Национальный исследовательский Томский политехнический университет
Институт природных ресурсов
Кафедра бурения скважин

Технология бурения нефтяных и газовых скважин

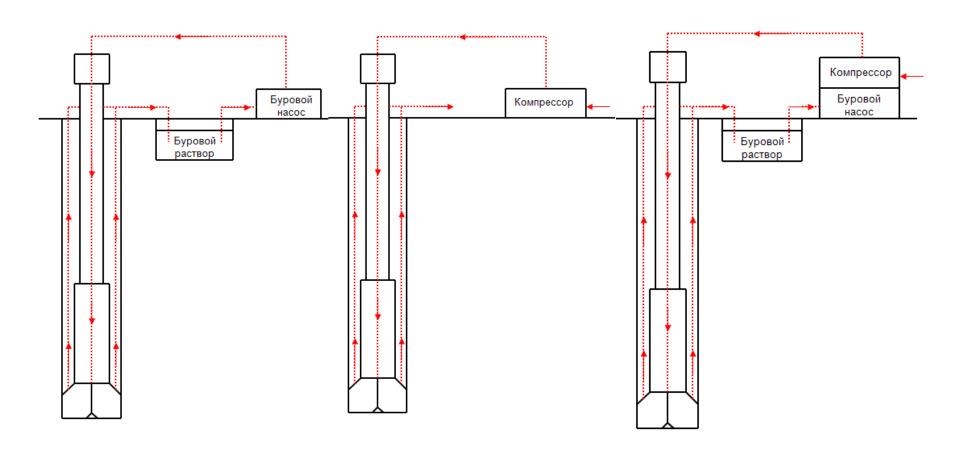
Курс лекций

Автор: Епихин А.В.

ст. преп. каф. бурения скважин

Лекция №10

- Способы очистки забоя от шлама, классификация очистных агентов, достоинства и недостатки, химические реагенты для бурения нефтяных и газовых скважин
- Проектирование и расчет потерь давления при в циркуляционной системе при сооружении скважины


TEMA 1.

Способы очистки забоя от шлама, классификация очистных агентов, достоинства и недостатки, химические реагенты для бурения нефтяных и газовых скважин

Способы удаления продуктов разрушения с забоя

- ✓ гидравлический;
- **✓** пневматический;
- ✓ комбинированный (гидропневматический или пневмогидравлический).

Функции буровых растворов

Основные функции:

- удаление с забоя частиц разрушенной породы (шлама) и транспортирование (вынос) шлама на поверхность;
- охлаждение породоразрушающего инструмента (ПРИ);
- перенос энергии от буровых насосов к ГЗД

Дополнительные функции:

- обеспечение устойчивости горных пород в околоствольном пространстве скважины;
- создание равновесия в системе «ствол скважины пласт», т.е. предупреждение флюидопроявлений (поступлений в скважину газа, нефти, воды) и поглощений (ухода бурового раствора из скважины вглубь проницаемых пластов);
- удержание частиц шлама во взвешенном состоянии при остановках циркуляции;
- снижение сил трения между контактирующими в скважине поверхностями и их износа.

✓число фаз: гомогенные (однофазные) и гетерогенные (многофазные).

уприрода (состав) дисперсионной среды: подклассы водных (полярных), углеводородных (неполярных) и газообразных очистных агентов.

√агрегатное состояние дисперсной фазы: твердая, жидкая, газообразная и комбинированная.

Класс	Подкласс	Группа	Тип очистного агента
Гомогенные (однофазные)	Водные (полярные)		1.Техническая вода 2. Полимерные растворы 3. Водные растворы ПАВ 4. Растворы электролитов (солей)
	Углеводородные (неполярные)		1. Нефть 2. Дизельное топливо
	Газообразные		1. Сжатый воздух 2. Природный газ 3. Выхлопные газы ДВС 4. Азот
Гетерогенные (многофазные)	Водные (полярные)	тдф	1. Глинистые растворы 2. Безглинистые растворы
		ждф	1. Гидрофильные эмульсии
		ГДФ, (Г + Т)ДФ	1. Аэрированные растворы 2. Пены
		(Т + Ж)ДФ	1. Эмульсионные глинистые растворы 2. Эмульсионные безглинистые растворы
	Углеводородные (неполярные)	тдф	1. ИБР
		ждф	1. Гидрофобные эмульсии
		(т + ж)дф	1. Инвертные эмульсии

Водные (полярные) гомогенные и гетерогенные очистные агенты в зависимости от концентрации солей (в пересчете на NaCl) могут быть:

```
✓пресными (до 1 %);
✓ слабоминерализованными (1...3 %);
✓среднеминерализованными (3...20 %);
✓высокоминерализованными (> 20 %).
По составу солей:
Ухлоркалиевыми;
√хлоркальциевыми;
√силикатными (малосиликатными);
√гипсовыми;
√известковыми;
√гипсоизвестковыми;
✓ алюминатными (алюмокалиевыми, алюмокальциевыми);
√гипсокалиевыми.
```

Если концентрация твердой дисперсной фазы не превышает 7 % по объему, то такие БР относят к растворам с низким содержанием твердой фазы (РНСТФ или малоглинистые).

По способу приготовления глинистые растворы могут быть условно подразделены на естественные, образующиеся в стволе скважины в процессе бурения глинистых пород (получаемые самозамесом), и искусственные, приготовленные на поверхности.

Глинистые растворы (гетерогенные очистные агенты)

Достоинства:

- ✓ относительная доступность и дешевизна основного сырья для их приготовления;
 ✓ особые, в какой-то мере универсальные, свойствами:
- способностью образовывать малопроницаемую фильтрационную корку на стенках скважины;
- способностью удерживать во взвешенном состоянии частицы выбуренной породы и утяжелителя;
- возможностью регулирования реологических, структурно механических и фильтрационных свойств в весьма широком диапазоне.

