Probability and Statistics

Probability

1. Combinatorics. Elementary event, event space. Event algebra.
2. Probability definition (classical, geometrical, statistical).
3. Sum and multiplication theorem. Conditional probability. Independent event.
4. Total probability formula. Bayes formula.
5. Independent retesting. Poison formula. Local and integral Laplace theorem.
6. Discrete random quantity. Distribution function and its properties.
7. Continuity random quantity. Distribution function, probability density.
8. Numerical characteristic random quantities.
9. Distribution lows of random quantity: binomial, Poison, uniform, exponential, normal distribution.
10. Law of large numbers. Bernoulli and Chebyshev theorem. Limiting Lyapunov’s theorem.
11. Two-dimensional random quantity. Distribution function, probability density. Distribution low.
12. Conditional distribution low of random quantity system. Conditional expectation value. Dependence and independence random quantity.
13. Covariation. Correlation. Linear regression.

Mathematical Statistics
14. Parent population, sample. Variational series. Frequency bar chart (histogram). Empirical distribution function. Sample mean, dispersion.
15. Statistical estimation: biased and unbiased, efficient, consistent estimator. Confidence probability and interval. principle of maximum likelihood.
16. Functional dependence and regression. Correlation coefficient, correlation ratio and its properties.
17. Fitting criterion conception. Test of hypothesis.
18. Finale lecture.

