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C H A P T E R 2 1

Numerics for ODEs and PDEs

Ordinary differential equations (ODEs) and partial differential equations (PDEs) play a

central role in modeling problems of engineering, mathematics, physics, aeronautics,

astronomy, dynamics, elasticity, biology, medicine, chemistry, environmental science,

economics, and many other areas. Chapters 1–6 and 12 explained the major approaches

to solving ODEs and PDEs analytically. However, in your career as an engineer, applied

mathematicians, or physicist you will encounter ODEs and PDEs that cannot be solved

by those analytic methods or whose solutions are so difficult that other approaches are

needed. It is precisely in these real-world projects that numeric methods for ODEs and

PDEs are used, often as part of a software package. Indeed, numeric software has become

an indispensable tool for the engineer.

This chapter is evenly divided between numerics for ODEs and numerics for PDEs.

We start with ODEs and discuss, in Sec. 21.1, methods for first-order ODEs. The main

initial idea is that we can obtain approximations to the solution of such an ODE at points

that are a distance h apart by using the first two terms of Taylor’s formula from calculus.

We use these approximations to construct the iteration formula for a method known as

Euler’s method. While this method is rather unstable and of little practical use, it serves

as a pedagogical tool and a starting point toward understanding more sophisticated methods

such as the Runge–Kutta method and its variant the Runga–Kutta–Fehlberg (RKF) method,

which are popular and useful in practice. As is usual in mathematics, one tends to

generalize mathematical ideas. The methods of Sec. 21.1 are one-step methods, that is,

the current approximation uses only the approximation from the previous step. Multistep

methods, such as the Adams–Bashforth methods and Adams–Moulton methods, use values

computed from several previous steps. We conclude numerics for ODEs with applying

Runge–Kutta–Nyström methods and other methods to higher order ODEs and systems of

ODEs.

Numerics for PDEs are perhaps even more exciting and ingenious than those for ODEs.

We first consider PDEs of the elliptic type (Laplace, Poisson). Again, Taylor’s formula

serves as a starting point and lets us replace partial derivatives by difference quotients.

The end result leads to a mesh and an evaluation scheme that uses the Gauss–Seidel

method (here also know as Liebmann’s method). We continue with methods that use grids

to solve Neuman and mixed problems (Sec. 21.5) and conclude with the important

Crank–Nicholson method for parabolic PDEs in Sec. 21.6.

Sections 21.1 and 21.2 may be studied immediately after Chap. 1 and Sec. 21.3

immediately after Chaps. 2–4, because these sections are independent of Chaps. 19 and 20.

Sections 21.4–21.7 on PDEs may be studied immediately after Chap. 12 if students

have some knowledge of linear systems of algebraic equations.

Prerequisite: Secs. 1.1–1.5 for ODEs, Secs. 12.1–12.3, 12.5, 12.10 for PDEs.

References and Answers to Problems: App. 1 Part E (see also Parts A and C), App. 2.



21.1 Methods for First-Order ODEs
Take a look at Sec. 1.2, where we briefly introduced Euler’s method with an example.

We shall develop Euler’s method more rigorously. Pay close attention to the derivation

that uses Taylor’s formula from calculus to approximate the solution to a first-order ODE

at points that are a distance h apart. If you understand this approach, which is typical for

numerics for ODEs, then you will understand other methods more easily.

From Chap. 1 we know that an ODE of the first order is of the form 

and can often be written in the explicit form An initial value problem for

this equation is of the form

(1)

where and are given and we assume that the problem has a unique solution on some

open interval containing 

In this section we shall discuss methods of computing approximate numeric values of

the solution of (1) at the equidistant points on the x-axis

where the step size h is a fixed number, for instance, 0.2 or 0.1 or 0.01, whose choice we

discuss later in this section. Those methods are step-by-step methods, using the same

formula in each step. Such formulas are suggested by the Taylor series

(2)

Formula (2) is the key idea that lets us develop Euler’s method and its variant called—

you guessed it—improved Euler method, also known as Heun’s method. Let us start by

deriving Euler’s method.

