

Source Code Analysis: Current and Future Trends & Challenges

Alexey Ponomarev1,a, Hitesh S. Nalamwar1,b, Ragesh Jaiswal2,с
1National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russia

2Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India

aaaponomarev@tpu.ru, bHitesh@tpu.ru, сrjaiswal@cse.iitd.ac.in

Keywords: source code (SRC) analysis, software maintenance, reverse engineering,
applications of SRC analysis, challenges in SRC analysis, tentative trends in SRC analysis.

Abstract. The increasing complexity of software systems is making source code analysis a more

economic option to automate the identification of defects, vulnerabilities and inefficiencies. This

paper initially outlines the general anatomy of automatic source code analyzers, dimensions of

analysis that can be performed with today’s state-of-the-art tools, various limitations of

automatic source code analysis in the areas of programming language coverage, quantity of false

positive claims, system architecture breakdowns and code/time complexity. The paper is

concluded by presenting future tentative trends of source code analysis.

Introduction

As software systems evolve, their size and complexity grows. Nowadays the software

development and maintenance efforts driving this evolution is mostly a man-powered codding,

reviewing and troubleshooting effort, and therefore, an error-prone and costly process. As a

consequence, better analysis and visualization of software is demanded to aid in the system

comprehension. Thus, this paper describes the process of automatically extracting program

information from source code or binary artifacts [1] to comprehend the behavior and

functionality of software in order to identify defects, vulnerabilities and inefficiencies.

Background

The high-level overview to the concept of SRC analysis, and what tools can aid SRC analysis,

and to what software engineering tasks it can be applied are given below.

Phases of SRC analysis. The processes involved in SRC analysis commonly used by SRC

analyzers can be broken down into three major phases as follows:

 Parsing phase is the process of analyzing a text, made of a sequence of tokens to determine

its grammatical structure with respect to a given formal grammar. The output from the parser is

used for deeper analysis of the source code.

 Internal representation involves abstracting particular details from the SRC parse tree into

various internal representations, i.e control flow graphs, trace-flows, call graphs, or abstract

syntax trees for automated analysis.

http://www.cse.iitd.ernet.in/~rjaiswal

 Analysis phase involves the actual analysis of the various internal representations in the

previous step. Analysis of SRC is obtained purely through the use of rigorous mathematical

methods. Such mathematical techniques used include abstract interpretation, lexigraphically, and

denotational, axiomatic and operational semantics.

State-of-the-art industry tools. The most of SRC analyzers tools available on the market

perform some form of static or dynamic automated analysis; some are capable of accomplishing

both. The set of detectable issues by various SRC analyzer tools marked with (●) is presented in

Table 1. The results have been derived from experimenting and past experience with the listed

tools.

Table 1. List of available functions for SRC analyzers

Detectable Issue Avalanche
Clone

Doctor
Coverity Fortify Klocwork Lint Valgrind

Arithmetic Error

Overflow, division by zero

● ● ● ●

Attack Vulnerability

Code/file/command-line/SQL injection

 ● ● ●

Buffer Overflow

Array out of bounds, stack/heap

corruption

● ● ● ● ●

Code Redundancy

Unused calculation, duplicate code

 ● ●

Dead Code

Non executed function/ branch/loop,

unused variable/ argument/return value

 ● ● ● ●

Poor Design Practice

Hard code credentials, use invalidated

data, details leak.

 ●

Race Condition

Deadlock, time-to-check vs. time-to-

use a value

 ● ● ●

Resource Leak

Memory, file/socket handle

 ● ● ● ●

Type Mismatch

Sign/unsigned conversion, small /big-

endian encoding mismatch, function

prototype mismatch

 ● ● ●

Undefined Usage

Uninitialized variable, null pointer
● ● ● ● ● ●

dereference, use after free, double free

Applications of SRC analysis

What is SRC analysis used for? What is the need behind the use and what are different ways of

achieving a certain need? These questions are answered in this section.

Architectural recovery. It plays an important role in understanding the system and therefore

maintaining it. Software architecture of a program or a computer system is a representation of

system elements and the relationships between them. The recovery of such artifacts deals with

the ways to reproduce the main decisions made by experts during the design phase of the system.

[2] Moreover, analyzing source code helps to understand what the code does; this helps to

improve the overall comprehension of program functionality.

Clone detection. SRC analysis techniques are used for identifying similar section of code that

shares the same behavior. Some of these techniques are dynamic programming, data mining,

program dependence graphs, and execution traces. [3]

Debugging. Debugging is the activity of finding bugs and reducing the number of bugs in a

software system. Debugging is the hardest activity in software engineering [4]. Some recent

debugging techniques include algorithmic debugging, delta debugging, and statistical debugging.

Fault location. A lot of tools are currently used to locate faults. They can be classified as

knowledge-based, i.e. where the system itself localizes the faults through interpreting the

generated information and non-knowledge-based, i.e. where the user has to guide the system

through inputs and data. [4]

Reverse engineering. Reverse Engineering does not mean architectural recovery. The process of

reproducing all the artifacts from the existing ones is reversed engineering. Decompilers are an

example of reverse engineering, where the compiler recompiles machine language to be

understandable to the programmers. [5]

Code security. During implementation phase of software life cycle, programmers insert many

fraudulent code-blocks. [7] Software managers cannot go through the code every time it is

changed. Tools may help reduce or even overcome this problem.