Для эффективной работы полимерных реагентов оптимальные значения **рН** необходимо поддерживать в пределах **8,5...9,5**.

Термостойкость полимерглинистых растворов зависит от применяемых полимеров и варьирует в пределах **120...200** °C.

Из трех разновидностей полимерглинистых растворов для вскрытия продуктивных пластов наиболее предпочтительны гидрофобизующие, которые относятся к классу защитно-кольматирующих (образуют тонкий, низкопроницаемый экран, впоследствии разрушаемый перфорацией).

Коэффициент восстановления проницаемости в заглинизированных гранулярных коллекторах составляет **0,8...0,85**, т.е. проницаемость ухудшается на 15...20 %.

Полимерглинистые растворы

Предназначены для массового бурения эксплуатационных и разведочных скважин в различных отложениях, а также для вскрытия продуктивных пластов.

Разновидности полимерглинистых растворов:

✓ На основе одного полимерного реагента: КМЦ, ПАА (его аналогов), метаса, КЕМ-ПАС, М-14ВВ, НР-5. При необходимости разжижения - обработка НТФ.

Предназначены для бурения в достаточно устойчивых, предпочтительно грубодисперсных, слабо набухающих породах (обычно при бурении под кондуктор).

✓ На основе одного полимерного реагента с добавками ГКЖ-10 (11) или Петросил-2М (гидрофобизующие растворы).

Предназначены для разбуривания высококоллоидальных глинистых пород.

√На основе комплексных или поликомплексных реагентов, содержащих два или большее число полимеров, одни из которых обладают свойствами стабилизаторов (понизителей фильтрации), а другие — флокулянтов (ингибируют глинистые породы и предотвращают обогащение бурового раствора шламом).

Стабилизаторы: HP-5, метас, гипан, CYPAN и др.

Флокулянты: ПАА, DK-DRIL-A1, CYDRIL (высокая молекулярная масса).

Назначение: бурение в набухающих глинах и неустойчивых глинистых сланцах.

Ингибированные буровые растворы

Общее назначение - бурение скважин в глинистых и глиносодержащих породах, которые теряют устойчивость и диспергируются при взаимодействии с дисперсионной средой обычных буровых растворов на водной основе.

Основные разновидности ингибі	ірованных бурові	ых растворов:
-------------------------------	------------------	---------------

- √известковые;
- √гипсоизвестковые;
- **√хлоркалиевые**;
- √гипсокалиевые;
- √хлоркальциевые;
- **√малосиликатные**;
- √алюмокалиевые.

Обязательный компонент – реагенты-ингибиторы, замедляющие гидратацию, набухание и диспергирование глин.

Общими компонентами для всех перечисленных выше видов ингибированных буровых растворов являются следующие:

- **√**глина;
- ✓ вода;
- √смазочные добавки;
- ✓ пеногасители (кроме малосиликатного).

Соленасыщенные буровые растворы

Назначение: бурение скважин в солевых отложениях, чередующихся с пропластками глин.

Состав:

- ✓ солеустойчивая глина (палыгорскит, дружковская глина; местные, в том числе буровые глины);
- ✓ вода, в том числе пластовая (минерализованная);
- **\checkmarkсоль** (до 300...400 кг/м³): при проходке однородных толщ галита NaCl; при проходке калийно-магниевых солей карналлит (KMgCl₃·6H₂O) или бишофит (MgCl₂·6H₂O);
- **✓ стабилизаторы**: при температуре < 100 °C − крахмал; до 140...160 °C − КМЦ (высоковязкая) или (крахмал : КМЦ : Na_2CO_3) = (2 : 1 : 1); до 160...180 °C − метас (M-14BB) + Na_2CO_3 ;
- ✓ разжижители ССБ (КССБ, ФХЛС);
- ✓ смазочные добавки нефть (СМАД-1).

Недостатки:

- ✓ высокая коррозионная активность, особенно при наличии в составе бурового раствора калийно-магниевых или хлормагниевых солей;
- ✓ экологическая вредность (все соленасыщенные буровые растворы экологически вредны и требуют утилизации).

Буровые растворы с конденсированной твердой фазой

Впервые буровые растворы с конденсированной твердой фазой были разработаны в нашей стране группой сотрудников ныне Российского государственного университета нефти и газа под руководством О.К. Ангелопуло.

Конденсационный способ получения коллоидных растворов основан на образовании нерастворимых твердых частиц из сильно пересыщенных растворов различных электролитов (солей, щелочей).

К настоящему времени разработано около 20 рецептур буровых растворов с конденсированной твердой фазой, большинство из которых защищены патентами России, США, Польши. Однако в силу разных причин достаточно широкое практическое применение получил только **гидрогель магния**.

Основой для приготовления гидрогеля магния служит рассол магнийсодержащих солей.

Варианты:

- ✓ галит (NaCl) + бишофит (MgCl₂·6H₂O);
- ✓ карналлит (KMgCl₃·6H₂O);
- ✓ полиминеральная пластовая вода.

Общее содержание солей в рассоле до 300 кг/м³.

В гидрогель магния могут вводиться смазочные добавки (нефть) и утяжелители.

Достоинства гидрогеля магния:

- ✓ стоек к воздействию пластовых вод любой минерализации;
- ✓ образует фильтрационные корки, полностью растворяющиеся в процессе кислотной обработки (сероводородная кислота);
- ✓ при температуре до плюс 50 °C вообще не растворяет, а при более высокой мало растворяет вскрываемые отложения солей.

