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Components of Vectors for Gene Transfer and Expression

in Mammalian Cells

Savvas C. Makrides
EIC Laboratories, Inc., Norwood, Massachusetts 02062

Progress in diverse scientific fields has been realized
partly by the continued refinement of mammalian
gene expression vectors. A growing understanding of
biological processes now allows the design of vector
components to meet specific objectives. Thus, gene ex-
pression in a tissue-selective or ubiquitous manner
may be accomplished by selecting appropriate pro-
moter/enhancer elements; stabilization of labile
mMRNAs may be effected through removal of 3’ untrans-
lated regions or fusion to heterologous stabilizing se-
quences; protein targeting to selected tissues or differ-
ent organelles is carried out using specific signal
sequences; fusion moieties effect the detection, en-
hanced yield, surface expression, prolongation of half-
life, and facile purification of recombinant proteins;
and careful tailoring of the codon content of heterol-
ogous genes enhances protein production from poorly
translated transcripts. The use of viral as well as non-
viral genetic elements in vectors allows the stable rep-
lication of episomal elements without the need for
chromosomal integration. The development of baculo-
virus vectors for both transient and stable gene ex-
pression in mammalian cells has expanded the utility
of such vectors for a broad range of cell types. Internal
ribosome entry sites are now widely used in many
applications that require coexpression of different
genes. Progress in gene targeting techniques is likely
to transform gene expression and amplification in
mammalian cells into a considerably less labor-inten-
sive operation. Future progress in the elucidation of
eukaryotic protein degradation pathways holds prom-
ise for developing methods to minimize proteolysis of
specific recombinant proteins in mammalian cells and

tissues. © 1999 Academic Press

In recent years progress in the design, sophistica-
tion, and availability of vectors for gene expression in
mammalian cells has been phenomenal. Vectors have
many applications, including the study of gene regula-
tion, DNA sequencing, molecular cloning, protein pro-
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duction, antigen expression for vaccination, and gene
therapy. There is a large number of vectors available;
for example, Vector Database on the Web (Table 1) lists
more than 2600 vectors. In spite of the plethora of
available vectors, however, robust protein production
in mammalian cells is not necessarily a routine matter.
Efficient expression of genes in mammalian cells de-
pends on many factors, including both transcriptional
and translational control elements, RNA processing,
gene copy number, mRNA stability, the chromosomal
site of gene integration, potential toxicity of recombi-
nant proteins to the host cell, as well as the genetic
properties of the host. Gene transfer into mammalian
cells may be effected either by infection with virus that
carries the recombinant gene of interest or by direct
transfer of plasmid DNA. Due to space limitations, the
emphasis here is on nonviral vectors for high-level
protein production. There is extensive literature on
mammalian vectors of viral origin with applications in
protein production, gene therapy, and vaccine develop-
ment. The reader is referred to recent reviews (1-7)
and to Table 2 for selected references on viral-based
vectors. In addition, only brief coverage of inducible
vector systems is provided here, as several excellent
reviews have covered this topic in detail (8—13).

The choice of an expression system for production of
recombinant proteins depends on many factors, includ-
ing cell growth characteristics, expression levels, intra-
cellular and extracellular expression, posttranslational
modifications and biological activity of the protein of
interest, as well as regulatory issues and economic
considerations in the production of therapeutic pro-
teins (14-16). Key advantages of mammalian cells over
other expression systems are the ability to carry out
proper protein folding, complex N-linked glycosylation
and authentic O-linked glycosylation, as well as a
broad spectrum of posttranslational modifications (14).
The essential elements of mammalian expression vec-
tors (Table 3 and Fig. 1) include (1) a constitutive or
inducible promoter capable of robust transcriptional
activity; (2) optimized mRNA processing and transla-
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tional signals that include a Kozak sequence, transla-
tion termination codon, mMRNA cleavage and polyade-
nylation signals, as well as mRNA splicing signals; (3)
a transcription terminator; (4) selection markers (Ta-
ble 4) for the preparation of stable cell lines and for
gene amplification; and (5) prokaryotic origin of repli-
cation and selection markers for vector propagation in
bacteria. The inclusion of the SV40 origin of replication
facilitates transient gene expression in COS cells.
Other genetic elements for specific applications include
fusion moieties, protease cleavage sites, sequences for
gene or protein targeting, and IRES elements for the
construction of polycistronic vectors (Fig. 1D).