For small h the higher powers in (2) are very small. Dropping all of them

gives the crude approximation

and the corresponding Euler method (or Euler–Cauchy method)

(3)

discussed in Sec. 1.2. Geometrically, this is an approximation of the curve of by a

polygon whose first side is tangent to this curve at (see Fig. 8 in Sec. 1.2).

Error of the Euler Method. Recall from calculus that Taylor’s formula with

remainder has the form

y(x 1 h) 5 y(x) 1 hyr(x) 1
1
2 h2ys(j)

x0

y(x)

(n 5 0, 1, Á )yn11 5 yn 1 hf (xn, yn)

 5 y(x) 1 hf (x, y)

 y(x 1 h) < y(x) 1 hyr(x)

h2, h3, Á

y(x 1 h) 5 y(x) 1 hyr(x) 1
h2

2
 ys(x) 1 Á .

x1 5 x0 1 h,   x2 5 x0 1 2h,   x3 5 x0 1 3h,   Á

y(x)

x0.a , x , b

y0x0

yr 5 f (x, y),  y(x0) 5 y0

yr 5 f (x, y).

F(x, y, yr) 5 0
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(where It shows that, in the Euler method, the truncation error in each

step or local truncation error is proportional to written where O suggests order

(see also Sec. 20.1). Now, over a fixed x-interval in which we want to solve an ODE, the

number of steps is proportional to Hence the total error or global error is proportional

to For this reason, the Euler method is called a first-order method. In

addition, there are roundoff errors in this and other methods, which may affect the

accuracy of the values more and more as n increases.

Automatic Variable Step Size Selection in Modern Software. The idea of

adaptive integration, as motivated and explained in Sec. 19.5, applies equally well to the

numeric solution of ODEs. It now concerns automatically changing the step size h depending

on the variability of determined by

Accordingly, modern software automatically selects variable step sizes so that the error

of the solution will not exceed a given maximum size TOL (suggesting tolerance). Now for

the Euler method, when the step size is the local error at is about 

We require that this be equal to a given tolerance TOL,

(4) (a) (b)

must not be zero on the interval on which the solution is wanted.

Let K be the minimum of on J and assume that Minimum 

corresponds to maximum by (4). Thus, We can

insert this into (4b), obtaining by straightforward algebra

(5) where

For other methods, automatic step size selection is based on the same principle.

Improved Euler Method. Predictor, Corrector. Euler’s method is generally much

too inaccurate. For a large h (0.2) this is illustrated in Sec. 1.2 by the computation for

(6)

And for small h the computation becomes prohibitive; also, roundoff in so many steps

may result in meaningless results. Clearly, methods of higher order and precision are

obtained by taking more terms in (2) into account. But this involves an important practical

problem. Namely, if we substitute into (2), we have

Now y in f depends on x, so that we have as shown in and even much more

cumbersome. The general strategy now is to avoid the computation of these derivatives

and to replace it by computing f for one or several suitably chosen auxiliary values of

“Suitably” means that these values are chosen to make the order of the method as(x, y).

f s,  ft(4*)f r

y(x 1 h) 5 y(x) 1 hf 1
1
2 h2f r 1

1
6 h3 f s 1 Á .(2*)

yr 5 f (x, y(x))

yr 5 y 1 x,  y(0) 5 0.

w(xn) 5 B
K

ƒ ys(jn) ƒ
 .hn 5 w(xn)H

12 TOL 5 H1K.h 5 H 5 12 TOL>K
ƒ ys(x) ƒK . 0.ƒ ys(x) ƒ

J: x0 % x 5 xNys(x)

hn 5 B
2 TOL

ƒ ys(jn) ƒ
 .1

2 hn
2 ƒ ys(jn) ƒ 5 TOL,  thus

1
2 

hn
2 ƒ ys(jn) ƒ .xnh 5 hn,

hn

ys 5 f r5 fx 1 fyyr5 fx 1 fy 
f.(4*)

yr 5 f

y1, y2, Á

h2(1>h) 5 h1.

