НЕРАЗРУШАЮЩИЕ МЕТОДЫ КОНТРОЛЯ

Общие принципы

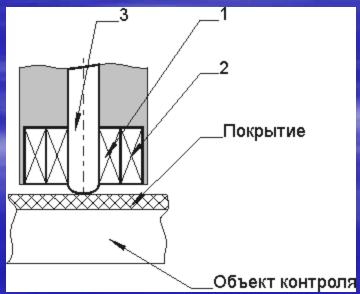
Неразрушающий контроль — это контроль качества продукции без нарушения ее целостности.

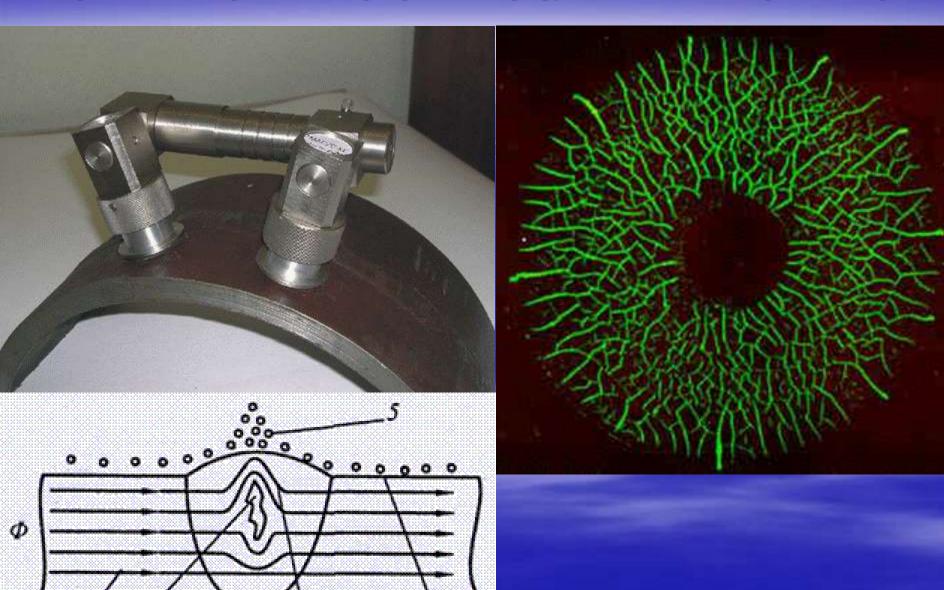
Применение методов НК обеспечивает:

- выявление скрытых (внутренних) дефектов производства;
- определение причин отказов и характера отказов при испытаниях и эксплуатации;
- повышение достоверности и надежности контроля при техническом обслуживании;
- возможность контроля качества в динамическом режиме, в том числе при ускоренных испытаниях.

Наиболее распространенные приборы неразрушающего контроля это:

- дефектоскопы приборы для обнаружения внутренних дефектов в изделиях;
- структуроскопы приборы, использующие корреляцию между электрическими, магнитными и акустическими свойствами материала и его физико-химическими свойствами;
- толщиномеры приборы для определения толщины изделий, покрытий и т.д.;
- приборы для контроля физико-химических свойств веществ;
- влагомеры приборы для определения влаги в материалах.


Согласно ГОСТу 18353-79:


- 1 Магнитный
- 2 Электрический
- 3 Вихретоковый
- 4 Радиоволновый
- 5 Тепловой
- 6 Оптический
- 7 Радиационный
- 8 Акустический
- 9 Проникающими веществами.

Магнитный вид *HK*

Основан на анализе взаимодействия магнитного поля с контролируемым объектом. Применяют для контроля объектов из ферромагнитных материалов.

Электрический вид НК

Основан регистрации на параметров электрического поля, взаимодействующего объектом. контролируемым Первичными информативными параметрами являются: электрическая емкость ИЛИ потенциал.

Вихретоковывй вид НК

Основан на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых

в контролируемом объекте.

Он применяется только для контроля изделий из электропроводящих материалов.

Радиоволновый вид НК

Основан на регистрации изменений параметров электромагнитных волн радиодиапазона, взаимодействующих с контролируемым объектом. Обычно применяют СВЧ-волны длиной 1-100 мм и контролируют изделия из материалов, в которых радиоволны не очень сильно затухают: диэлектрики, магнитодиэлектрики (ферриты), полупроводники, тонкостенные металлические объекты.

Тепловой вид НК

Основан на регистрации изменений тепловых или температурных полей контролируемых объектов, вызванных дефектами. Он применяется для контроля любых объектов из любых материалов. По характеру взаимодействия поля с объектом контроля (ОК) различают методы: пассивный или собственного излучения и активный. Измеряемым информативным параметром является температура или

тепловой поток.

Оптический вид НК

Основан на регистрации параметров оптического излучения, взаимодействующего с контролируемым объектом. Первичными информативными параметрами служат амплитуда, фаза частотный спектр, время прохождения света через ОК и др.

Радиационный вид <u>НК</u>

Основан на регистрации и анализе проникающего ионизирующего излучения после взаимодействия с контролируемым объектом. В зависимости от природы ионизирующего излучения вид контроля подразделяют на подвиды: рентгеновский, гамма-, бета-, нейтронный методы контроля. Информативный параметр здесь — плотность потока излучения.