TABLE 1
Web Databases for Gene Expression Vectors

Vector Database

http://vectordb.atcg.com
VectorDB contains information on more than 2600 vectors,
including phage, plasmid, phagemid, phasmid, cosmid, viral, and
YAC vectors. The database has a search engine and contains
annotation and sequence information for many of the vectors. In
addition, vectors which are also in GenBank have direct links to
that database.

Gene Transfer Vector Core

http://www.uiowa.edu/~gene
This site is from the University of lowa College of Medicine. The
core produces viral and nonviral vectors in quantities necessary
for gene transfer in research experiments or preclinical studies.
Core staff work closely with investigators to plan and develop
gene transfer vectors to fit individual project requirements.
Customized virus constructions are available on a fee for service
basis.

Gene Therapy Vectors

http://www.wiley.co.uk/genetherapy/vectors.html
This site deals with all aspects of gene therapy, including an
overview of gene delivery systems and illustrations of the most
widely used gene transfer vectors. The site also provides
comprehensive summaries of clinical trials in gene therapy
worldwide and has links to information from meetings,
published material, regulatory agencies, and related databases.

Course BS335: Virology

http://www-micro.msb.le.ac.uk/335/BS335.html
This course on the main principles of virology is organized by
Alan Cann from the University of Leicester. The site includes a
detailed section on viral vectors for gene transfer and therapy
organized by David Peel.

National Gene Vector Laboratories (NGVL)

http://www.iupui.edu/~iucc/ngvl
The NGVL are funded by the National Institutes of Health and
are composed of a group of academic laboratories whose goal is
to provide eligible investigators with clinical grade vectors for
gene therapy. The home page includes the following links:
NGVL at Indiana University produces retroviral and AAV
vectors. NGVL at the University of Michigan produces nonviral
vectors. NGVL at the University of Pennsylvania produces
adenoviral vectors.

Sindbis Virus Gene Expression Vectors

http://www.microbiology.wustl.edu/Sindbis/sinVectors
This site from Washington University in St. Louis provides a
detailed description of the molecular biology of Sindbis virus,
including a bibliography and types of Sindbis virus gene
expression vectors.
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TABLE 2

Viral-Based Vectors for Gene Transfer and Expression in
Mammalian Cells

Viral-based vector Reference No.

DNA viruses
Cytomegalovirus 148
Herpes simplex virus 149
Epstein-Barr virus 150, 151
Simian virus 40 20,21
Bovine papillomavirus 49
Adeno-associated virus 152
Adenovirus 153, 154
Vaccinia virus 155, 156
Baculovirus 157

RNA viruses
Semliki Forest virus® 158, 159
Sindbis virus 160, 161
Poliovirus 162, 163
Rabies virus 164
Influenza virus 165, 166
SV5 167
Respiratory syncytial virus 168
Venezuelan equine encephalitis virus 169, 170
Kunjin virus 171
Sendai virus 172
Vesicular stomatitis virus 173
Retroviruses 2,174,175

Chimeric viral vectors
Adenovirus-Sindbis virus 176
Adenovirus-adeno-associated virus 177

* A DNA-based self-amplifying SFV vector has been developed
(178).

1. TRANSIENT GENE EXPRESSION

Transient gene expression is a convenient method
for the rapid production of small quantities of protein
for initial characterization. In addition, the method
lends itself to the rapid testing of vector functionality
as well as optimization of different combinations of
promoters and other elements in expression vectors.
Thus, once the appropriate vector has been con-
structed, results from transient expression assays can
be obtained in 2 to 3 days and allow one to proceed with
confidence to the more time-consuming task of prepar-
ing permanent stable cell lines for protein production
on a larger scale. There are several cell types used for
transient gene expression, including COS, baby ham-
ster kidney (BHK)', and human embryonic kidney
(HEK)-293 cells, as well as genetically modified HEK-
293 cells (reviewed in 17). The most widely used tran-
sient expression system utilizes COS cells (reviewed in

