Экзогенные месторождения

1. Месторождения выветривания:

- 1.1. Остаточные месторождения (коры выветривания).
 - 1.1.1. Собственно коры выветривания.
 - 1.1.2. Зоны окисления месторождений.
- 1.2. Инфильтрационные месторождения.

2. Осадочные месторождения.

- 2.1. Механогенные осадочные месторождения и россыпи.
- 2.2. Хемогенные осадочные месторождения.
 - 2.2.1. Месторождения, образованные из истинных растворов
 - 2.2.2. Месторождения, образованные из коллоидных растворов.
 - 2.2.3. Биохимические месторождения.

Остаточные месторождения (коры выветривания).

Они включают месторождения бокситов (95% мировых запасов), Fe, Mn, Ni, Co, редких металлов, Au, каолина и другие полезные ископаемые.

- Основная их часть связана с выветриванием в континентальных условиях.
- Некоторые типы месторождений (бентонитовые глины, цеолиты), связаны с подводным выветриванием (гальмиролизом (*om греч. Halmyros солёный и lysis распад*)).

Корой выветривания гранитов являются каолины Полоновского месторождения (Хмельницкая область).

Отработанные залежи каолина у пос. Сосновое (Ровенская область).

Изредка вторичные каолины залегают непосредственно под почвой. Окрестности пос. Любар, Житомирская область

Кора выветривания в районе пос. Аникино

(фото А.Ялалтдиновой)

Кора выветривания в районе Лагерного сада (фото А.Ялалтдиновой)

Памятник природы Ново-Черемшанский карьер (Никелевый профиль коры выветривания), г.Верхний Уфалей

- Выветривание неравновесный процесс изменения и разрушения минералов и горных пород на поверхности Земли под воздействием физических, химических и биологических факторов.
- Учение о выветривании получило начальное развитие в трудах почвоведов (В.В. Докучаев, Б.Б. Полынов и др.). Процессы выветривания происходили и происходят непрерывно на всех континентах. Интенсивность выветривания зависит от многих факторов и неодинакова для разных периодов развития земной коры. Интенсивное континентальное выветривание приводит к формированию специфических геологических формаций формаций кор выветривания.
- В истории земной коры выделяют эпохи наиболее активного корообразования, когда совокупное действие благоприятных факторов приводило в формированию мощных кор выветривания.

Основные факторы, обуславливающие формирование коры выветривания:

- климат,
- геологическое строение территории,
- геоморфологические особенности,
- тектоническая активность.

Основные агенты преобразования горных пород в коре выветривания:

- вода,
- кислород,
- углекислота,
- различные кислоты,
- микроорганизмы,
- температура.

Вода – один из наиболее важных агентов выветривания. Она осуществляет растворение, перенос и отложение природных химических соединений в коре выветривания, растворение активных агентов и доставку их на участки преобразования горных пород, разложение минералов материнской породы при гидратации и гидролизе, регулирование физико-химической обстановки процессов преобразования горных пород в корах выветривания путем изменения кислотности-щелочности (рН), окислительно-восстановительного потенциала (Eh) и химического состава растворенных в ней веществ.

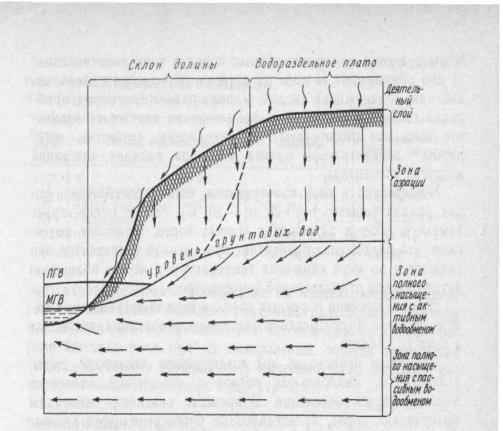
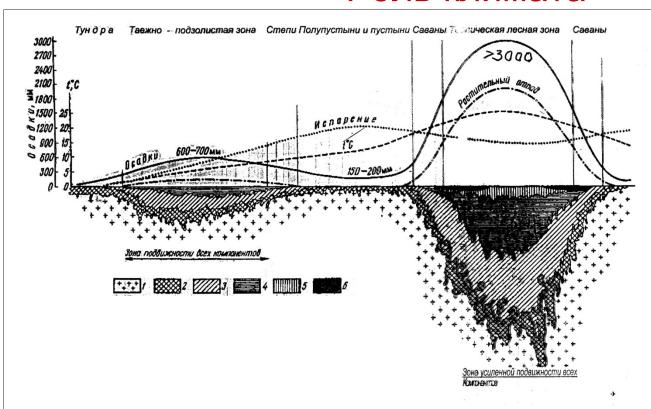



Рис. 83. Схема циркуляции подземных вод при благоприятных условиях инфильтрации осадков. По А. Лыкошину (с добавлениями). Горизонты речной воды; ПГВ — паводковый. МГВ — меженный

Главным источником воды в корах выветривания являются атмосферные осадки (метеорные воды). При подземной циркуляции метеорные воды проходят через три зоны: 1 — аэрации, или просачивания; 2 — полного насыщения с активным водообменом; 3 — полного насыщения с замедленным водообменом.

