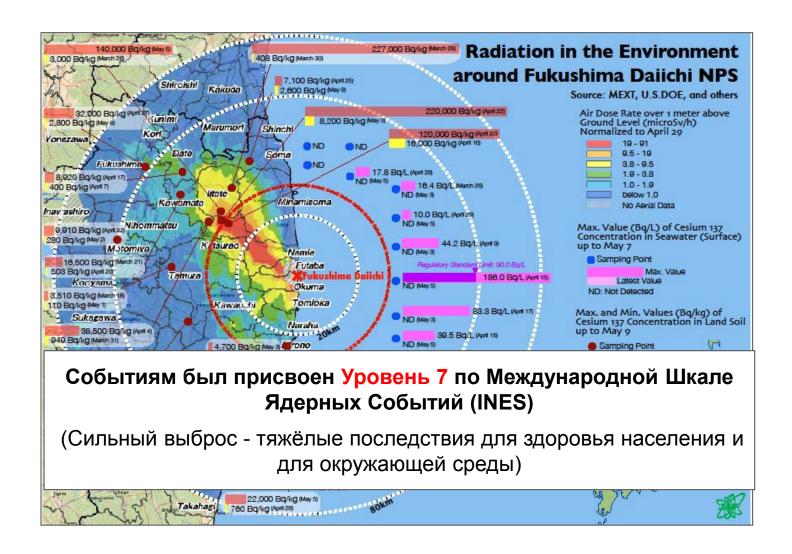
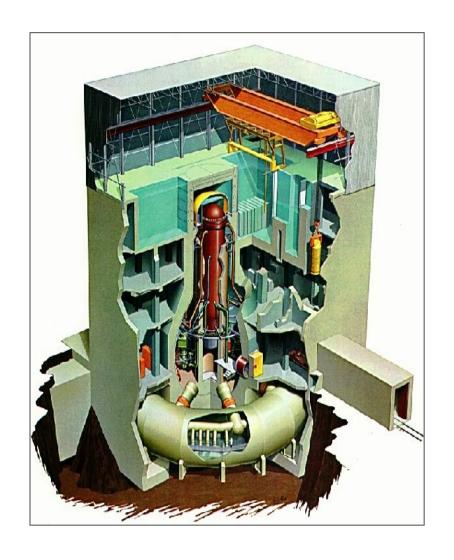