! Abbreviations used: BHK, baby hamster kidney; HEK, human
embryonic kidney; S/IMAR, scaffold/matrix attached region; CHO,
Chinese hamster ovary; Cre, cyclization recombination; MDCK, Ma-
din—-Darby canine kidney cells; MMP13, metalloproteinase 13; IPTG,
isopropyl B-b-thiogalactopyranoside; UTR, untranslated region;
OTC, ornithine transcarbamylase; GFP, green fluorescent protein;
IRES, internal ribosome entry site.
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18,19). COS cell lines were generated by the transfec-
tion of African green monkey kidney CV1 cells with an
origin-defective SV40 (20,21). COS cells express the
SV40 T antigen, which allows replication of plasmids
containing the SV40 origin of replication. This host/
vector system facilitates high-level plasmid amplifica-
tion and protein production, followed by lysis of the
cells 3 to 4 days from the time of transfection. COS cells
have been used for the transient expression of numer-
ous genes, including the production of a wide range of
monoclonal antibodies (19). It is also possible to use
COS cells on a large scale for the production of milli-
gram quantities of protein, thus obviating the need for
multiple transfections (17).

2. STABLE GENE EXPRESSION

In contrast to transient gene expression, preparation
of stable cell lines that “permanently” express the gene
of interest depends on the stable integration of plasmid
into the host chromosome. It is also possible, however,
to generate stable cell lines that harbor vectors extra-
chromosomally. For example, vectors that carry the
Epstein-Barr virus nuclear antigen (EBNA-1) and the
origin of replication (oriP) (Table 3) can be maintained
episomally in primate and canine cell lines but not in
rodent cell lines (22). Recently, an episomal replicating
vector has been described that does not express any
viral proteins, thus avoiding cell transformation (23).
The vector contains the SV40 origin of replication and
the scaffold/matrix attached region (S/MAR) from the
human interferon-B8 gene. SIMARs are DNA sequences
associated with chromosomal origins of bidirectional
replication. The vector was shown to replicate at very
low copy numbers (below 20) in Chinese hamster ovary
(CHO) cells and was stably maintained without selec-
tion for more than 100 generations (23).

The choice of host cell may have a significant impact
on gene expression levels. For example, myeloma cells
have been mainly used for high-level production of
monoclonal antibodies (19). However, amplifiable ex-
pression systems using CHO cells have been widely
used for the successful production of proteins of ther-
apeutic interest. There are many genes that confer
drug resistance upon amplification (24); however, the
two most widely used amplification systems rely on the
dihydrofolate reductase and glutamine synthetase
genes. Thus, by growing cells in increasing concentra-
tions of selection drugs it is possible to amplify signif-
icantly the copy number of the cotransfected gene of
interest and concomitantly elevate the amount of pro-
tein produced (24).

The generation of stable cell lines, particularly the
selection of amplified and high-expressing clonal cells,
necessitates the screening of large numbers of trans-
fected cells, both during the initial transfection and at
each subsequent amplification step. This is mainly due
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to the wide variation in the level of expression and
amplification of the transfected gene, depending on the
chromosomal site of plasmid integration (25-27). For
example, in CHO cells, gene amplification frequency in
one transformant was 100-fold that of the others, and
in another, amplification of transfected genes inserted
near a centromere resulted in chromosome instability
and rearrangements (25). These observations have the-
oretical implications for the method of gene introduc-
tion into mammalian cells. Often the gene of interest
and the selectable gene marker (or, in the case of
antibodies, the heavy and light chains) are located on
two separate plasmids. These are cotransfected into
the host cell where they recombine and integrate as a
unit into the host chromosome (28). It is possible,
therefore, that the two genes integrate in separate
chromosomal loci of different transcriptional activity,
necessitating the screening of large numbers of trans-
fected cells. This potential problem may be resolved by
placing both genes of interest on a single vector. To
date, however, there is no firm evidence that a single
expression vector is advantageous over two vectors. In
the case of antibody expression, it has been concluded
that equivalent levels of production and stability of the
resulting cell lines have been obtained using single-
and double-vector systems (19).

