд Тейлора, в окрестности точки x_0 , функцию f(x):

$$f(x) = \cos^2 x; \quad x_0 = \frac{\pi}{3}.$$

IV. Разложить функции в ряд Фурье в указанном интервале:

1.
$$y = 3x + 7$$
, $x \in (-\pi; \pi)$.

2.
$$y = \begin{cases} -2, & npu - 2 < x < -1 \\ x, & npu - 1 \le x < 0 \end{cases}$$
; $x \in (-2;0)$; (по косинусам).

Контрольная работа по темам «Комплексные числа и функции, комплексные ряды и вычеты»

- 1. Найти все значения корня: $\sqrt[3]{-2}$. Результат вычислений представить в алгебраической форме.
- 2. Найти коэффициент растяжения и угол поворота в точке $z_0 = 1 i$ при отображении $\omega = z^2$.
- 3. Найти аналитическую функцию f(z) = U + iV по известной действительной части и значению $f(z_0)$: $U(x,y) = x^3 3xy^2$; f(i) = -i.
- 4. Вычислить интеграл: $\int z^2 \, {\rm Im} \, z dz$, где $\, L$ отрезок прямой от точки $\, z_1 = 0$, до точки $\, z_2 = 1 2i$.
- 5. Разложить функцию $f(z) = \frac{z}{(z-1)(z^2+2z-3)}$ в ряд Лорана с центром в $z_0=1$ в кольце |z-1|>4.
- 6. Вычислить следующие интегралы:

$$\oint_{|z-2|=4} \frac{zdz}{e^z + e^2} \qquad \int_{-\infty}^{\infty} \frac{\cos \pi x dx}{x^2 + 4x + 5}$$

Контрольная работа по теме «Операционное исчисление» Вариант № 1

I) Найти изображение по заданному оригиналу:

$$e^{5t}\sin^2 t$$
.

II) Найти оригинал по заданному изображению:

$$\frac{e^{-p}}{p(p-1)}$$

III) Операционным методом решить задачу Коши:

$$\ddot{x} + \dot{x} = \cos t$$
, $x_0 = 0$, $\dot{x}_0 = 2$.

IV) С помощью формулы Дюамеля решить задачу Коши:

$$\ddot{x} + x = \begin{cases} 1, & 0 < t < 2, \\ 0, & t > 2, \end{cases} \quad x_0 = \dot{x}_0 = 0.$$

V) 5) Операционным методом решить задачу Коши:
$$\begin{cases} \dot{x} = 3x + y, \\ \dot{y} = -5x - 3y + 2. \end{cases} x_0 = 2; y_0 = 0.$$

7.3 Промежуточный контроль. Данный вид контроля производится на основе баллов, полученных студентом при сдаче зачета или экзамена.

Образцы зачетных и экзаменационных материалов

ТПУ

ЭКЗАМЕН

Kypc 2

Семестр 3

- 1. а) Сформулируйте и докажите признак Лейбница
 - в) Сформулируйте и докажите условия Коши Римана
- 2. Исследовать на сходимость ряды:

$$a. \sum_{n=1}^{\infty} \frac{(n+2)^2}{(n+3)^2 4^n}, \quad b. \sum_{n=1}^{\infty} \frac{n!(n+1)!}{(2n)!}, \qquad c. \sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{2^{n+1} + 5}.$$

3. Разложить в ряд Тейлора с центром в точке x_0 функцию f(x):

$$f(x) = xe^{-2x+3}; \quad x_0 = 1.$$

- **4**. Представить в алгебраической форме все значения корня $\sqrt[3]{-125}$,
- 5. Вычислить интеграл $\int_{-\infty}^{\infty} \frac{\sin(\pi x/2) dx}{x^2 + 4x + 13}$

6. Решите задачу Коши

$$y'' - 2y' + y = f(t), \quad y(0) = y'(0) = 0, \quad f(t) = \begin{cases} 1, t \le 1 \\ t - 2, t > 1 \end{cases}$$

8. Рейтинг качества освоения дисциплины (модуля)

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора $N \ge 77/$ од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

 текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов)

Оценивающие мероприятия	Кол-во	Баллы
Контрольная работа	3	38
Защита ИДЗ	5	22
		60

 промежуточная аттестация (экзамен) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины

- 1. Фихтенгольц Г.М. Основы математического анализа (в 2-х томах).- Москва: Лань, 2008
- 2. Кудрявцев Л.Д Краткий курс математического анализа : учебник : в 2 т 3-е изд., перераб. Москва: Физматлит, 2008.
- 3. Свешников А.Г., Тихонов А.Н. Теория функций комплексного переменного. Москва: Физматлит, 2004
- 4. Г. А. Каменский. Лекции по теории функций комплексного переменного, операционному исчислению и теории разностных уравнений : учебное пособие /— Москва: Высшая школа, 2008
- 5. Берман Г.Н. Сборник задач по курсу математического анализа. Екатеринбург: АТП, 2011.
- 6. Краснов М.Л., Киселев А.И., Макаренко Т.Н. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. Москва: КомКнига, 2006.

9.2. Дополнительная литература

- 1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления (в 3-х томах) Москва: Лань, 2009.
- 2. Багров В.Г., Белов В.В., Задорожный В.Н, Трифонов А.Ю. Методы математической физики: Основы комплексного анализа. Элементы вариационного исчисления и теории обобщенных функций. Томск: Изд-во НТЛ, 2002
- 3. Задорожный В.Н., Зальмеж В.Ф., Трифонов А.Ю., Шаповалов А.В. Высшая математика для технических университетов. IV. Ряды.- Томск: Изд. ТПУ, 2006

- 4. Терехина Л.И., Фикс И.И. Учебное пособие., «Высшая математика» ч.1,2,3,4,5, Томск, Изд. ТПУ, 2004 2012 г.г.
- 5. Терёхина Л.И., Фикс И.И., Сборник индивидуальных заданий, «Высшая математика», части 1,2

9.3. Internet-ресурсы:

http://portal.tpu.ru - персональный сайт преподавателя дисциплины

http://benran.ru - библиотека по естественным наукам Российской Академии Наук

http://mathnet.ru — общероссийский математический портал

http://lib.mexmat.ru —электронная библиотека механико-математического факультета
МГУ

10. Материально-техническое обеспечение дисциплины

Освоение дисциплины производится на базе учебных аудиторий учебных корпусов ТПУ. Аудитории оснащены современным оборудованием, позволяющим проводить лекционные и практические занятия.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлениям

13.03.02	14.03.02	14.05.02	16.03.02	18.05.02	27.03.01
13.03.01	14.05.04	12.03.01	27.03.02	27.03.04	27.03.05
13.03.03	03.03.02	12.03.02	15.03.01	15.03.02	15.03.05
16.03.01	11.03.04	12.03.04	22.03.01	29.03.04	21.05.03

Программа одобрена на заседании кафедры ВММФ ФТИ ТПУ (протокол №177от «16» июня 2014 г.).

доцент кафедры выныч ФТН ТП запымеж в.Ф.		
Репензент	доцент кафедры ВММФ ФТИ ТПУ Цехановский И.А.	
т сцепэспт	доцент кафедры вини Ф т т т т т дехановекий т.л.	

Авторы поцент кафелры RMMФ ФТИ ТПУ Зальмеж В Ф