- **Кислород**, как и вода, играет важную роль в процессах окисления, имеющих большое значение при образовании коры выветривания. В этих процессах участвует кислород атмосферы, растворенный в воде кислород, а также кислород минеральных соединений окислительно-восстановительных реакций.
- Углекислота и другие кислоты органического и неорганического происхождения активно участвуют в процессах окисления, интенсифицируют процесс разложения горных пород в коре выветривания, придавая ему определенную направленность.
- Как показывают современные исследования, особая роль в разрушении горных пород принадлежит микроорганизмам. Микроорганизмы, главным образом бактерии, регенерируют кислород, углекислоту и ряд органических кислот, поставляя эти важнейшие агенты выветривания в кору выветривания. Они обменивают ионы водорода на катионы породообразующих соединений, поддерживая кислые условия разложения пород, способствуют избирательному накоплению отдельных химических элементов в коре выветривания.
- **Температура** в коре выветривания, хотя и колеблется в узких пределах (обычно от +20 до -20°С), но играет важную роль в разложении горных пород. Наиболее интенсивно разложение происходит при высокой температуре. По мере снижения температуры оно снижается и при минусовых значениях может почти полностью затихать

Роль климата

Региональная зональность коры выветривания в меридиональном сечении. По Н. Страхову.

- 1 сеежая порода;1-6 зоны коры выветривания:2-дресвы, химически мало изменённой,
- 3—гидрослюдисто-монтмориллонит-байделлитовая, 4 каолинитовая; 5 охры $(A1_2O_3)$; 6 панцирь $(Fe_2O_3+A1_2O_3)$ -«железная шляпа»

Главные процессы, приводящие к разложению минералов в коре выветривания:

- Окислительно-восстановительные реакции, происходящие за счет основных потенциальных компонентов (U, S, Fe, C).
- Реакции обмена, происходящие из-за изменения состава и кислотнощелочных условий (нарушения равновесия).
- Гидролиз безводных соединений.
- Микробиальная деятельность.
- Явления сорбции и десорбции.

Конечными продуктами глубокого химического выветривания являются *глинистые минералы, простые окислы и гидроокислы.* Кроме них, могут сформироваться *карбонаты, сульфаты и сульфиды, фосфаты*. Всё это новообразованные минералы, обычно дисперсной фазы.

Следовательно, кора выветривания представляет собой сложный агрегат глинистых новообразований с различной примесью устойчивых реликтовых минералов песчано-алевритовой размерности и обломками неразложившихся коренных пород.

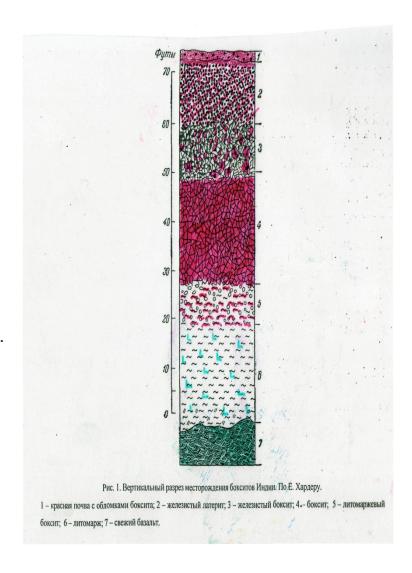
В этих условиях разные минералы ведут себя по-разному. По степени устойчивости выделяют 4 группы минералов. (по Кухаренко, Мильнеру).

Группы минералов	Породообразование	Акцессорное
1. Весьма устойчивые	Кварц	Хромшпинелид, топаз, турмалин, апатит, лимонит, рутил, шпинель, Pt, Os, Au, Ir, циркон, корунд, алмаз.
2. Устойчивые	Мусковит, ортоклаз, микроклин, кислые плагиоклазы.	Гранаты, магнетит, колумбит, танталит, сфен, силлиманит, дистен, барит, торианит, перовскит, ильменит, ксенотим, монацит, касситерит, андалузит.
3. Малоустойчивые	амфиболы, пироксены.	Вольфрамит, шеелит, апатит, андрадит, гроссуляр, ортит, цоизит, ставролит.
4. Неустойчивые	Основные плагиоклазы, биотит, щелочные амфиболы, авгит, оливин, глауконит, гипс, кальцит, доломит.	Сульфиды.

В результате разложения минеральной массы коренных пород и избирательной миграции химических элементов возникают различные профили выветривания:

гидрослюдистый или насыщенный сиалитный; глинистый или ненасыщенный сиалитный; латеритный или алитный.