Software maintenance. The concept of changing software system after delivering is called

software maintenance. Debugging, which is mentioned above, is part of this process. SRC

analysis is used to locate the bug in the source code. [7]

Challenges and tentative solutions

Variation in programming paradigms. Most languages that are being used currently are

composed of segments that are written in different programming languages. A lot of new

concepts have also been implemented in these languages, e.g. dynamic class loading, pointer

arithmetic, data types and exception handling are making parsing a difficult task. Better tools

with higher and more precise analysis are needed that can handle various problems related to the

language issues. Tools that can handle the various problems like pointer analysis, different

languages, etc., will provide more flexibility at runtime, and a more powerful analysis. Also

there is a necessity of meta-model that can capture the needs of a certain programming language,

new techniques for parsing, syntax mapping and semantic analysis to improve SRC analysis. [8]

Tools that cry wolf. An annoying drawback of various SRC analyzers is that they report

excessive false-positives. This is particularly true for static analysis since the discovery of

defects is depending on a limited number of abstract representations and not on full SRC context.

This drawback limits the automation for these tools since developer intervention is required to

audit these claims. Furthermore, SRC analyzers tend to report the same real defect multiple times

as different issue categories. Fixing the real defect resolves multiple reported issues. This makes

it difficult for managers to access the actual code quality.

 To compensate for the excessive number of false-positives, the reported issues should be

managed as part of the software development process. The developer should audit all reported

issues by source code analyzer tools. If deemed legit, a fix request should be opened. If the issue

is indeed considered a false positive, then the SRC analyzer should be calibrated [9] to suppress

this instance of the issue or the false-positive issue should be documented as not a real defect.

Program architecture. Nowadays, software programs are designed and developed with more

than one programming language. Plug-ins can be written in different programming language for

a particular piece of software program. This is a particular challenge to source code analysis with

large systems that contain different languages. A solution to the above challenge is the

construction of common models automatically once we have specified mappings of the language

specific meta-models of concrete front-ends to the common meta-model. The common meta-

model captures program information in language independent of representation. [9,2]

Real time analysis. Real time analysis may take place in compile time and run time. There is no

real time analysis during compilation of the code, though it exists in some integrated

development environments in a limited way. The challenge is to have full real time analysis

during the compilations of the code. Self-healing program is type of run time analysis where the

program fixes itself when an internal error takes place in a data structure. The healing process

happens in real time during the program execution. Even though there is no specfic definition of

self-healing system, the idea is still growing and research is being conducted. [9]

Recent algorithms are based on a single core processor and limited memory, which may cause

running out of memory before running out of time. [9] We would suggest that for dynamic

analysis, distributed architecture could be used to achieve multiprocessor system. It may

consume lots of resources but it will do the job in less time than central system. In this case we

should have the same code to be analysed in each node in the distributed system and every time

change takes place in one it should take place in all of the others in the system. In this case it is

advisable to combine a continuous integration procedures at the end of the development phase,

analysis of the code could be part of that phase.

Conclusions

The use of sophisticated SRC analysis capable of automatically identifying defects,

vulnerabilities and inefficiencies can certainly enhance the quality of software systems and

reduce maintenance costs. A wide range of analysis can be performed on various programming

languages. All of which involve the phases of parsing the SRC to create call-graphs, syntax trees,

execution-traces and control-flow for abstract representations to be lexicographically,

denotationally, axiomatically or operational semantically analyzed. This analysis can detect

various types of arithmetic, buffer overflows, code redundancy, race conditions, resource leaks,

type mismatches and undefined usage issues. All of which are helpful in architectural recovery,

debugging, fault location and reverse-engineering tasks. Some limitations of SRC analysis

include the amount of false-positives they report as well as the time/memory resource

intensiveness required. As the field of SRC analysis matures, these factors should be kept in

mind to successfully incorporate it in the software development process.

References

[1] D. Binkley, Source Code Analysis: A Road Map, Future of Software Engineering,

Minneapolis MN, 2007(104 – 119).

[2] Chung-Horng Lung, Agile software architecture recovery through existing solutions and

design patterns, Proc. of 6th Int'l Conf. on Software Engineering and Applications (SEA),

Boston, MA, Nov. 2002(539–545).

[3] Ghulam Rasool, and Nadim Asif, Software architecture recovery, World Academy of

Science, Control, Quantum and Information Engineering 2007(4/34).

[4] James S. Collofello, Larry Cousins, Towards automatic software fault location through

decision-to-decision path analysis, Proceedings of the National Computer Conference1987

(539).

[5] Mathew Schwartz, How to Reverse Engineering, 2011. Information on

http://www.computerworld.com/s/article/65532/Reverse_Engineering

[6] Gert van der Merwe, Jan H.P. Eloff., Software source code, visual risk analysis: an example,

Department of CS, Rand Afrikaans University, Johannesburg 2006, South Africa.

1998(17(3)/233-252).

[7] Penny Grubb, Armstrong A. Takang, Software Maintenance: Concepts and Practice,

World Scientific Publishing Company, 2nd edition, September 2003.

[8] D. Cruz, P.R. Henriques and J.S. Pinto, Code analysis: past and present, Proceedings of the

Third International Workshop on Foundations and Techniques for Open Source Software

Certification (OpenCert 2009), University of Minhom.

 [9] A. Chou, False positives over time: a problem in deploying static analysis tools coverity.

Information on http://www.cs.umd.edu/~pugh/BugWorkshop05/papers/34-chou.pdf

http://www.computerworld.com/s/article/65532/Reverse_Engineering