1>h.

O(h2),h2,

x % j % x 1 h).
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high as possible (to have high accuracy). Let us discuss two such methods that are of

practical importance, namely, the improved Euler method and the (classical) Runge–Kutta

method.

In each step of the improved Euler method we compute two values, first the predictor

(7a)

which is an auxiliary value, and then the new y-value, the corrector

(7b)

Hence the improved Euler method is a predictor–corrector method: In each step we predict

a value (7a) and then we correct it by (7b).

In algorithmic form, using the notations in (7a) and 

in (7b), we can write this method as shown in Table 21.1.

Table 21.1 Improved Euler Method (Heun’s Method)

ALGORITHM EULER (ƒ, x0, y0, h, N )

This algorithm computes the solution of the initial value problem 

at equidistant points here ƒ is such

that this problem has a unique solution on the interval [x0, xN] (see Sec. 1.6).

INPUT: Initial values x0, y0, step size h, number of steps N

OUTPUT: Approximation yn11 to the solution  at 

where n 5 0, • • • , N 2 1

For do:

j
j
j
j
j OUTPUT 

End

Stop

End EULER

xn11, yn11

yn11 5 yn 1
1
2 

(k1 1 k2)

k2 5 hf (xn11, yn 1 k1)

k1 5 hf (xn, yn)

xn11 5 xn 1 h

n 5 0, 1, Á , N 2 1

xn11 5 x0 1 (n 1 1)h,y(xn11)

x1 5 x0 1 h, x2 5 x0 1 2h, Á , xN 5 x0 1 Nh;

yr5 f (x, y), y(x0) 5 y0

y*
n11)

(xn11,k2 5 hf k1 5 hf (xn, yn)

yn11 5 yn 1
1
2 h 3 f (xn, yn) 1 f (xn11, y*

n11)4.

y*n11 5 yn 1 hf (xn, yn),

SEC. 21.1 Methods for First-Order ODEs 903

E X A M P L E  1 Improved Euler Method. Comparison with Euler Method.

Apply the improved Euler method to the initial value problem (6), choosing as in Sec. 1.2.

Solution. For the present problem we have in Table 21.1

yn11 5 yn 1
0.2

2
 (2.2xn 1 2.2yn 1 0.2) 5 yn 1 0.22(xn 1 yn) 1 0.02.

 k2 5 0.2(xn 1 0.2 1 yn 1 0.2(xn 1 yn))

 k1 5 0.2(xn 1 yn)

h 5 0.2



Table 21.2 shows that our present results are much more accurate than those for Euler’s method in Table 21.1 but

at the cost of more computations.

Table 21.2 Improved Euler Method for (6) . Errors

Exact Values Error of Error of
n xn yn (4D) Improved Euler Euler

0 0.0 0.0000 0.0000 0.0000 0.000

1 0.2 0.0200 0.0214 0.0014 0.021

2 0.4 0.0884 0.0918 0.0034 0.052

3 0.6 0.2158 0.2221 0.0063 0.094

4 0.8 0.4153 0.4255 0.0102 0.152

5 1.0 0.7027 0.7183 0.0156 0.230

Error of the Improved Euler Method. The local error is of order and the global

error of order so that the method is a second-order method.

P R O O F Setting and using (after (6)), we have

(8a)

Approximating the expression in the brackets in (7b) by and again using the

Taylor expansion, we obtain from (7b)

(8b)

(where etc.). Subtraction of (8b) from (8a) gives the local error

Since the number of steps over a fixed x-interval is proportional to the global error 

is of order so that the method is of second order.

Since the Euler method was an attractive pedagogical tool to teach the beginning of

solving first-order ODEs numerically but had its drawbacks in terms of accuracy and could

even produce wrong answers, we studied the improved Euler method and thereby

introduced the idea of a predictor–corrector method. Although improved Euler is better

than Euler, there are better methods that are used in industrial settings. Thus the practicing

engineer has to know about the Runga–Kutta methods and its variants.