> Резервные дизель генераторы работали до Цунами

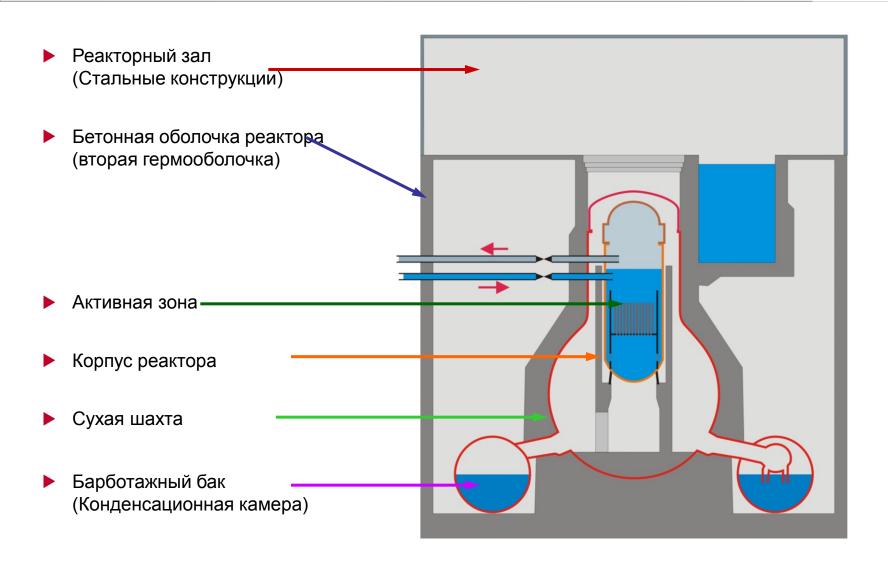
Цунами: 14 м Проект: 5,7 м

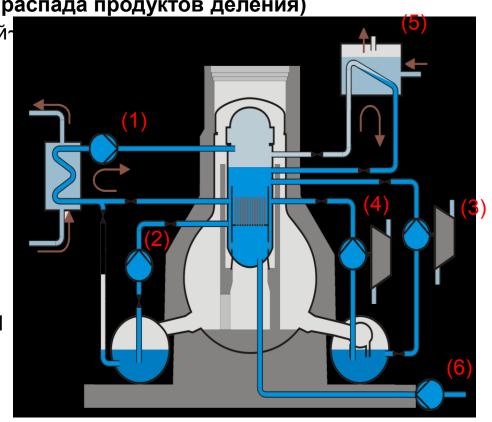



Весь мир сочувствовал японскому народу в дни этой трагедии

Все мы члены международного ядерного сообщества должны взять на себя ответственность за катастрофу, которая произошла у наших коллег

Мы обязаны выучить уроки преподнесенные нам Фукусимой




Хронология событий

Остаточное тепловыделение: (из-за распада продуктов деления)

После остановки ~6% Через 1 дней

Аварийная система охлаждения аз

- 1) Система отведения остаточного тепловыделения
- 2) Охлаждения аз низкого давления
- 3) Охлаждение аз высокого давления
- 4) Изолированное охлаждения аз (Блоки 2,3 [BWR4])
- 5) Изолированный конденсатор (Блок1 [BWR3])
- 6) Система борирования

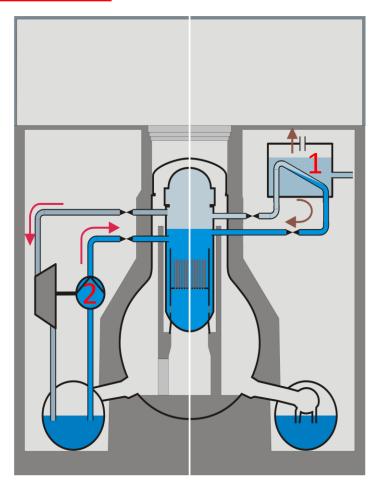
Хронология событий

Фукусима 1 Блок 1

(1) Изолированный конденсатор

- Пар входит в теплообменник
- Конденсат стекает в корпус реактора
- Пар из второго контура выходит из станции

Необходимы насосы для водоснабжения

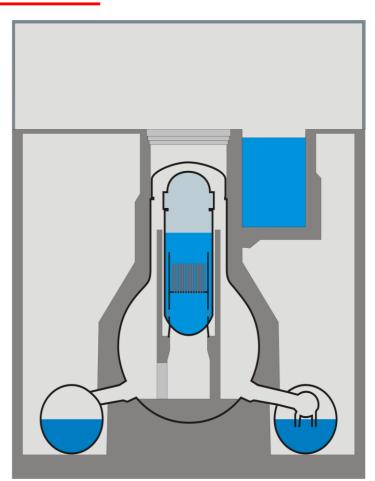

Фукусима 1 Блоки 2 и 3

(2) Изолированное охлаждение аз

- Пар из реактора вращает турбину
- Турбина приводит в движение насос, откачивающий воду из барботажного бака в реактор
- Пар начинает конденсироваться в баке

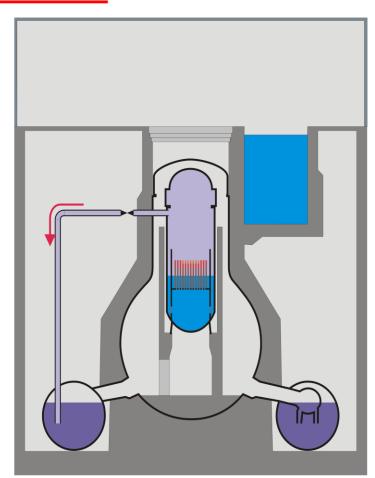
Необходимо:

- Подача электроэнергии
- Температура в баке < 100°С



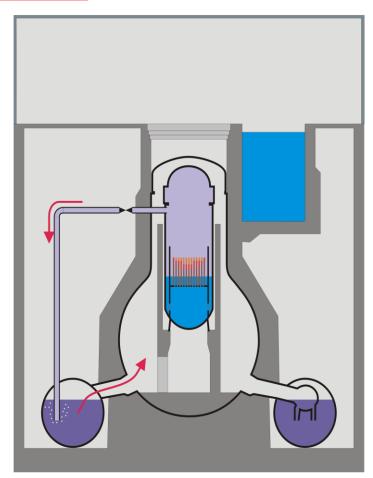
Хронология событий

Происходит потеря теплоносителя (LOCA)