An alternative strategy for the efficient prepara-
tion of stable cell lines is site-specific gene integra-
tion using recombination systems such as Cre/loxP
(29) and FLP/FRT from yeast (30). Cre (cyclization
recombination) recombinase of bacteriophage P1 re-
combines DNA at 34-bp sites called loxP (locus of
crossover of P1). The FLP recombinase from the
2-um circle of Saccharomyces cerevisiae recognizes
FRT (the FLP recombination target). It should be
possible to engineer a cell line using a reporter gene
to select a transcriptionally active chromosomal lo-
cus. Such a cell line could then be used for the
routine excision and replacement of the reporter con-
struct with the gene of interest. Progress in this area
is ongoing (31,32), and a commercially available vec-
tor/host system makes use of the FLP/FRT elements
(pOG vector, Stratagene, La Jolla, CA).

Recently, a well-differentiated epithelial cell line,
Madin—Darby canine kidney (MDCK), was shown to be
capable of producing large amounts of protein (33). The
cells were transfected with a plasmid containing the
cytomegalovirus promoter controlling the expression of
matrix metalloproteinase 13 (MMP13). The yield of
MMP13 was 10 mg/liter of conditioned medium, an
amount that rivals yields obtained from CHO amplifi-
cation systems. The authors point out that the unusu-
ally high yield could be attributed partially to the prop-
erties of MDCK cells, since CHO cells transfected with
the same vector yielded much less protein (33).
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FIG. 1. Configuration of genetic elements in monocistronic (A) and polycistronic (D) expression vectors. Specific elements are shown for
illustrative purposes and are not drawn to scale. The source, position, and combination of different components in the vector may vary in
order to meet specific experimental requirements. SV40 ori is required for transient gene expression in COS cells. EBNA-1 and oriP facilitate
high-copy episomal replication in primate and canine cell lines. The various promoter (P) elements allow constitutive (A) or inducible (B, C)
expression. The optimal translational initiation sequence (Kozak) and termination codon followed by purines are shown. The ColE1 origin
of replication and the ampicillin-resistance gene allow vector propagation in bacteria. The neomycin-resistance gene facilitates selection in
mammalian cells, and the dhfr gene allows both selection and gene amplification. In a polycistronic vector (D) IRES elements allow multiple
ORFs to be efficiently translated from a single transcript. See text for details. Amp, ampicillin resistance gene; ColE1, prokaryotic origin of
replication; dhfr, dihydrofolate reductase; EBNA, Epstein-Barr virus nuclear antigen; FUS, fusion moiety; GRE, glucocorticoid response
element; hCMV IE, human cytomegalovirus immediate early enhancer/promoter; HSP, heat shock protein; IRES, internal ribosome entry
site; lacO, lac operator; L, leader (targeting sequence); MCS, multiple cloning site; neo, neomycin resistance gene; ORF, open reading frame;
ori, origin of replication; oriP, Epstein-Barr virus origin of replication; P, promoter; pA, polyadenylation signal; PCS, protease cleavage site;
T, SV40 large tumor (T) antigen; TE, translational enhancer; TT, transcription terminator; UTR, untranslated region.

3. TRANSCRIPTIONAL CONTROL ELEMENTS
Promoters and Enhancers

fully considered prior to the construction and use of
expression vectors (40,41). For example, the widely
used cytomegalovirus promoter exhibits low transcrip-
tional activity in hepatocytes (42). Strong constitutive
promoters which drive expression in many cell types
include the adenovirus major late promoter, the hu-
man cytomegalovirus immediate early promoter, the
SV40 and Rous Sarcoma virus promoters, and the mu-
rine 3-phosphoglycerate kinase promoter. The human

Although the physical boundaries between these two
control elements are not always clear, promoters are
operationaly defined as the site of transcription initia-
tion, an event mediated through interactions of tran-
scription factors with their cognate promoter and en-
hancer elements (34-36). Enhancers potentiate
promoter activity, temporally as well as spatially

(34,37). In general, promoters contain the TATA box,
located upstream of the transcription initiation site,
and the CAAT box, located upstream of the TATA box.
Both regions bind transcription factors that facilitate
transcription initiation; however, there are promoters
that do not contain a TATA box (38,39).