Runge–Kutta Methods (RK Methods)
A method of great practical importance and much greater accuracy than that of the

improved Euler method is the classical Runge–Kutta method of fourth order, which we

jh3>h 5 h2,

1>h,

h3

6
 f
|

sn 2
h3

4
 f
|

sn 1 Á 5 2 
h3

12
  f

|

sn 1 Á .

r 5 d>dxn,

 5 hf
|

n 1
1
2 h2 f

|

rn 1
1
4 h3 f

|

sn 1 Á

 5 1
2 h 3 f

|

n 1 ( f
|

n 1 h f
|

rn 1
1
2 

h2 f
|

sn 1 Á )4

 yn11 2 yn < 1
2 h 3 f

|

n 1 f
|

n114

f
|

n 1 f
|

n11

y(xn 1 h) 2 y(xn) 5 h f
|

n 1
1
2 h2 f

|

rn 1
1
6 h3 f

|

sn 1 Á .

(2*)f
|

n 5 f (xn, y(xn))

h2,

h3

j
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call briefly the Runge–Kutta method.1 It is shown in Table 21.3. We see that in each

step we first compute four auxiliary quantities and then the new value 

The method is well suited to the computer because it needs no special starting procedure,

makes light demand on storage, and repeatedly uses the same straightforward compu-

tational procedure. It is numerically stable.

Note that, if f depends only on x, this method reduces to Simpson’s rule of integration

(Sec. 19.5). Note further that depend on n and generally change from step

to step.

k1, Á , k4

yn11.k1, k2, k3, k4

Table 21.3 Classical Runge–Kutta Method of Fourth Order

ALGORITHM RUNGE–KUTTA (ƒ, x0, y0, h, N ).

This algorithm computes the solution of the initial value problem y9 5 ƒ(x, y), y(x0) 5 y0

at equidistant points

(9)

here ƒ is such that this problem has a unique solution on the interval [x0, xN] (see Sec. 1.7).

INPUT: Function ƒ, initial values x0, y0, step size h, number of steps N

OUTPUT: Approximation yn11 to the solution y(xn11) at 

where 

For do:

j
j
j
j
j
j
j OUTPUT 

End

Stop

End RUNGE–KUTTA

xn11, yn11

 yn11 5 yn 1
1
6 (k1 1 2k2 1 2k3 1 k4)

 xn11 5 xn 1 h

 k4 5 hf (xn 1 h, yn 1 k3)

 k3 5 hf (xn 1
1
2 h, yn 1

1
2 k2)

 k2 5 hf (xn 1
1
2 h, yn 1

1
2 k1)

 k1 5 hf (xn, yn)

n 5 0, 1, Á , N 2 1

n 5 0, 1, Á , N 2 1

xn11 5 x0 1 (n 1 1) h,

x1 5 x0 1 h, x2 5 x0 1 2h, Á , xN 5 x0 1 Nh;

1Named after the German mathematicians KARL RUNGE (Sec. 19.4) and WILHELM KUTTA (1867–1944).

Runge [Math. Annalen 46 (1895), 167–178], the German mathematician KARL HEUN (1859–1929) [Zeitschr.

Math. Phys. 45 (1900), 23–38], and Kutta [Zeitschr. Math. Phys. 46 (1901), 435–453] developed various similar

methods. Theoretically, there are infinitely many fourth-order methods using four function values per step. The

method in Table 21.3 is most popular from a practical viewpoint because of its “symmetrical” form and its

simple coefficients. It was given by Kutta.



E X A M P L E  2 Classical Runge–Kutta Method

Apply the Runge–Kutta method to the initial value problem in Example 1, choosing as before, and

computing five steps.