- 11.3. 16:36 в Блоке 1
 - Конденсатор прекращает работу
- 13.3. 5:30 в Блоке 3
 - Насос останавливается
- 14.3. 13:25 в Блоке 2
 - Насос останавливается
- Блоки 1-3 лишены какого-либо отвода тепла от активной зоны

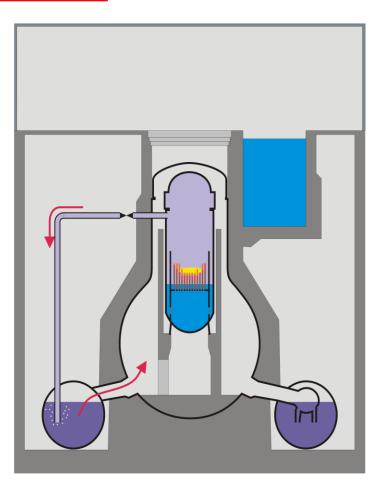
Хронология событий

- ~50% аз обнажено
 - ◆ Температура оболочек ТВЭЛов увеличивается, но еще нет существенных повреждений аз
- ~2/3 аз обнажено
 - ◆ Температура оболочек превышает ~900°C
 - Распухание/ Растрескивание оболочек
 - ◆ Выход продуктов деления из ТВЭЛов



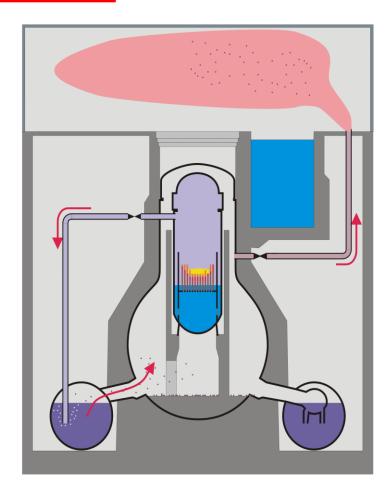
Хронология событий

~3/4 аз обнажено


- ◆ Температура оболочек более ~1200°C
- ◆ Цирконий вступает в реакцию с водой
 Zr + 2H₂0 → ZrO₂ + 2H₂
- Экзотермальная реакция дополнительно нагревает аз
- Образование водорода
 - Блок 1: 300-600 кг
 - Блок 2/3: 300-1000 кг

Хронология событий

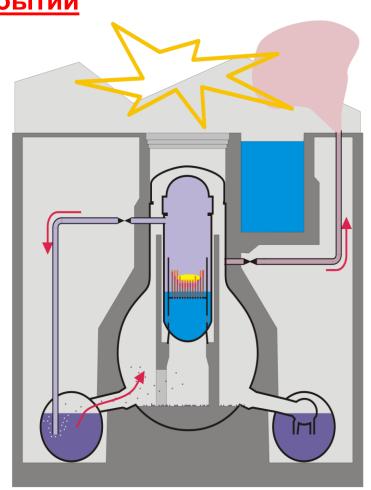
- ▶ При ~1800°C [Блоки1,2,3]
 - Расплав оболочек
 - Расплав стальных структур
- ▶ При ~2500°C [Блоки1,2]
 - Ломаются ТВЭЛы
- ▶ При ~2700°C [Блок1]
 - Расплав уран-циркониевого эвтектического сплава
- Подача морской воды в оболочку реактора остановила расплав на всех 3 блоках
 - ♦ Блок № 1: 12.3. 20:20 (27 часов без воды)
 - ♦ Блок № 2: 14,3. 20:33 (7 часов без воды)
 - ♦ Блок № 3: 13,3. 9:38 (7 часов без воды)