Растворы на углеводородной основе (РУО)

Растворы на углеводородной основе были разработаны в США в 1937 г. В нашей стране их начали применять в 1955 г. по инициативе профессора К.Ф. Жигача.

Дисперсионная среда РУО: дизельное топливо; нефть; углеводородорастворимые ПАВ.

Дисперсная фаза РУО: высокоокисленный битум; гидроокись кальция (CaO); глина, в том числе органобентонит; барит (при необходимости утяжеления РУО); небольшое количество эмульгированной воды.

Достоинства:

- ✓ обладают высокой стабильностью во времени (можно длительно хранить и многократно использовать);
- √инертны в отношении глин и солей;
- ✓ обладают хорошими антикоррозионными и триботехническими свойствами;
- ✓ могут утяжеляться любыми стандартными утяжелителями;
- Уобладают высокой термостойкостью (до 220...220 °C);
- ✓ почти **не фильтруются в проницаемые пласты**, а их фильтрат не оказывает вредного влияния на продуктивные нефтяные горизонты, так как имеет общее сходство с пластовой нефтью.

Недостатки:

- ✓ высокая стоимость (200...625 \$/м³) и дефицитность основных компонентов;
- ✓ пожароопасность;
- ✓трудность очистки от шлама;
- ✓ трудность проведения электрометрических работ;
- ✓ экологическая вредность.

Основная область применения РУО: вскрытие продуктивных нефтяных пластов с низким пластовым давлением. Кроме этого, РУО применяют при бурении скважин в условиях высоких положительных и отрицательных (бурение во льдах) забойных температур, а также для проходки соленосных толщ и высокопластичных глинистых пород.

Инвертные эмульсионные растворы (ИЭР)

ИЭР представляют собой гидрофобно - эмульсионно -суспензионные системы.

Дисперсионная среда ИЭР: дизельное топливо марок «Л» или «З»; разгазированная нефть (с температурой вспышки > 70 °C).

Дисперсная фаза ИЭР: жидкая - минерализованная $CaCl_2$ (NaCl, MgCl₂) техническая или пластовая вода (содержание соли 180...240 кг/м³); **твердая** - молотая негашеная известь (гидроокись кальция - CaO), глинопорошок (ПББ, ПБВ), железный купорос, хлорное железо, мел (утяжелитель), барит (утяжелитель).

Для эмульгирования воды в углеводородной среде используют следующие **ПАВ**: эмультал; окисленный петролатум; СМАД – 1; украмин (или его аналог ИКБ - 2); высокоокисленный битум; АБДМ - хлорид.

ИЭР по свойствам и условиям применения близки к РУО, но выгодно отличаются от них тем, что содержат значительное количество воды, а следовательно существенно дешевле.

Соотношение водной и углеводородной фаз в ИЭР изменяется в диапазоне от 60: 40 до 40: 60. Содержание твердой фазы (без утяжелителя) составляет при этом 5...30 кг/м³. Различают несколько видов ИЭР: ВИЭР (высококонцентрированный ИЭР); ТИЭР (термостойкий ИЭР); эмульжел (ИЭР, содержащий железный купорос); ГЭР (гидрофобно-эмульсионный раствор).

Недостаток: обратимость при повышенном содержании твердой фазы.

Газожидкостные смеси (ГЖС)

- √пены;
- √аэрированные промывочные жидкости (АПЖ).

Аэрацией называется процесс насыщения жидкости воздухом, реже другими газами. При этом газообразная фаза рассматривается как дисперсная, а жидкая – как непрерывная дисперсионная среда.

Объемное соотношение газообразной V_{Γ} и жидкой $V_{\mathcal{H}}$ фаз называется **степенью** аэрации $\alpha = V_{\Gamma} / V_{\mathcal{H}}$.

Для АПЖ α < 60, для пен α = 60...300.

Способы приготовления АПЖ и пен:

Механический способ обеспечивает аэрацию жидкости с помощью компрессорных установок и специальных устройств - аэраторов (пеногенераторов).

Эжекционный способ. При этом способе жидкость аэрируется путем засасывания воздуха из атмосферы с помощью специальных эжекторных смесителей.

Химический способ. обеспечивает вспенивание (аэрацию) жидкости при обработке ее ПАВ – пенообразователями и перемешивании.

Комбинированный способ. сочетает механический (эжекционный) и химический способы аэрации.

Газожидкостные смеси (ГЖС)

Основным отличительным свойством АПЖ и пен является их **низкая плотность.** При атмосферном давлении плотность АПЖ может составлять 100...1000 кг/м³, пен – 50...100 кг/м³.

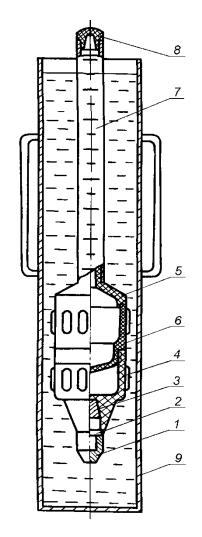
Преимущества:

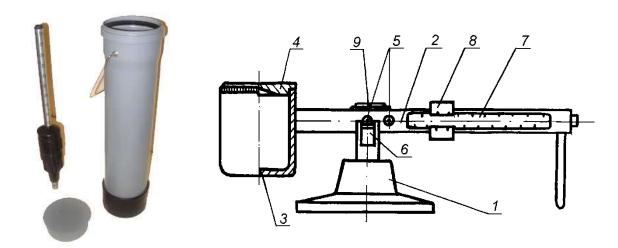
- ✓ вследствие снижения давления на забой скважины увеличиваются механическая скорость бурения и проходка на долото;
- √ появляется возможность бурения в зонах АНПД ($K_a = 0.3..0.8$ для АПЖ; $K_a < 0.3$ для пен), поглощающих буровой раствор;
- √уменьшается вредное воздействие на продуктивные горизонты с низким пластовым давлением.
- ✓ улучшение условий очистки забоя скважины от шлама в результате флотационного эффекта, заключающегося в способности частиц выбуренной породы прилипать к воздушным пузырькам и выноситься ими в затрубное пространство.
- ✓ высокая несущая способность потока, которая у пен в 7- 8 раз выше, чем у воды.
- ✓ низкая теплопроводность, что весьма важно при бурении скважин в ММП (слой пены, контактирующий с ММП, быстро замерзает и препятствует обрушению стенок скважин).
- ✓ возможность регулирования функциональных свойств в широком диапазоне путем изменения степени аэрации и состава пен.