Solution. For the present problem we have Hence

Table 21.4 shows the results and their errors, which are smaller by factors and than those for the two

Euler methods. See also Table 21.5. We mention in passing that since the present are simple,

operations were saved by substituting into then into etc.; the resulting formula is shown in

Column 4 of Table 21.4. Keep in mind that we have four function evaluations at each step. j

k3,k2k2,k1

k1, Á , k4

104103

 k3 5 0.2 (xn 1 0.1 1 yn 1 0.5k2),   k4 5 0.2(xn 1 0.2 1 yn 1 k3).

 k1 5 0.2(xn 1 yn),   k2 5 0.2(xn 1 0.1 1 yn 1 0.5k1),

f (x, y) 5 x 1 y.

h 5 0.2,
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Table 21.4 Runge–Kutta Method Applied to (4)

0.2214(xn 1 yn) Exact Values (6D) 106 3 Error
n xn yn

1 0.0214 y 5 ex 2 x 2 1 of yn

0 0.0 0 0.021400 0.000000 0

1 0.2 0.021400 0.070418 0.021403 3

2 0.4 0.091818 0.130289 0.091825 7

3 0.6 0.222107 0.203414 0.222119 12

4 0.8 0.425521 0.292730 0.425541 20

5 1.0 0.718251 0.718282 31

Table 21.5 Comparison of the Accuracy of the Three Methods under Consideration 
in the Case of the Initial Value Problem (4), with h 5 0.2

Error

Euler Improved Euler Runge–Kuttax y 5 ex 2 x 2 1

(Table 21.1) (Table 21.3) (Table 21.5)

0.2 0.021403 0.021 0.0014 0.000003

0.4 0.091825 0.052 0.0034 0.000007

0.6 0.222119 0.094 0.0063 0.000011

0.8 0.425541 0.152 0.0102 0.000020

1.0 0.718282 0.230 0.0156 0.000031

Error and Step Size Control. 
RKF (Runge–Kutta–Fehlberg)
The idea of adaptive integration (Sec. 19.5) has analogs for Runge–Kutta (and other)

methods. In Table 21.3 for RK (Runge–Kutta), if we compute in each step approximations

y| and y|| with step sizes h and 2h, respectively, the latter has error per step equal to 

times that of the former; however, since we have only half as many steps for 2h, the actual

factor is so that, say,

and thus y(h)
2 y(2h)

5 P(2h)
2 P(h) < (16 2 1)P(h).P(2h) < 16P(h)

25>2 5 16,

25
5 32



Hence the error for step size h is about

(10)

where y| 2 y|
| as said before. Table 21.6 illustrates (10) for the initial value

problem

(11)

the step size and We see that the estimate is close to the actual

error. This method of error estimation is simple but may be unstable.

0 % x % 0.4.h 5 0.1

yr 5 (y 2 x 2 1)2
1 2,  y(0) 5 1,

5 y(h)
2 y(2h),

P 5
1

15 
( y| 2 y||)

P 5 P(h)
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Table 21.6 Runge–Kutta Method Applied to the Initial Value Problem (11) 
and Error Estimate (10). Exact Solution y 5 tan x 1 x 1 1

y| y|| Error Actual Exact
x

(Step size h) (Step size 2h) Estimate (10) Error Solution (9D)

0.0 1.000000000 1.000000000 0.000000000 0.000000000 1.000000000

0.1 1.200334589 0.000000083 1.200334672

0.2 1.402709878 1.402707408 0.000000165 0.000000157 1.402710036

0.3 1.609336039 0.000000210 1.609336250

0.4 1.822792993 1.822788993 0.000000267 0.000000226 1.822793219

RKF. E. Fehlberg [Computing 6 (1970), 61–71] proposed and developed error control

by using two RK methods of different orders to go from to The

difference of the computed y-values at gives an error estimate to be used for step

size control. Fehlberg discovered two RK formulas that together need only six function

evaluations per step. We present these formulas here because RKF has become quite

popular. For instance, Maple uses it (also for systems of ODEs).