Many promoters are transcriptionally active in a
wide range of cell types and tissues. However, most
exhibit tissue specificity, a property that must be care-

ubiquitin C promoter is active in tissue culture (43),
and it is capable of high-level gene expression in a very
broad range of tissues (44).

Tissue specificity of promoters is of particular inter-
est in gene therapy applications. An interesting strat-
egy was recently devised to enhance the transcrip-
tional activity of weak promoters without loss of tissue
specificity (45). The principle behind this strategy was
to use a cell type-specific promoter to drive the simul-



190 SAVVAS C. MAKRIDES

TABLE 4
Selection Markers for Gene Expression in Mammalian Cells

Gene Phenotype Action of selective agent Reference

Positive selection

dhfr (dihydrofolate reductase) Resistance to MTX* MTX is a competitive inhibitor of 194, 195, 196
DHFR
xgprt (gpt) (xanthine—guanine Xanthine as the source for guanine  Aminopterin and mycophenolic acid in 197
phosphoribosyl transferase) synthesis dialyzed medium block de novo
synthesis of GMP
aph (neo) (aminoglycoside Resistance to G418" G418 blocks mammalian protein 198, 199
phosphotransferase) synthesis
hph (hyg) (hygromycin-B- Resistance to hygromycin B Hygromycin B blocks protein 200, 201
phosphotransferase) synthesis
pac (puro) (puromycin-N-acetyl Resistance to puromycin Puromycin blocks protein synthesis 202, 203
transferase)
ble (bleomycin) Resistance to bleomycin, Bleomycin belongs to a group of 204, 205
phleomycin, or zeocin related glycopeptide antibiotics

which are believed to cause DNA
strand scission

hisD (histidinol dehydrogenase) Resistance to histidinol Histidinol is cytotoxic; HD oxidizes 206
histidinol to histidine
trpB (tryptophan synthase (B8 subunit)) Indole as the source for 206
tryptophan synthesis
atpA (Na*, K™-ATPase « subunit) Resistance to ouabain Ouabain belongs to a group of related 207, 208

cardiac glycosides which block
transport of Na* and K™ by intact
cell membranes

ada (adenosine deaminase) Resistance to Xyl-A° Xyl-A is converted to Xyl-ATP, which 209, 210
damages nucleic acids
codA (cytosine deaminase) Resistance to PALA® PALA blocks de novo synthesis of 211, 212

pyrimidines; CD converts cytosine
in the medium to uracil

Negative selection

codA (cytosine deaminase) Cell death CD converts 5-fluorocytosine to 5- 213
fluorouracil
HSV-TK (Herpes simplex virus Cell death TK phosphorylates the selection drug 214
thymidine kinase) ganciclovir which incorporates into

DNA,; ganciclovir is a poor substrate
for mammalian TK

Positive or negative selection

Fusion: hyg-tk Positive: resistance to hygromycin 215
Negative: cell death

Fusion: tk—neo Positive: resistance to G418 216
Negative: cell death

Fusion: tk—bsd Positive: resistance to blasticidin S 217
Negative: cell death

Fusion: pac—tk Positive: resistance to puromycin 218
Negative: cell death

Fusion: hyg—codA Positive: resistance to hygromycin 218
Negative: cell death

Fusion: codA-neo Positive: resistance to G418 218
Negative: cell death

Fusion: codA-bsd Positive: resistance to blasticidin S 218
Negative: cell death

Fusion: pac—codA Positive: resistance to puromycin 218

Negative: cell death

* Methotrexate. Stable cell lines may be established using DHFR-deficient Chinese hamster ovary cells and a normal dhfr gene or wild-type
cells and a mutant dhfr encoding an enzyme resistant to MTX.

® G418 is an aminoglycoside, similar in structure to neomycin.

¢ 9-B-b-Xylofuranosyl adenine.