Недостатки:

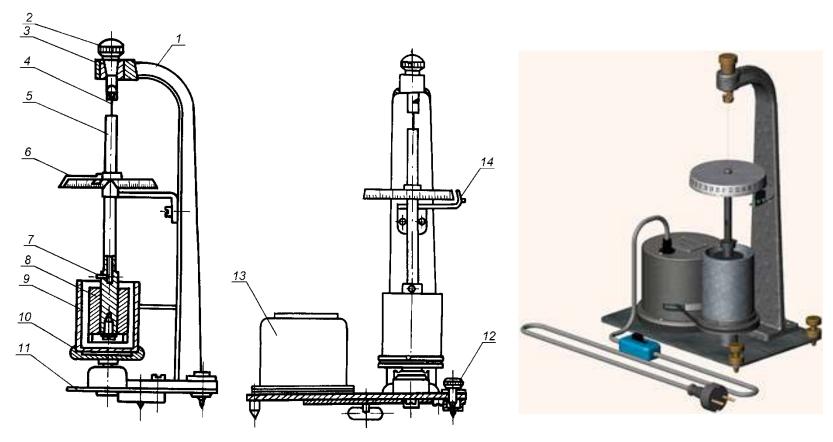
- √сложность приготовления.
- ✓ сложность закачивания в скважину, так как ГЖС плотностью менее 500 кг/м³ могут подаваться в скважину только при одновременной работе насоса и компрессора с установкой на нагнетательных клапанах бурового насоса дожимного устройства (бустера).
- ✓ сложность очистки от шлама на поверхности, так как для этого пену необходимо разрушить.
- ✓ повышенный коррозионный износ бурильных труб и другого оборудования вследствие окислительного действия газообразной среды.

18


Функциональные свойства буровых растворов


- плотность;
- структурно-механические, реологические, фильтрационно-коркообразующие, электрохимические и триботехнические свойства;
- содержание твердой фазы, коллоидных глинистых частиц, абразивных частиц (песка), нефти и газа;
- седиментационная устойчивость;
- ингибирующая, консолидирующая (крепящая), недиспергирующая, закупоривающая и другие способности.

Плотность



Для измерения плотности буровых растворов используют ареометр **АБР-1** или рычажные весыплотномер **ВРП-1**.

Структурно-механические свойства

Для измерения величины статического напряжения сдвига используют прибор **СНС-2**, а также ротационные вискозиметры ВСН-3, ВСН-2М и др.

Для оценки характера нарастания прочности структуры во времени измерения делают через 1 мин (CHC₁) и 10 мин (CHC₁₀) покоя.

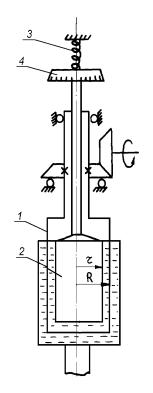
- •коэффициент пластичности;
- эффективная вязкость при скорости сдвига равной 100 с-1;
- асимптотическая вязкость или **эффективная вязкость при полностью разрушенной структуре** (при скорости сдвига равной 10000 с⁻¹).

С ростом коэффициента пластичности увеличивается транспортирующая способность потока, а также гидродинамическое давление струй бурового раствора, выходящих из насадок долота, что обеспечивает более эффективное разрушение горных пород на забое и рост механической скорости бурения.

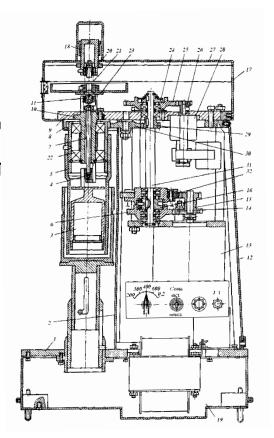
Эффективная вязкость при скорости сдвига равной 100 с-1 ($9B_{100}$, $\Pi a \cdot c$) характеризует вязкость бурового раствора в кольцевом пространстве скважины и является основным показателем, определяющим транспортирующую способность его потока, которая тем выше, чем выше значения $9B_{100}$.

22

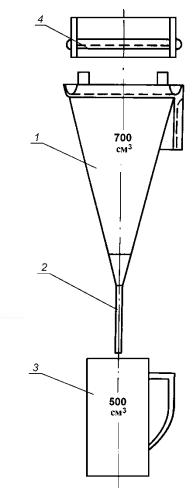
Эффективная вязкость при полностью разрушенной структуре (ЭВ₁₀₀₀₀) характеризует вязкость бурового раствора в насадках долот и в песко- илоотделителях (гидроциклонах).


С уменьшением ЭВ₁₀₀₀₀ повышается степень очистки забоя скважины от шлама и степень охлаждения вооружения долота, вследствие чего возрастает ресурс его работы и механическая скорость бурения.

С уменьшением $9B_{10000}$ снижается интенсивность обогащения бурового раствора шламом, так как при меньшей вязкости последний легче отделяется в очистных устройствах.