Fehlberg’s fifth-order RK method is

(12a)

with coefficient vector 

(12b)

His fourth-order RK method is

(13a)

with coefficient vector

(13b) g* 5 3 25
216 0 1408

2565
2197
4104 2

1
54 .

y*n11 5 yn 1 g*
1k1 1 Á 1 g*

5k5

g 5 3 16
135 0 6656

12,825
28,561
56,430 2

9
50

2
554 .

g 5 3g1
Á g64,

yn11 5 yn 1 g1k1 1 Á 1 g6k6

xn11

(xn11, yn11).(xn, yn)
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In both formulas we use only six different function evaluations altogether, namely,

(14)

The difference of (12) and (13) gives the error estimate

(15)

E X A M P L E  3 Runge–Kutta–Fehlberg

For the initial value problem (11) we obtain from (12)–(14) with in the first step the 12S-values

and the error estimate

The exact 12S-value is Hence the actual error of is smaller than that

in Table 21.6 by a factor of 200.

Table 21.7 summarizes essential features of the methods in this section. It can be shown

that these methods are numerically stable (definition in Sec. 19.1). They are one-step

methods because in each step we use the data of just one preceding step, in contrast to

multistep methods where in each step we use data from several preceding steps, as we

shall see in the next section.

j

24.4 ? 10210,y1y(0.1) 5 1.20033467209.

P1 < y1 2 y*
1 5 0.00000000304.

 y1 5 1.20033467253

 y*
1 5 1.20033466949

 k5 5 0.201006676700  k6 5 0.200250418651

 k3 5 0.200140756867  k4 5 0.200856926154

 k1 5 0.200000000000  k2 5 0.200062500000

h 5 0.1

Pn11 < yn11 2 y*n11 5
1

360 k1 2
128

4275 k3 2
2197

75,240 k4 1
1
50 k5 1

2
55 k6.

2
11
40 k5).1

1859
4104 k42

3544
2565 k31   ˛2k2 k6 5 hf (xn 1

1
2 h,  yn 2   

8
27 k1

2
845
4104 k4)1

3680
513  k32   ˛8k2 k5 5 hf (xn 1 h,  yn 1   

439
216 k1

1
7296
2197 k3)2

7200
2197 k2 k4 5 hf (xn 1

12
13 h,  yn 1

1932
2197 k1

1    
9
32 k2) k3 5 hf (xn 1

3
8 h,  yn 1    

3
32 k1

 k2 5 hf (xn 1
1
4 h,  yn 1   

1
4 k1)

 k1 5 hf (xn, yn)

Table 21.7 Methods Considered and Their Order (5 Their Global Error)

Function Evaluation
Method

per Step
Global Error Local Error

Euler 1 O(h) O(h2)

Improved Euler 2 O(h2) O(h3)

RK (fourth order) 4 O(h4) O(h5)

RKF 6 O(h5) O(h6)



Backward Euler Method. Stiff ODEs
The backward Euler formula for numerically solving (1) is

(16)

This formula is obtained by evaluating the right side at the new location 

this is called the backward Euler scheme. For known it gives implicitly, so it

defines an implicit method, in contrast to the Euler method (3), which gives 

explicitly. Hence (16) must be solved for How difficult this is depends on f in (1).

For a linear ODE this provides no problem, as Example 4 (below) illustrates. The method

is particularly useful for “stiff” ODEs, as they occur quite frequently in the study of

vibrations, electric circuits, chemical reactions, etc. The situation of stiffness is roughly

as follows; for details, see, for example, [E5], [E25], [E26] in App. 1.

Error terms of the methods considered so far involve a higher derivative. And we ask

what happens if we let h increase. Now if the error (the derivative) grows fast but the desired

solution also grows fast, nothing will happen. However, if that solution does not grow fast,

then with growing h the error term can take over to an extent that the numeric result becomes

completely nonsensical, as in Fig. 451. Such an ODE for which h must thus be restricted

to small values, and the physical system the ODE models, are called stiff. This term is

suggested by a mass–spring system with a stiff spring (spring with a large k; see Sec. 2.4).