Гидрослюдистый профиль коры выветривания характеризуется изменением силикатов при участии гидратного и гидролизного преобразования без существенной миграции кремнезема. Типоморфными минералами этого профиля являются гидрослюды и гидрохлориты, монтмориллонит и бейделлит.


Глинистый профиль отличается дефицитом кремнезема, частично удаленным из коры выветривания. Типоморфные минералы представлены каолинитом, галлуазитом, нонтронитом.

Латеритный профиль при полном или почти полном разрушении связей между глиноземом и кремнеземом и интенсивным вывносм последнего из коры выветривания. Типоморфные минералы представлены гидроксидами алюминия, оксидами и гидроксидами железа.

ага Субарктика и	Борсальная зона	Степи	Пустыни и полупустыни	Саван- ны	Тропики	Савап ны
X LO		Сре	цисгодовая темп	ратура	1	
25 16 8			риње осалки		Испарение	Z
OFFICE	Гидрослюд и др.				Охры Глин (каолины)	1
	Дресин				Гидрослюд и др.	
					Дресвы	

Литомарж - кремнистая глиноподобная порода, часто с материнской структурой. Обычно залегает под латеритами. Впервые выделена и описана Фоксом (Fox, 1923) в профиле индийских латеритов. Цвет красный, серый, желтый, розовый, до белого. Образуется при поверхностном выветривании алюмосиликатов в условиях интенсивного выноса из коры выветривания (в том числе латеритной) А1 и Fe (помимо щелочных и щелочноземельных элементов). Слагает среднюю и нижнюю зоны латеритной коры выветривания. Помимо кремнезема литомарж содержит каолинит, монтмориллонит и редко в небольших количествах гидрослюду.

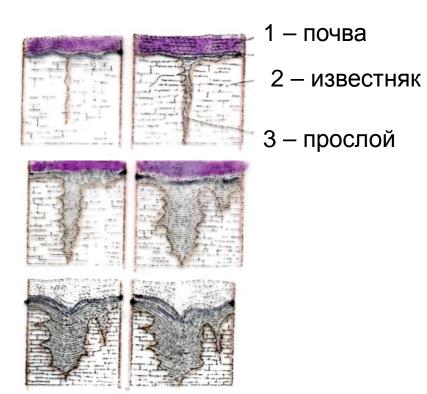
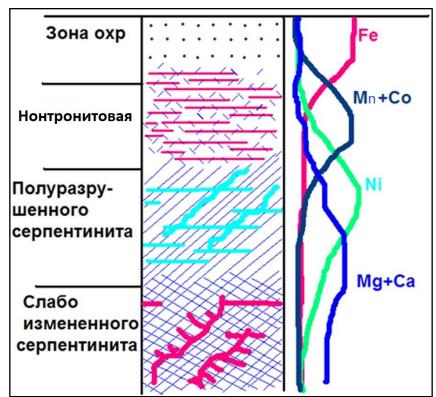



Схема формирования апатитовых месторождений выветривания в США.

— Гидроксилы <u>Mn</u> с сорбированным <u>Со</u> (асболан)

Ж Карбонаты Мд и Са

Схема зонального строения остаточного месторождения силикатных никелевых руд в коре выветривания серпентинитов

Связь первичных пород и полезных ископаемых, сформированных в корах выветривания

	, 1 1 1	
Исходные породы	Полезные ископаемые	Примеры месторождений
Богатые глиноземом базальты, габбро, щелочные породы и кристаллические сланцы	Бокситы	Боке (Гвинея)
Ультрабазиты	Ni, Co, Fe, Магнезит, Ильменит	Майари (Куба), Халиловское (Россия), Волынское (Украина)
Габбро-анортозиты Железистые кварциты	Fe	Михайловское (Россия)

Mn

Каолин

Nb, Zr, TR

Ta, Nb, Th

Au

Тальк и маршаллит

Фосфорит

Бирюза

Гондиты, марганцевоносные

Лейкократовые граниты

Карбонатиты

метаморфические сланцы

Редкометальные щелочные граниты

класса (колчеданные)

известковые породы

Фосфоритоносные доломиты

Содержащие фосфор и медь

Золотоносные и/ березиты

Гидротермальные полиметаллические месторождения базальтоидного

Оталькованные доломиты и кремнисто-

пиритоносные черные сланцы

Постмасбургское (ЮАР)

Васильковское (Казахстан)

Араша (Бразилия)

Плато Джое (Нигерия)

Майкаин (Казахстан)

Алгуйское (Россия)

Телекское (Россия)

Бирюзокан (Узбекистан)

Полезные компоненты кор выветривания по минеральным группам

Группа минералов	Полезные ископаемые
Первично – устойчивые	Элювиальные россыпи, строительный камень, маршаллит.
Первично – неустойчивые	Угли, обогащенные U и редкими элементами
Новообразованные	Бокситы, керамические и бентонитовые глины, каолин, Fe, Mn, Co, Ni, редкие металлы, магнезит, фосфориты, тальк, камнесамоцветное сырьё (бирюза, халцедон, хризопраз), природные красители.