Стравливание воздуха

Хронология событий

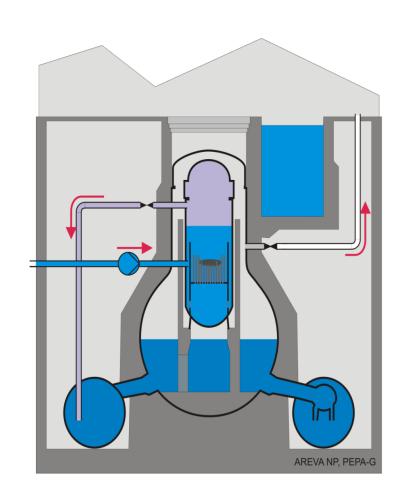
- Оболочка (MARK I)
 - Последний барьер между продуктами распада и окружающей средой
 - ♦ Толщина стены ~30 мм
 - ◆ Расчётное давление 4-5 бар
- Давление достигло 8 бар
 - Заполнение инертным газом (азот)
 - Водород из-за окисления аз
 - Кипение в конденсаторе
- Разгерметизация оболочки
 - ◆ Блок 1: 12.3. 4:00
 - ◆ Блок 2: 13.3 00:00
 - Блок 3: 13.3. 8:41



Хронология событий

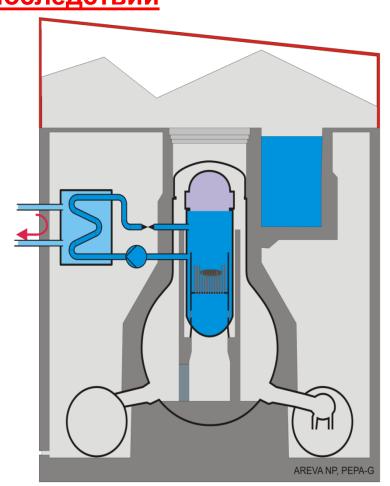
Блоки 1 и 3

Происходит взрыв водорода в реакторном зале


- Разрушение стальной оболочки
- Железобетонная оболочка выглядит неповрежденной

Ликвидация последствий

- Морская вода остановила развитие аварии
 - Нет дальнейшего разрушения аз
 - Температура корпуса реактора снизилась
 - Нет дальнейшего выхода материалов из ТВЭЛ
- Дальнейшее охлаждение реакторов с помощью
 - ◆ Блок 1: Конденсатор
 - ◆ Блок 2 & 3: Вентиляция


Ликвидация последствий

Краткосрочные меры по восстановлению

- Улавливатель для продуктов деления на поверхности
- Введение замкнутых систем охлаждения
- Уменьшения количества воды в строениях реактора
- Возвести саркофаг для защиты от внешних воздействий

Долгосрочные меры по восстановлению

- Построить водоочистительные мощности для обеззараживание воды внутри здания
- Удалить соль из реакторов
- Опустошить бассейны ОЯТ
- Подождать 10 лет для снижения уровня радиоактивности
- Демонтировать аз реактора

Ликвидация последствий

Позитивные моменты:

Восстановления света в зале управления

Блок 3: Март 22 Блок 2: Март 26

Блок 1: Март 24 Блок 4: Март 29

Урон от аварии

Землетрясение и Цунами

Природная катастрофа исторических масштабов

Погибших: 25,000 человек

Убытки: \$ 250 миллиардов

Фукусима

Техногенная катастрофа 7 уровня по шкале INES

Смертей от облучения: Нет

Получена доза> 250 м3в: 6

Выбросы~ 10% Чернобыля

Консервация: \$ 2.53

миллиардов

(расходы ТЕРСО)