Чтобы установить характер зависимости между касательными напряжениями и скоростями сдвига и определить значения показателей реологических свойств бурового раствора чаще всего используют ротационные вискозиметры.



BCH-3

Для оперативной оценки реологических свойств буровых растворов в нашей стране используют вискозиметр ВБР-1. Показателем реологических свойств в этом случае является условная вязкость (УВ, с) - величина, косвенно характеризующая гидравлическое сопротивление течению.

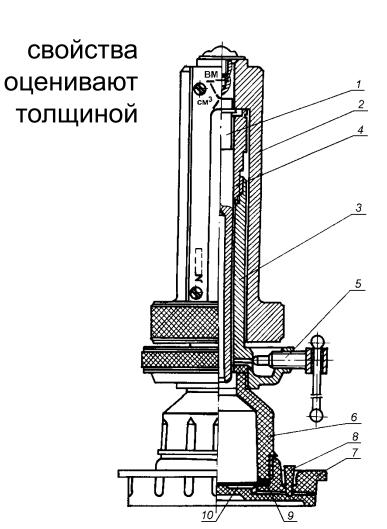
Почему вязкость называют УСЛОВНОЙ? Как называется зарубежный аналог ВБР-1?

Фильтрационно-коркообразующие свойства

Как только происходит закупорка, в поровом пространстве задерживаются и самые мелкие частицы твердой фазы, которые откладываются на стенках скважины, образуя фильтрационную корку, через которую в околоствольное пространство поступает только фильтрат.

В процессе сооружения скважины проявляются два вида фильтрации:

- ✓ статическая, протекающая при отсутствии циркуляции бурового раствора в скважине;
- ✓ динамическая, происходящая в условиях циркуляции бурового раствора.


Фильтрационно-коркообразующие свойства

Фильтрационно-коркообразующие буровых растворов традиционно показателем фильтрации и фильтрационной корки.

Прибор – ВМ-6

Электрохимические свойства

К общепринятым показателям электрохимических свойств буровых растворов на водной основе относятся:

- ✓ водородный показатель (рН);
- ✓ удельное электрическое сопротивление (УЭС, Ом·м).

Водородный показатель характеризует концентрацию в буровом растворе ионов водорода [H⁺] (степень кислотности или щелочности буровых растворов на водной основе):

pH = 7 – нейтральная среда;

7 < рН ≤ 14 – щелочная среда;

1 ≤ рН < 7 – кислая среда.

Электрохимические свойства

Удельное электрическое сопротивление (УЭС, Ом·м) - величина, определяемая сопротивлением бурового раствора проходящему через него электрическому току, отнесенным к единице поперечного сечения и длины пробы бурового раствора, заключенной в ячейке определенной конфигурации.

В буровой практике для измерения величины удельного электрического сопротивления используется полевой резистивиметр РП-1.

Что произойдет при очень высоком удельном электрическом сопротивлении?

Триботехнические свойства

Триботехнические свойства характеризуют способность бурового раствора снижать силу трения между контактирующими в нем поверхностями.

В общем случае при бурении контактирующими в буровом растворе поверхностями являются следующие:

- ✓ наружная поверхность бурильных труб и их соединений стенка ствола скважины;
- ✓ вооружение породоразрушающего инструмента забой скважины;

✓ внутренняя поверхность керноприемной трубы – керн;

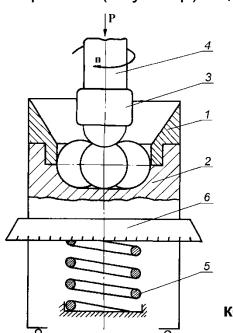
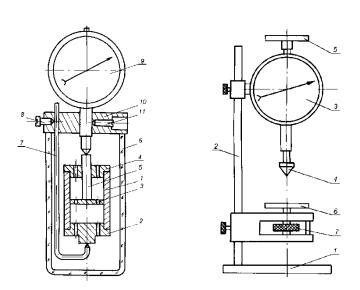

✓ поршень (плунжер) - цилиндр бурового насоса.

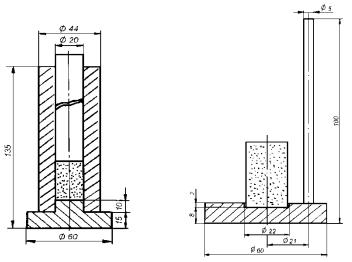
Схема трибометра для оценки коэффициента трения по затратам мощности

Схема трибометра для оценки коэффициента трения с помощью моментомера

Схема трибометра для оценки

коэффициента трения по углу отклонения маятника


30

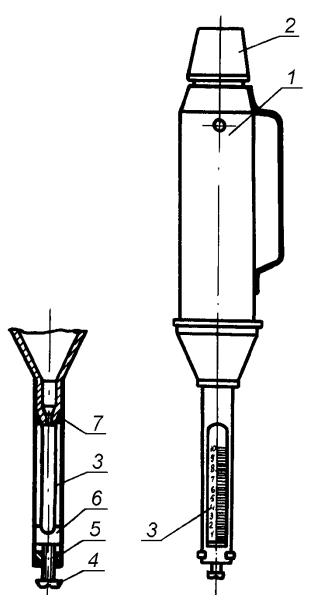

Ингибирующая способность

Ингибирующая способность - это способность бурового раствора предупреждать или замедлять деформационные процессы в околоствольном пространстве скважины (кавернообразование, сужение ствола и т.п.), представленном легкогидратирующимися, набухающими и размокающими глинистыми породами.

При этом под глинистыми породами понимаются не только собственно глины, но и глинистые сланцы, аргиллиты, породы на глинистом цементе (глинистый песчаник, мергель, алевролит и др.).