<u>Акустический вид НК</u>

Основан на регистрации параметров упругих волн, возбуждаемых и возникающих в контролируемом объекте. Этот вид контроля применим ко всем материалам, достаточно хорошо проводящим акустические волны: металлы, пластмассы, бетон, керамика и др. Чаще всего используют упругие волны ультразвукового диапазона (с частотой колобомий выми 20кгм)

Метрология, стандартизация и сертификация неразрушающих методов и средств контроля Неразрушающий контроль проникающими веществами

Основан на проникновении пробных веществ в полости дефектов контролируемого объекта. Его делят на методы капиллярные и течеискания. Капиллярные методы основаны на капиллярном проникновении в полость дефектов ОК индикаторной жидкости, хорошо

смачивающей материал объекта. Методы течеискания используют для выявления только сквозных дефектов.

Общие особенности методов неразрушающего контроля

ГОСТ 1.25-76 ГСС метрологическое обеспечение

Общие показатели средств и методов неразрушающего контроля:

- чувствительность;
 надежность;
- стабильность;– транспортабельность;
- погрешность;
 виброустойчивость.

По погрешности средства неразрушающего контроля разделяются на четыре группы:

- 1. погрешность менее 1%;
- 2. погрешность от 1 до 2,5%;
- 3. погрешность от 2,5 до 4%;
- 4. погрешность более 4%.

1. Объекты котлонадзора:

- 1.1. Паровые и водогрейные котлы.
- 1.2. Электрические котлы.
- 1.3. Сосуды, работающие под давлением свыше 0,07 МПа.
- 1.4. Трубопроводы пара и горячей воды с рабочим давлением пара более 0,07 МПа и температурой воды свыше 115°C.
- 1.5. Барокамеры.

2. Системы газоснабжения (газораспределения):

- 2.1. Наружные газопроводы.
- 2.1.1. Наружные газопроводы стальные.
- 2.1.2. Наружные газопроводы из полиэтиленовых и композиционных материалов.
- 2.2. Внутренние газопроводы стальные.
- 2.3. Детали и узлы, газовое оборудование.

3. Подъемные сооружения:

- 3.1. Грузоподъемные краны.
- 3.2. Подъемники (вышки).
- 3.3. Канатные дороги.
- 3.4. Фуникулеры.
- 3.5. Эскалаторы.
- 3.6. Лифты.
- 3.7. Краны-трубоукладчики.
- 3.8. Краны-манипуляторы.
- 3.9. Платформы подъемные для инвалидов.
- 3.10. Крановые пути.

4. Объекты горнорудной промышленности:

- 4.1. Здания и сооружения поверхностных комплексов рудников, обогатительных фабрик, фабрик окомкования и аглофабрик.
- 4.2. Шахтные подъемные машины.
- 4.3. Горно-транспортное и горно-обогатительное оборудование.

5. Объекты угольной промышленности:

- 5.1. Шахтные подъемные машины.
- 5.2. Вентиляторы главного проветривания.
- 5.3. Горно-транспортное и углеобогатительное оборудование.

б. <u>Оборудование нефтяной и газовой</u> промышленности:

- 6.1. Оборудование для бурения скважин.
- 6.2. Оборудование для эксплуатации скважин.
- 6.3. Оборудование для освоения и ремонта скважин.
- 6.4. Оборудование газонефтеперекачивающих станций.
- 6.5. Газонефтепродуктопроводы.
- 6.6. Резервуары для нефти и нефтепродуктов.

7. Оборудование металлургической промышленности:

- 7.1. Металлоконструкции технических устройств, зданий и сооружений.
- 7.2. Газопроводы технологических газов.
- 7.3. Цапфы чугуновозов, стальковшей, металлоразливочных ковшей.

8. Оборудование взрывопожароопасных и

химически опасных производств;

- 8.1. Оборудование химических, нефтехимических и нефтеперерабатывающих производств, работающее под давлением до 16 МПа.
- 8.2. Оборудование химических, нефтехимических и нефтеперерабатывающих производств, работающее под давлением свыше 16 МПа.
- 8.3. Оборудование химических, нефтехимических и нефтеперерабатывающих производств, работающее под вакуумом.
- 8.4. Резервуары для хранения взрывопожароопасных и токсичных веществ.
- 8.5. Изотермические хранилища.
- 8.6. Криогенное оборудование.
- 8.7. Оборудование аммиачных холодильных установок.
- 8.8. Печи, котлы ВОТ, энерготехнологические котлы и котлы утилизаторы.
- 8.9. Компрессорное и насосное оборудование.
- 8.10. Центрифуги, сепараторы.
- 8.11. Цистерны, контейнеры (бочки), баллоны для взрывопожароопасных и токсичных веществ.
- 8.12. Технологические трубопроводы, трубопроводы пара и горячей воды.

9. Объекты железнодорожного транспорта:

- 9.1. Транспортные средства (цистерны, контейнеры), тара, упаковка, предназначенных для транспортирования опасных веществ (кроме перевозки сжиженных токсичных газов).
- 9.2. Подъездные пути необщего пользования.

10. Объекты хранения и переработки зерна:

- 10.1. Воздуходувные машины (турбокомпрессоры воздушные, турбовоздуходувки).
- 10.2. Вентиляторы (центробежные, радиальные, ВВД).
- 10.3. Дробилки молотковые, вальцовые станки, энтолейторы.

11. Здания и сооружения (строительные объекты):

- 11.1. Металлические конструкции;
- 11.2. Бетонные и железобетонные конструкции;
- 11.3. Каменные и армокаменные конструкции.

12. Оборудование электроэнергетики.

Спасибо за внимание!