Уроки для инженеров

ТЕХНОЛОГИИ ЯДЕРНОЙ БЕЗОПАСНОСТИ

ГЛУБОКОЭЛЕШОНИРОВАННАЯ ЗАЩИТА

C

ВЕРОЯТНОСТНЫМ АНАЛИЗОМ РИСКОВ ВНУТРЕННЕПРИСУЩАЯ БЕЗОПАСНОСТЬ

C

ВЫСОЧАЙШИМИ НАЧАЛЬНЫМИ ТРЕБОВАНИЯМИ

ОБЩИЕ ТРЕБОВАНИЯ К СИСТЕМАМ БЕЗОПАСНОСТИ, ПРИЗВАННЫМ ИСКЛЮЧИТЬ АВАРИЮ ИЛИ СМЯГЧИТЬ ЕЕ ПОСЛЕДСТВИЯ

<u>Уроки для инженеров</u>

<u>Глубокоэшелонированная</u>

Уроки для инженеров

ВЕРОЯТНОСТНЫЙ АНАЛИЗ для СЛОЖНЫХ СИСТЕМ

МАСШТАБ (РАЗРУШИТЕЛЬНОСТЬ) ПОСЛЕДСТВИЙ

X

ВОЗМОЖНОСТЬ (ВЕРОЯТНОСТЬ) ВОЗНИКНОВЕНИЯ

<u> Уроки для инженеров</u>

НАДЕЖНЫЙ И БЕЗОПАСНЫЙ ПРОЕКТ АЭС

Внутренне присущая безопасность для систем контроля

Пассивные системы безопасности

"Внутренне присущая безопасность направлена на:

- Избежание или устранение угроз
- > Снижение их масштабов и вероятности появления"

Уроки для инженеров

Недостатки:

Вероятностная оценка рисков не учитывает Непрогнозируемые отказы

Сложное применение модели «Отказов по общим причинам»

Исследования по системам безопасности (МІТ): "Любая сложная система, не важна насколько хорошо она была спроектирована и сконструирована не может быть считаться безаварийной"

Уроки для инженеров

Катастрофические ядерные инциденты неизбежны

Показатель безопасности Частота f расплава аз

Комитет по ядерному надзору

требует: f < 1 в 10,000 лет

Современные AЭC: f < 1 в 100,000 лет

"Первое и самое важное ядерные аварии случаются...мы никогда не будем уверены что мы абсолютно защищены."

(John Ritch, Ген Директор, WNA)

Несоответствие проекта АЭС возможным угрозам

После этих уроков мы знаем:

06-11: IAEA Ministerial Conference

- Внешние угрозы
- Ликвидация последствий
- Готовность к ЧП

Доклад японского правительства

ІАЕА конференция по ядерной безопасности, Вена, 21 Июня2011

Уроки для инженеров

НЕЛЬЗЯ БЫТЬ УВЕРЕННЫМ НА 100%- АВАРИИ МОГУТ СЛУЧАТЬСЯ

ГЛОБАЛЬНОЕ СОТРУДНИЧЕСТВО В ТЕХНОЛОГИЯХ БЕЗОПАСНОСТИ

СООТВЕТСТВУЮЩАЯ ОЦЕНКА И ЗАЩИТА ОТ ВНЕШНИХ УГРОЗ

ПРАВИЛА ПОСТРОЕНИЯ СИСТЕМ БЕЗОПАСНОСТИ
-ГЛУБОКОЭШЕЛОНИРОВАННОЙ ЗАЩИТЫ И ВНУТРЕННЕ
ПРИСУЩЕЙ\ПАССИВНОЙ БЕЗОПАСНОСТИС УЧЕТОМ ПОСЛЕДНИХ РАЗРАБОТОК

Культура безопасности

Доклад японского правительства
Япония создаст культуру безопасности...
Развивая ее с помощью системы дополнительного непрерывного образования в сфере безопасности

ПРИВИВАНИЕ КУЛЬТУРЫ БЕЗОПАСНОСТИ

Неотъемлемым элементом системы управления должна быть культура безопасности, определяющая позицию и поведение в отношении безопасности всех соответствующих организаций и лиц.

(IAEA: Fundamental Safety Principles, SGF-1, 3.13)