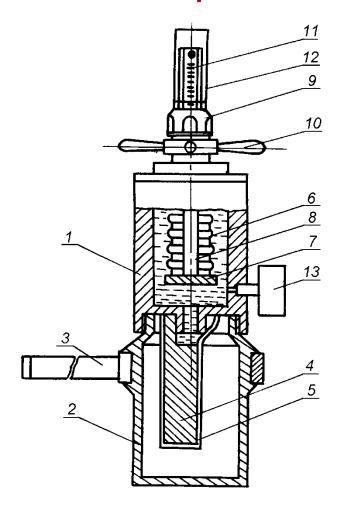
Схемы приборов для определения показателей набухания глинистых пород

Схемы приборов для определения показателя увлажняющей способности буровых растворов



Определение концентрации загрязняющих буровой раствор примесей. Твердые примеси

Для измерения концентрации «песка» используется металлический отстойник ОМ - 2.


Концентрация песка (С_п, %) - это объем осадка, который образуется при отстаивании в течение 1 мин разбавленного водой бурового раствора, отнесенный к объему исходного бурового раствора.

Определение концентрации загрязняющих буровой раствор примесей. Газообразные примеси.

Концентрацию газа (C_0 , %) в буровом растворе определяют с помощью прибора ПГР-1.

Материалы для приготовления и регулирования

свойств буровых растворов

Наиболее широко используемым типом буровых растворов являются суспензии, дисперсионная среда которых чаще всего представлена водой, а **активная дисперсная фаза** - глиной, существенно реже мелом, торфом, сапропелем, асбестом и др.

Кроме активной твердой фазы в состав суспензий может входить и инертная, включающая в себя **утяжелители** и закупоривающие материалы (наполнители).

Для кондиционирования, т.е. придания буровым растворам требуемых свойств на этапе их приготовления, регулирования (регенерации) свойств буровых растворов в процессе бурения, а также для защиты их от возмущающих воздействий (высоких и низких температур, полиминеральной агрессии, воздействия выбуренных глинистых частиц, бактерий и др.) применяют различные химические реагенты.

Глины

Глинистые минералы по химическому составу представляют собой водные (содержащие кристаллизационную воду) алюмосиликаты.

На основании различий в химическом составе, строении кристаллической решетки и свойствах глинистые минералы объединяют в четыре основные группы, получившие название по ведущему минералу:

- ✓ группа **монтмориллонита** (монтмориллонит, бейделлит, сапонит, гекторит, соконит, нонтронит и др.);
- ✓ группа гидрослюды (гидромусковит, гидробиотит);
- ✓ группа каолинита (каолинит, диккит, накрит, галлуазит);
- ✓ группа палыгорскита.

Утяжелители

Когда необходим буровой раствор с большей плотностью используют добавки тонко размолотых порошков инертных тяжелых минералов – утяжелителей.

1921 г. – американец Страуд предложил использовать **окислы железа**, а в **1922 г.** – **барит**, который был испытан в **1923 г.** при бурении скважины в штате Калифорния/

В зависимости от основы минерала природные утяжелители делятся на 4 вида:

- ✓ карбонатные: известняк (CaCO₃, ρ = 2600...2800 кг/м³), доломит (CaCO₃·MgCO₃, ρ = 2800...2900 кг/м³);
- ✓ баритовые : сульфат бария или барит (BaSO₄, ρ = 4200...4500 кг/м³);
- \checkmark железистые: гематит (Fe₂O₃, ρ = 4900...5300 кг/м³); магнетит (Fe₃O₄, ρ = 5000...5200 кг/м³);
- **✓ свинцовые**: галенит (PbS, максимально достижимая плотность бурового раствора равна 3840 кг/м³).

Характеристики утяжелителей: инертность; абразивность; степень дисперсности.

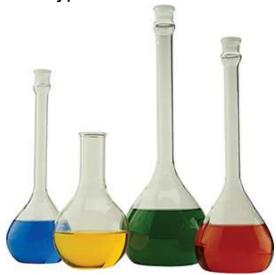
Закупоривающие материалы (наполнители)

Накопленный зарубежными специалистами опыт показывает, что суммарное массовое содержание наполнителей в буровом растворе, вполне достаточное для ликвидации поглощений различной интенсивности, включая полное, и не вызывающее каких-либо нарушений процесса роторного бурения, составляет до 5...7 %.

ТИПЫ

Волокнистые наполнители: древесные опилки; измельченная кора деревьев; кордное волокно; техническая кошма; кожа-«горох»; хромовая стружка; улюк волокнистый (недоразвитые семена хлопчатника); асбест; торф; свиная щетина; куриные перья и др.

Зернистые наполнители: скорлупа ореховая (фундук); мелкая резиновая крошка (дробленная резина); полиэтиленовая крошка; щебень; гравий; песок; пемза; шлак; туф; диатомит; трепел; опоки; керамзит; измельченные панцири раков и др.


Чешуйчато-пластинчатые наполнители: слюда-чешуйка; целлофановая стружка; бумажная стружка; подсолнечная лузга; рыбья чешуя; сломель-М и др.

Химические реагенты

Назначение:

- ✓ для придания буровым растворам необходимых свойств в процессе их приготовления, т.е. для получения буровых растворов с показателями свойств, соответствующими геолого-техническим условиям бурения скважин;
- ✓ для защиты используемых буровых растворов от возмущающих воздействий (шлама выбуренных пород, низких и высоких температур, электролитной агрессии), которую, как правило, производят в процессе приготовления раствора;
- ✓ для регенерации (восстановления или поддержания в заданных пределах) свойств буровых растворов в процессе бурения.