4 N-(phosphonacetyl)-L-aspartate.
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taneous expression of the gene of interest and an arti-
ficial transcriptional activator to stimulate transcrip-
tion through binding sites in the promoter. This
“positive feedback loop” was achieved using a fusion
transcription factor composed of the Herpes simplex
virus VP16 transcriptional activation domain and the
DNA-binding domain of LexA. It was shown that the
transcriptional activity of two different promoters was
increased 14- to 100-fold while maintaining cell type
specificity (45).

Promoters can be divided into two classes, those that
function constitutively and those that are regulated by
induction or derepression. Inducible promoters are de-
sirable for the production of proteins that may be toxic
to the host cell, such as diptheria toxin (46), for the
study of gene regulation during development in trans-
genic animals (13,47), and for experimental and ther-
apeutic applications of gene transfer (48). Promoters
used for high-level production of proteins in mamma-
lian cells should be strong and, preferably, active in a
wide range of cell types to permit qualitative and quan-
titative evaluation of the recombinant protein. Induc-
ible promoters should exhibit a minimal level of basal
transcriptional activity and be capable of substantial
induction with a nontoxic inducer in a simple and
cost-effective manner.

The widely used metallothionein promoter exhibits
high basal expression level and a poor induction ratio
(49). Moreover, heavy metals used to induce this pro-
moter are cytotoxic. Two groups have addressed the
high basal expression of the human MTIIA promoter.
In one study, the substitution of multiple metal re-
sponse elements for a region involved in basal expres-
sion caused up to 200-fold inducibility of the promoter
(50). In the other study, mutation of specific nucleo-
tides within the promoter resulted in low basal activity
and a 13- to 35-fold induction ratio, depending on the
cell line (51).

The functionality of the bacterial lac operator—re-
pressor system in mammalian cells (52,53) has been
exploited for the inducible expression of heterologous
genes in mammalian cells. A potential advantage of
this system over the use of endogenous cellular trans-
activators is that the lac operator, the recognition se-
quence for the lac repressor, occurs at low frequency in
mammalian cells (54) and should facilitate high speci-
ficity in target gene regulation. In addition, the lac
repressor has an extremely high affinity for the lac
operator—the dissociation constant is about 10 ™ M
(55). Different versions of this system exhibited 1200-
fold (56) or 10,000- to 20,000-fold (57) induction of gene
expression, with no detectable expression in the ab-
sence of inducer and a high specificity for the gene
under study. However, the inducer isopropyl B-b-thio-
galactopyranoside (IPTG) is cytotoxic, albeit at high
concentration (50 mM) (53). IPTG concentrations typ-
ically used for induction of mammalian expression sys-
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tems range from 0.1 to 5 mM. The toxicity of IPTG has
precluded its use in the large-scale production of ther-
apeutic proteins. Several studies have described the
use of temperature-sensitive lac repressors for use in
mammalian cells (57) or in Escherichia coli (58—60).
The bacterial thermoinducible lac repressor systems
should be adaptable for use in mammalian cells. Re-
cent advances in the construction of mammalian induc-
ible expression systems have been reviewed (8—-13).

Introns

Most genes from higher eukaryotes contain introns
which are removed during RNA processing. Genomic
constructs have been shown to be expressed more effi-
ciently in transgenic animals than identical constructs
lacking introns (61,62). Although many cDNA con-
structs lacking introns can be expressed efficiently in
mammalian cells, Buchman and Berg (63) showed that
the inclusion of introns leads to a 10- to 20-fold in-
crease in expression, and some sequences, such as the
B-globin cDNA, show a virtual requirement for the
presence of an intron. The placement of introns at the
3’ end of the transcription unit has been reported to
lead to aberrant splicing (64,65); therefore, it is pref-
erable to place introns at the 5’ end of the open reading
frame. Another caveat involves the use of the SV40 19S
late mMRNA intron, which appears to be inappropriate
for the production of antibodies (66). A synthetic intron
SIS generated by the fusion of an adenovirus splice
donor site and an immunoglobulin G splice acceptor
site was very active in a variety of cell types (67). In
addition to their ability to increase gene expression,
introns have been used in plasmid constructions in
order to facilitate gene expression in both mammalian
and yeast (68) or mammalian and bacterial cells (69).