Example 4 illustrates that implicit methods remove the difficulty of increasing h in the case

of stiffness: It can be shown that in the application of an implicit method the solution remains

stable under any increase of h, although the accuracy decreases with increasing h.

E X A M P L E  4 Backward Euler Method. Stiff ODE

The initial value problem

has the solution (verify!)

The backward Euler formula (16) is

Noting that taking the term to the left, and dividing, we obtain

( )

The numeric results in Table 21.8 show the following.

Stability of the backward Euler method for and also for with an error increase by about a

factor 4 for 

Stability of the Euler method for but instability for (Fig. 451),

Stability of RK for but instability for 

This illustrates that the ODE is stiff. Note that even in the case of stability the approximation of the solution

near is poor.

Stiffness will be considered further in Sec. 21.3 in connection with systems of ODEs.

jx 5 0

h 5 0.2.h 5 0.1

h 5 0.1h 5 0.05

h 5 0.2,

h 5 0.2h 5 0.05

yn11 5
yn 1 h320 (xn 1 h)2

1 2 (xn 1 h)4

1 1 20h
 .16*

220yn11xn11 5 xn 1 h,

yn11 5 yn 1 hf (xn11, yn11) 5 yn 1 h (220yn11 1 20xn11
2

1 2xn11).

y 5 e220x
1 x2.

yr 5 f (x, y) 5 220hy 1 20x2
1 2x, y(0) 5 1

yn11.

yn11

yn11yn

(xn11, yn11);

(n 5 0, 1, Á ).yn11 5 yn 1 hf (xn11, yn11)
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Table 21.8 Backward Euler Method (BEM) for Example 6. Comparison with Euler and RK

BEM BEM Euler Euler RK RK
x

h 5 0.05 h 5 0.2 h 5 0.05 h 5 0.1 h 5 0.1 h 5 0.2
Exact

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.000 1.00000

0.1 0.26188 0.00750 21.00000 0.34500 0.14534

0.2 0.10484 0.24800 0.03750 1.04000 0.15333 5.093 0.05832

0.3 0.10809 0.08750 20.92000 0.12944 0.09248

0.4 0.16640 0.20960 0.15750 1.16000 0.17482 25.48 0.16034

0.5 0.25347 0.24750 20.76000 0.25660 0.25004

0.6 0.36274 0.37792 0.35750 1.36000 0.36387 127.0 0.36001

0.7 0.49256 0.48750 20.52000 0.49296 0.49001

0.8 0.64252 0.65158 0.63750 1.64000 0.64265 634.0 0.64000

0.9 0.81250 0.80750 20.20000 0.81255 0.81000

1.0 1.00250 1.01032 0.99750 2.00000 1.00252 3168 1.00000

1–4 EULER METHOD

Do 10 steps. Solve exactly. Compute the error. Show

details.

1.

2.

3.

4.

5–10 IMPROVED EULER METHOD

Do 10 steps. Solve exactly. Compute the error. Show

details.

5.

6.

7.

8. Logistic population model.

h 5 0.1

yr 5 y 2 y2, y(0) 5 0.2,

yr 2 xy2
5 0, y(0) 5 1, h 5 0.1

yr 5 2 (1 1 y2), y(0) 5 0, h 5 0.05

yr 5 y, y(0) 5 1, h 5 0.1

yr 5 (y 1 x)2, y(0) 5 0, h 5 0.1

yr 5 (y 2 x)2, y(0) 5 0, h 5 0.1

yr 5
1
2 p21 2 y2, y(0) 5 0, h 5 0.1

yr 1 0.2y 5 0, y(0) 5 5, h 5 0.2

9. Do Prob. 7 using Euler’s method with and com-

pare the accuracy.

10. Do Prob. 7 using the improved Euler method, 20 steps

with Compare.

11–17 CLASSICAL RUNGE–KUTTA METHOD
OF FOURTH ORDER

Do 10 steps. Compare as indicated. Show details.