Химические реагенты

По назначению (действию на свойства буровых растворов)

все химические реагенты принято условно делить на следующие 11 групп:

- ✓ понизители фильтрации;
- ✓ понизители вязкости (разжижители);
- ✓ структурообразователи;
- ✓ регуляторы щелочности (рН);
- ✓ ингибиторы глинистых пород;
- ✓ регуляторы термостойкости (+ и -);
- ✓ пенообразователи;
- ✓ пеногасители;
- ✓ эмульгаторы (вещества, предохраняющие капельки дисперсной фазы эмульсий от коалесценции, т.е. слияния);
- ✓ смазочные добавки;
- ✓ понизители твердости горных пород.

TEMA 2.

Проектирование и расчет потерь давления при в циркуляционной системе при сооружении скважины

Назначение гидравлической программы промывки

Целью составления гидравлической программы бурения является определения рационального режима промывки скважины, обеспечивающего наиболее эффективную отработку буровых долот при соблюдении требований и ограничений, обусловленных геологическими техническими и эксплуатационными характеристиками применяемого оборудования и инструмента.

При составлении гидравлической программы предполагается:

- исключить флюидопроявления из пласта и поглощения бурового раствора;
- предотвратить размыв стенок скважины и диспергирование транспортируемого шлама;
- обеспечить очистку забоя и вынос шлама из кольцевого пространства скважины;
- рационально использовать гидравлическую мощность насосной установки;
- исключить аварийные ситуации при остановках циркуляции и пуске буровых насосов.

Содержание жидкости в шламожидкостном потоке:

$$\varphi = Q/((\pi/4)^*V_M^* d_C^2 + Q)$$

Для определения ΔP_{kn} и ΔP_{MH} необходимо вычислить критические числа Рейнольдса Re_{kp} в кольцевом пространстве, действительные числа Рейнольдса в кольцевом пространстве Re_{kn} и числа Сен-Венана в кольцевом пространстве. Критические числа Рейнольдса определяются по формуле:

$$Re_{\text{kp}} = 2100 + 7.3 \cdot \left(\frac{\rho_{\text{\tiny IJK}} \cdot (d_c - d_{\text{\tiny H}})^2 \cdot \tau_{\text{\tiny T}}}{\eta_{\text{\tiny II}}^2} \right)^{0.58},$$

Действительные значения чисел Рейнольдса в затрубном пространстве:

$$Re_{_{\mathrm{KII}}} = \frac{4 \cdot \rho_{_{\mathrm{II}\mathrm{K}}} \cdot Q}{\pi (d_{_{\mathrm{c}}} - d_{_{\mathrm{H}}}) \cdot \eta_{_{\mathrm{II}}}},$$

Так как полученные значения Re_{кп}<Re_{кр}, то движение жидкости везде в кольцевом канале происходит при ламинарном режиме.

Определяются числа Сен-Венана по формуле:

$$S_{\text{\tiny KII}} = \frac{\pi \cdot \tau_{\text{\tiny T}} \cdot \left(d_{\text{\tiny C}} - d_{\text{\tiny H}}\right)^2 \cdot \left(d_{\text{\tiny C}} + d_{\text{\tiny H}}\right)}{4 \cdot Q \cdot \eta_{\text{\tiny T}}},$$

Потери давления по длине кольцевого пространства определяются по формуле:

$$\Delta P_{K\Pi} = \frac{4 \cdot \tau_{T} \cdot l}{\beta \cdot (d_{c} - d_{H})},$$

Скорость движения жидкости в кольцевом канале определяется по формуле:

$$V_{\text{\tiny KII}} = \frac{4 \cdot Q}{\pi \cdot \left(d_c^2 - d_{\text{\tiny H}}^2\right)},$$

Вычисляются потери давления от замков в затрубном пространстве по формуле:

$$\Delta \mathbf{P}_{\scriptscriptstyle \mathrm{MK}} = \frac{l}{l_{\scriptscriptstyle \mathrm{T}}} \cdot \left(\frac{d_{\scriptscriptstyle c}^{\,2} - d_{\scriptscriptstyle \mathrm{H}}^{\,2}}{d_{\scriptscriptstyle c}^{\,2} - d_{\scriptscriptstyle \mathrm{HM}}^{\,2}} - 1 \right)^{2} \cdot \rho_{\scriptscriptstyle \Pi \hspace{-0.1em} \times} \cdot V_{\scriptscriptstyle \mathrm{KII}},$$

Определяется сумма потерь давления в кольцевом пространстве.

Критическая плотность промывочной жидкости определяется по формуле:

$$\rho_{KP} = (P_{FP} - \sum (\Delta P_{K\Pi}) - (1 - \phi)^* \rho_{\Pi}^* g^* H) / (\phi^* g^* H)$$

Если критическая плотность промывочной жидкости больше принятой, следовательно, условие недопущения гидроразрыва пласта выполняется.

Определяются потери давления в элементах циркуляционной системы. Для этого необходимо вычислить следующие параметры:

Критические числа Рейнольдса в бурильной колонне определяются по формуле:

Re
$$_{\rm KP}$$
 = 2100 + 7,3*(($\rho_{\rm IIX}$ *d $_{\rm B}^{2*}$ τ_0)/ η^2)^{0.58}

Определяются действительные числа Рейнольдса в бурильной колонне по формуле:

$$Re_{T} = (4*\rho_{nx}*Q)/(\pi*d_{B}*\eta).$$

Рассчитанные значения Reт>Reкр, следовательно движение происходит при турбулентном режиме и описывается уравнением Дарси-Вейсбаха.

Рассчитываются значения коэффициентов гидравлического сопротивления λ для используемых труб по формуле:

$$\lambda = 0.1*(1.46*\text{K/d}_{B} + 100/\text{Re}_{T})^{0.25}$$

где К – коэффициент шероховатости стенок.