Polyadenylation Signals

Most eukaryotic nascent mRNAs possess a poly(A)
tail (n = 200) at their 3’ ends, which is added during
a complex process that involves cleavage of the pri-
mary transcript and a coupled polyadenylation reac-
tion (70). The poly(A) tract is important for mRNA
stability and translatability (71,72). The signals for
polyadenylation of mammalian mRNAs are well de-
fined: One component consists of a highly conserved
AAUAAA sequence which is located about 20-30 nu-
cleotides upstream of the 3’ end of the mMRNA, and the
other element consists of an unconserved GU-rich se-
quence immediately downstream of the polyadenyla-
tion site (73,74). There are several efficient poly(A)
signals to use in mammalian expression vectors, in-
cluding those derived from bovine growth hormone
(75), mouse B-globin (76), the SV40 early transcription
unit (77), and the Herpes simplex virus thymidine ki-
nase gene (78).
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Transcription Terminators

Continued transcription from an upstream promoter
through a second transcription unit inhibits the func-
tion of the downstream promoter, a phenomenon
known as promoter occlusion or transcriptional inter-
ference. This event has been described in both pro-
karyotes (79) and eukaryotes (80,81). The proper place-
ment of transcriptional termination signals between
two transcription units can prevent promoter occlusion
(81). Prokaryotic transcription terminators are well
characterized, and their incorporation in expression
vectors has been shown to have multiple benefi-
cial effects on gene expression (reviewed in 82). In
eukaryotes, a consensus sequence consisting of
ATCAAA(AIT)TAGGAAGA has been identified in the
termination region of nine genes (83).

4. TRANSLATIONAL CONTROL ELEMENTS

The optimal expression of eukaryotic cDNAs re-
quires the careful consideration of several structural
features, including the 5 and 3’ untranslated se-
quences and the nucleotide context around the trans-
lation initiation codon (the Kozak sequence). In addi-
tion, codon usage may have a substantial impact on the
translation efficiency of some genes in mammalian
cells.

Kozak Sequence

Using systematic mutagenesis of specific genes as
well as comparison of eukaryotic mMRNA sequences,
Kozak (84) defined the optimal translation initiation
sequence in eukaryotic mRNAs. CC(A/G)CCaugG
emerged as the consensus sequence for initiation in
higher eukaryotes. The purines A or G in position —3
(i.e., three nucleotides upstream from the AUG codon)
and G immediately following the AUG codon are the
most influential in facilitating optimal translation ini-
tiation.

5" Untranslated Region

In eukaryotic cells translation of most mRNASs is
initiated according to the “scanning model” (85). The
initiation complex, consisting of the 40S ribosomal sub-
unit and cap-binding proteins, forms at the mRNA 5’
terminal cap (m’GpppN) followed by movement of the
ribosome to the “correct” initiating AUG codon in a
favorable sequence context (84). The presence of AUG
codons in the 5" untranslated region (5’ UTR) of the
transcript can severely depress translational initiation
at the “authentic” start codon, although the extent of
inhibition depends on sequences surrounding the up-
stream AUG (86,87). Such inhibition can be minimized
by the presence of a translation termination codon
in-frame with the upstream AUG (86,87). An addi-
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tional concern involves the potential of the 5" UTR to
form extensive secondary structure. Thus, GC-rich re-
gions have the potential to form stable hairpin struc-
tures which can inhibit translation initiation, a phe-
nomenon that has been extensively documented in
eukaryotic (88—90) and prokaryotic expression systems
(reviewed in 82). One solution to these potential prob-
lems is the removal of the 5’ UTR prior to the insertion
of cDNAs into expression vectors, with the caveat that
the 5 UTR may contain translational enhancer ele-
ments, such as the SP163 element of the vascular
endothelial growth factor mRNA (91). The SP163 se-
quence has been shown to enhance the translation of
different mMRNAs 25- to 40-fold in several mammalian
cell types (91).

3’ Untranslated Region

mMRNA destabilization can be effected by specific se-
quences present in the 3' UTR. This topic is discussed
in section 5 (MRNA Stability). In addition, transla-
tional regulation of certain mMRNAs is mediated by
protein-binding AU-rich elements located in the 3’
UTR (92).