Культура безопасности

МИР ПОСЛЕ ФУКУСИМЫ

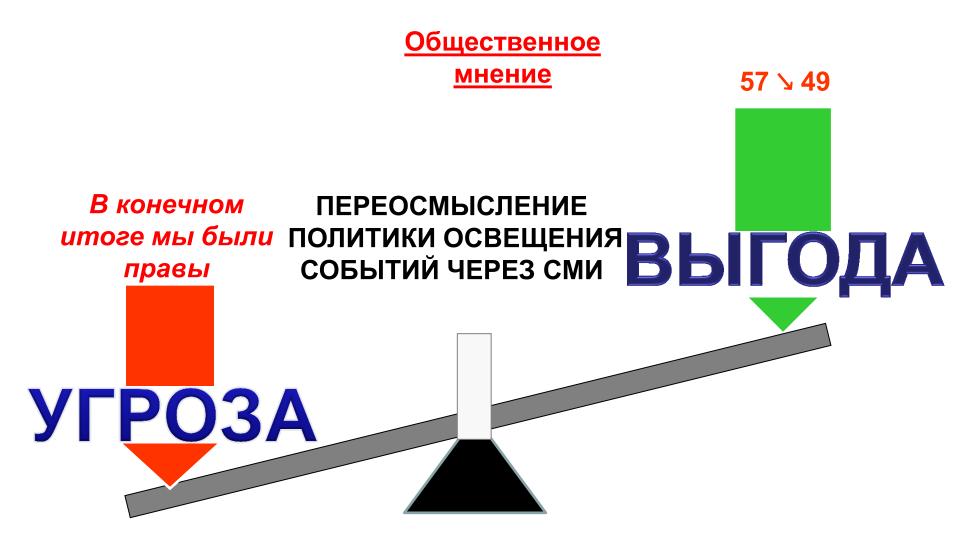
МЕЖДУНАРОДНАЯ КОНВЕНЦИЯ ПО ЯДЕРНОЙ БЕЗОПАСНОСТИ

Необходима открытость управляющих компаний к
- Независимым и эффективным нормам
Переоценке внешних угроз

Установление международных стандартов безопасности

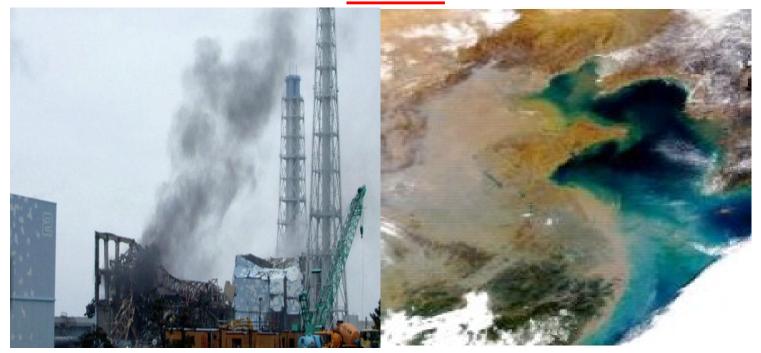

Yukiya Amano, General Director of IAEA (June 21):

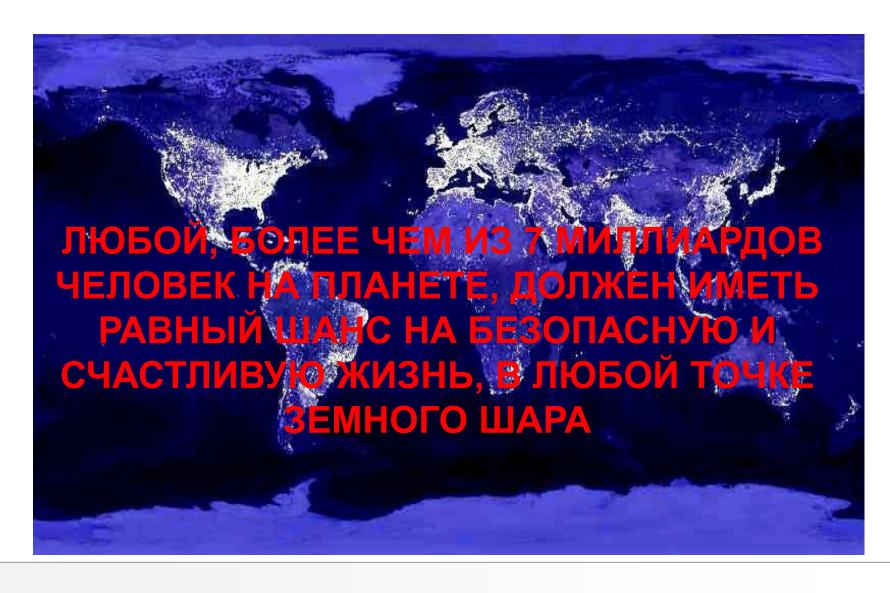
- Проверки безопасности инспекторами МАГАТЭ на регулярной основе-



Общественное мнение

Принимая во внимание негативное отношения к АЭС Мы все несем ответственность за наше будущее




<u>Общественное</u> <u>мнение</u>

Сделка с дьяволом

Самый важный урок: давайте работать вместе на благо мира в котором мы живем

Спасибо за Ваше внимание!