11. Compare with

Prob. 7. Apply the error estimate (10) to 

12. Compare with

Prob. 8.

13.

14.

15.

16. Do Prob. 15 with 5 steps, and compare the

errors with those in Prob. 15.

h 5 0.2,

yr 1 y tan x 5 sin 2x, y(0) 5 1, h 5 0.1

yr 5 (1 2 x21)y, y(1) 5 1, h 5 0.1

yr 5 1 1 y2, y(0) 5 0, h 5 0.1

yr 5 y 2 y2, y(0) 5 0.2, h 5 0.1.

y10.

yr 2 xy2
5 0, y(0) 5 1, h 5 0.1.

h 5 0.05.

h 5 0.1

P R O B L E M  S E T  2 1 . 1

Fig. 451. Euler method with h 5 0.1 for the stiff 

ODE in Example 4 and exact solution  

y

x0 0.2 0.4 0.6 0.8 1.0

–1.0

1.0

2.0
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17.

18. Kutta’s third-order method is defined by 

with and as in RK 

(Table 21.3) and 

Apply this method to (4) in (6). Choose and

do 5 steps. Compare with Table 21.5.

19. CAS EXPERIMENT. Euler–Cauchy vs. RK. Con-

sider the initial value problem

(17)

(solution: where is

the Fresnel integral (38) in App. 3.1).

(a) Solve (17) by Euler, improved Euler, and RK

methods for with step Compare the

errors for and comment.x 5 1, 3, 5

h 5 0.2.0 % x % 5

S(x)y 5 1>32.5 2 S(x)4 1 0.01x2

y(0) 5 0.4

yr 5 (y 2 0.01x2)2 sin (x2) 1 0.02x,

h 5 0.2

k3
* 5 hf (xn11, yn 2 k1 1 2k2).

k2k1yn 1
1
6 (k1 1 4k2 1 k3

*)

yn11 5

yr 5 4x3y2, y(0) 5 0.5, h 5 0.1 (b) Graph solution curves of the ODE in (17) for

various positive and negative initial values.

(c) Do a similar experiment as in (a) for an initial

value problem that has a monotone increasing or

monotone decreasing solution. Compare the behavior

of the error with that in (a). Comment.

20. CAS EXPERIMENT. RKF. (a) Write a program for

RKF that gives the estimate (10), and, if the

solution is known, the actual error 

(b) Apply the program to Example 3 in the text

(10 steps, ).

(c) in (b) gives a relatively good idea of the size

of the actual error. Is this typical or accidental? Find

out, by experimentation with other problems, on

what properties of the ODE or solution this might

depend.

Pn

h 5 0.1

Pn.

xn, yn,

21.2 Multistep Methods
In a one-step method we compute using only a single step, namely, the previous

value . One-step methods are “self-starting,” they need no help to get going because

they obtain from the initial value etc. All methods in Sec. 21.1 are one-step.

In contrast, a multistep method uses, in each step, values from two or more previous

steps. These methods are motivated by the expectation that the additional information will

increase accuracy and stability. But to get started, one needs values, say, in

a 4-step method, obtained by Runge–Kutta or another accurate method. Thus, multistep

methods are not self-starting. Such methods are obtained as follows.

Adams–Bashforth Methods
We consider an initial value problem

(1)

as before, with f such that the problem has a unique solution on some open interval

containing We integrate from to This gives

Now comes the main idea. We replace by an interpolation polynomial (see

Sec. 19.3), so that we can later integrate. This gives approximations of and

of 

(2) yn11 5 yn 1 #
xn11

xn

p(x) dx.

y(xn),yn

y(xn11)yn11

p(x)f (x, y(x))

#
xn11

xn

yr(x) dx 5 y(xn11) 2 y(xn) 5 #
xn11

xn

f (x, y(x)) dx.

xn11 5 xn 1 h.xnyr5 f (x, y)x0.

yr 5 f (x, y),  y(x0) 5 y0

y0, y1, y2, y3

y0,y1

yn

yn11