Вычисляются потери давления внутри по формуле:

$$\Delta P_{T} = (\lambda^* 0.8^* \rho_{nx}^* Q^{2*} I) / (\pi^{2*} d_{B}^{5})$$

Вычисляются потери давления в наземной обвязке по формуле:

$$\Delta P_{O} = (\alpha_{c} + \alpha_{III} + \alpha_{B} + \alpha_{K}) \cdot \rho \cdot Q^{2},$$

Перепад давления в забойном двигателе $\Delta P_{\rm 3d}$ определяется по формуле: $\rho_{\rm noc} \cdot Q^2$

 $\Delta P_{_{3\text{A}}} = \Delta P_{_{\text{C}}} \cdot \frac{\rho_{_{n\text{AC}}} \cdot Q^{^{2}}}{\rho_{_{6}} \cdot Q_{_{c}}^{^{2}}}$

где ΔP_c – перепад давления в забойном двигателе при его работе на технической воде, Q_c – расход технической воды.

Разность между гидростатическими давлениями столбов жидкости в кольцевом пространстве и трубах ΔР_г определяется по формуле:

$$\Delta P_{\Gamma} = (1 - \varphi) \cdot (\rho_{\Pi} - \rho_{\Pi K}) \cdot g \cdot H$$

Сумма потерь давления ΔP , во всех элементах циркуляционной системы за исключением потерь давления в долоте ΔP_{D} , составит:

$$\Delta P - \Delta P_{II}$$

Резерв давления на долоте ΔP_p определяется по формуле:

$$\Delta P_P = 0.8 \cdot P_H - \left(\Delta P - \Delta P_H\right)$$

где Р_н – давление развиваемое насосом.

Определяется возможность гидромониторного эффекта, вычислив скорость течения жидкости в насадках долота по формуле:

$$V_{_{\mathrm{I}}} = 0.95 \cdot \sqrt{\frac{2 \cdot \Delta P_{_{\mathrm{p}}}}{\rho_{_{\mathrm{II}XK}}}},$$

Если Vд>80 м/с и перепад давления на долоте меньше критического, то бурение данного интервала возможно с использованием гидромониторных долот.

Принимая Vд=80 м/с, вычисляется перепад давления в долоте по формуле:

$$\Delta P_{_{\mathrm{II}}} = \frac{\rho_{_{\mathrm{IIK}}} \cdot V_{_{\mathrm{II}}}^{2}}{2 \cdot 0.95^{2}},$$

Определяется расчетное рабочее давление в насосе Р составит:

$$P = \Delta P_{\mathcal{I}} + \Delta P_{3\mathcal{I}}$$

Площадь промывочных отверстий определяется по формуле

$$\Phi = \frac{Q - Q_{\mathcal{I}}}{V_{\mathcal{I}}}$$

где $Q_{\rm д}$ – утечки промывочной жидкости через уплотнения вала забойного двигателя, м 3 /с.

Рассчитанная гидравлическая программа промывки скважины свидетельствует о том, что принятое значение расхода, развиваемое насосом давление достаточны для преодоления гидравлических сопротивлений в элементах циркуляционной системы, нормальной работы забойного двигателя и для реализации гидромониторного эффекта. При этом соблюдается условие недопущения гидроразрыва пород, слагающих стенки скважины.

Вопросы для самопроверки

- 1. Способы удаления продуктов разрушения с забоя.
- 2. Функции буровых растворов.
- 3. Классификация очистных агентов по числу фаз.
- 4. Классификация очистных агентов по составу дисперсионной среды.
- 5. Классификация очистных агентов по агрегатному состоянию дисперсной фазы.
- 6. Подклассы очистных агентов.
- 7. Классификация очистных агентов по степени минерализации.
- 8. Состав, достоинства и недостатки глинистых буровых растворов.
- 9. Состав, достоинства и недостатки полимерглинистых буровых растворов.
- 10. Что такое ингибированные растворы?
- 11. Состав, достоинства и недостатки ингибированных буровых растворов.
- 12. Состав, достоинства и недостатки соленасыщенных буровых растворов.
- 13. Состав, достоинства и недостатки буровых растворов с конденсированной твердой фазой.
- 14. Состав, достоинства и недостатки растворов на углеводородной основе.
- 15. Состав, достоинства и недостатки инвертных эмульсионных растворов.
- 16. Способы приготовления газожидкостных смесей.
- 17. Состав, достоинства и недостатки газожидкостных смесей.
- 18. Функциональные свойства буровых растворов.
- 19. Оборудование для измерения плотности буровых растворов.

Вопросы для самопроверки

- 20. Оборудование для измерения структурно-механических свойств буровых растворов.
- 21. Реологические свойства буровых растворов.
- 22. Оборудование для измерения реологических свойств буровых растворов.
- 23. Оборудование для измерения фильтрационно-коркообразующих свойств буровых растворов.
- 24. Оборудование для измерения электрохимических свойств буровых растворов.
- 25. Оборудование для измерения триботехнических свойств буровых растворов.
- 26. Оборудование для измерения ингибирующих свойств буровых растворов.
- 27. Оборудование для измерения концентрации загрязняющих буровой раствор примесей.
- 28. Материалы для приготовления и регулирования свойств буровых растворов.
- 29. Типы глин для приготовления растворов.
- 30. Типы, характеристики и назначение утяжелителей буровых растворов.
- 31. Типы, характеристики и назначение наполнителей буровых растворов.
- 32. Назначение химических реагентов буровых растворов.
- 33. Химические реагенты буровых растворов.
- 34. Технология проектирования и расчета потерь давления в циркуляционной системе буровых установок.

Спасибо за внимание!!!