Расчет скорости воздушного потока на высоте башни ветроэнергетической установки

Условие:

Определить мощность горизонтально-осевой ВЭУ с ветроколесом диаметром D_{BK} и скорость воздушного потока на высоте башни ветроэнергетической установки при заданных условиях.

Определить:

- 1. Как изменится мощность и скорость при другой высоте башни ВЭУ h_2 и h_3 ?
- 2. Изменится ли мощность ветровой станции при увеличении D_{BK} на 20% при неизменной высоте башни (h_1 =const)?
- 3. Изменится ли мощность ветровой станции при уменьшении D_{BK} на 20% при неизменной высоте башни (h_1 =const)?

Построить график $h_{\text{башни}} = f(N_{\text{ВЭУ}})$.

Построить график $D_{BK} = f(N_{B \ni y})$.

Исходные данные:

Таблица 1. Исходные данные

Вариан	Высота слоя атмосфер ы h_0 , м	Скорост ь ветра, V ₀ , м/с	Степень открытости флюгера	Форма рельефа местност и	Метеостанци я	Высот а башни, h ₁ , м	$D_{BK} \\ , \text{M}$	Измененна я высота башни h_2 , м	Измененна я высота башни h ₃ , м
1	17	2,5	Вблизи залива	Выпуклая	«Цып- Наволок»	30,0	8	35	25
2	18	2,75	Вблизи океана	Плоская	«Крестовый»	32,5	8,5	37,5	27,5
3	19	3	Вблизи большой реки	Вогнутая	«Сеть- Наволок»	35,0	9	40	30
4	19	3,25	Вблизи большого озера	Выпуклая	«Цып- Наволок»	37,5	9,5	42,5	32,5
5	20	3,5	Вблизи внутреннего моря	Плоская	«Крестовый»	40,0	10	45	35

6	21	3,75	Среди многих элементов защищенност и	Вогнутая	«Сеть- Наволок»	42,5	10,5	47,5	37,5
7	22	4	Среди отдельных элементов защищенност и	Выпуклая	«Цып- Наволок»	45,0	11	50	40
8	23	4,25	Без элементов защищенност и	Плоская	«Крестовый»	47,5	11,5	52,5	42,5
9	24	4,5	Вблизи большой реки	Вогнутая	«Сеть- Наволок»	50,0	12	55	45
10	25	4,75	Вблизи большого озера	Выпуклая	«Цып- Наволок»	52,5	12,5	57,5	47,5
11	26	5	Вблизи большой реки	Плоская	«Крестовый»	55,0	13	60	50
12	27	5,25	Ниже окружающих предметов	Вогнутая	«Сеть- Наволок»	57,5	13,5	62,5	52,5
13	28	5,5	Вблизи залива	Выпуклая	«Цып- Наволок»	60,0	14	65	55
14	29	5,75	Вблизи океана	Плоская	«Крестовый»	62,5	14,5	67,5	57,5
15	30	6	Вблизи внутреннего моря	Вогнутая	«Сеть- Наволок»	65,0	15	70	60
16	31	6,25	Среди многих элементов защищенност и	Выпуклая	«Цып- Наволок»	67,5	15,5	72,5	62,5
17	32	6,5	Среди отдельных элементов защищенност и	Плоская	«Цып- Наволок»	70,0	16	75	65
18	33	6,75	Без элементов защищенност и		«Крестовый»	72,5	16,5	77,5	67,5

Решение:

Скорость воздушного потока на высоте башни ВЭУ:

$$V_{h_1} = K_P V_0 \left(\frac{h_1}{h_0}\right)^m, \frac{M}{c}$$

где: V_0 – скорость ветра, измеренная вблизи земной поверхности на высоте h_0 ;

 h_1 , м – высота башни;

т – показатель степени (см. табл. 2)

Таблица 2. Зависимость показателя степени m от скорости ветра для слоя атмосферы, высотой до 121 м

Высота		Скорость ветра, м/с								
слоя атмосферы	1	2	3	4	5	6	7	8	9	
2 – 10	0,215	0,206	0,196	0,180	0,175	0,163	0,151	0,140	0,124	
10 – 121	0,54	0,34	0,264	0,204	0,170	0,147	0,130	0,120	0,117	

 K_{P} – коэффициент, учитывающий рельеф местности:

$$K_{P} = \frac{K_{A}}{K_{MC}},$$

где: K_A – фактический класс (степень) открытости местности в баллах масштаба открытости (см. табл. 3)

Таблица 3. Классификация местоположения точки A и степени открытости флюгера (в баллах масштаба открытости по В.Ю. Милевскому)

Степень открытости флюгера	Форма рельефа местности						
Степенв открытости флюгера	Выпуклая	Плоская	Вогнутая				
Вблизи	от водной поверхн	ости					
Открытое побережье:							
Океана или открытого (внешнего) моря	23	21	18				
Закрытого (внутреннего) моря	22	19	15				
Залива, большого озера	20	16	12				
Большой реки	17	13	9				
Вдали	от водной поверхно	ости					
Выше окружающих предметов:	14	10	6				
Без элементов защищенности	11	7	4				
Среди отдельных элементов							

защищенности	8	5	3
Среди многих элементов защищенности			
Ниже окружающих предметов (среди	2	1	0
элементов защищенности)			

Примечание: элементами защищенности могут являться холмы, строения, деревья, если расстояния от них до ветроизмерительного прибора менее 20-кратной их высоты. $K_{\text{MC}} - \text{класс открытости опорной метеостанции}.$

Класс открытости метеостанции определяют по методике В.Ю. Милевского (класс открытости по і-му румбу)

$$\mathbf{K}_{\mathrm{MC}} = \sum_{\mathrm{i=1}}^{8} \mathbf{K}_{\mathrm{i}} \tau_{\mathrm{i}},$$

где: K_i – класс открытости по i-му румбу (см. табл. 4);

 $\tau_{\rm i}$ – повторяемость направления ветра і-го румба в долях (см. табл. 5).

Таблица 4. Класс открытости по Милевскому (К₁)

Метеостанция,		Направление (румб)							
пункт	С	СВ	В	ЮВ	Ю	ЮЗ	3	СЗ	
«Цып- Наволок»	7	18	18	18	4	10	7	7	
«Крестовый»	19	19	19	19	10	7	7	7	
«Сеть- Наволок»	21	17	12	9	9	17	19	22	

Таблица 5. Повторяемость направлений ветра, $\%(\tau_i)$

Метеостанция,		Повторяемость направлений ветра, %								
пункт	С	СВ	В	ЮВ	Ю	ЮЗ	3	C3		
«Цып- Наволок»	10	7	8	11	11	23	17	13		
«Крестовый»	12	9	9	7	7	23	12	11		
«Сеть- Наволок»	10	7	8	11	11	23	17	13		

Мощность ВЭУ:

$$N_{h_1} = 0.5 \rho F_{BK} V_{h_1}^3 \eta_{BSY}, B_T$$

где: ρ – плотность воздуха (при нормальных условиях ρ = 1, 226 $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$);

 ${
m F_{BK}}$ – площадь поперечного сечения воздушного потока, приходящегося на ВК (ометаемая площадь ветроколеса);

 $V_{h_{\scriptscriptstyle l}}$ – скорость ветра на высоте $h_{\scriptscriptstyle l}$;

 $\eta_{\rm BSY}$ – КПД ВЭУ <u>в долях</u> (в номинальном режиме составляет 45 – 48 %).

Ометаемая площадь ветроколеса:

$$F_{BK} = 0,25\pi D_{BK}^2, M^2$$