Termination Codon

Experimental evidence indicates that translational
termination in mammalian genes may be modulated
by nucleotides additional to those of the trinucleotide
stop codon. Statistical analysis of the context of termi-
nation codons in 5208 mammalian genes showed a
highly significant bias in the position immediately fol-
lowing the stop codon (Fig. 1 in 93). The significance of
this bias in translational termination was tested in
both in vivo and in vitro assays, and it was determined
that the base following the stop codon influences the
efficiency of translation termination. Thus, tetranucle-
otides with a purine in the fourth position are more
effective as termination signals than those with a py-
rimidine (93).

Codon Usage

Both prokaryotic and eukaryotic genes exhibit a non-
random usage of synonymous codons (94,95). In gen-
eral, highly expressed genes exhibit a greater degree of
codon bias than do poorly expressed ones, and the
frequency of use of synonymous codons usually reflects
the abundance of their cognate tRNAs (96). Most stud-
ies of codon optimization for gene expression have been
carried out in E. coli (reviewed in 82,97). E. coli exhib-
its a highly biased codon usage and, therefore, the
possibility exists that heterologous genes enriched
with codons that are rarely used by E. coli (98) may not
be expressed efficiently in E. coli. Similarly, it is pos-
sible that mammalian codon usage may affect transla-
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tion efficiency of heterologous genes, as documented
below.

As part of gene transfer studies for the correction of
human genetic disorders, Wheeler et al. (99) studied
the mitochondrial enzyme ornithine transcarbamylase
(OTC). The OTC gene was synthesized by PCR using
codons optimized for mammalian mitochondrial as well
as for universal codon usage. The synthetic OTC gene
was successfully expressed in E. coli. However, tran-
sient transfections of COS-7 cells failed to produce
enzymatic activity or immunoreactive OTC protein,
despite the detection of MRNA specific for the synthetic
OTC gene and the successful transient expression of an
unmodified human OTC gene (99). It is likely that OTC
MRNA could not be translated by the mammalian cy-
toplasmic tRNA pool, a supposition that potentially
could be proved by the use of a mitochondrial in vitro
translation system. The jellyfish Aequorea victoria
green fluorescent protein (GFP) is widely used as a
reporter in many gene transfer applications, including
gene therapy. Different versions of the GFP gene opti-
mized for human codon usage have been shown to
exhibit significantly higher expression levels (4- to 10-
fold) and increased fluorescence intensity in mamma-
lian cells (100,101). It is possible, however, that the
altered codon content may have stabilized the GFP
MRNA, in addition to enhancing its translational effi-
ciency. In another example of codon optimization, a
GFP gene modified to contain synonymous codons from
highly used human genes showed a 20-fold higher ex-
pression level in maize leaf cells than in the original
GFP sequence (102).

Codon optimization may also have a significant im-
pact in vaccination studies. A sequence from the hu-
man immunodeficiency virus type 1 gpl120 gene was
optimized using codons from highly expressed human
genes, resulting in higher expression levels (103,104).
It was shown that the increase in efficiency of expres-
sion was not due to enhanced mRNA stability (103).
The difference in expression levels between the codon-
optimized and wild-type constructs depended on the
vector/host combination used. Thus, in 293T cells tran-
siently transfected with the vector pCdm7, there was a
10- to 50-fold increase in expression levels with the
synthetic gene. Moreover, immunization of BALB/c
mice with the same codon-optimized DNA resulted in
significantly increased antibody titer and cytotoxic T-
lymphocyte reactivity, suggesting a correlation be-
tween expression levels and the immune response
(104). Similar observations have been obtained with a
different pathogen, Listeria monocytogenes. Codon-op-
timized plasmid DNA sequences showed substantially
higher expression levels in mammalian cells and con-
ferred partial protection against listerial infection in
mice (105).
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5. mMRNA STABILITY

The turnover of mMRNA is an important posttran-
scriptional mechanism for the physiological control
of gene expression (106). The short half-life of some
MRNAs, such as cytokines, cell cycle control factors,
and oncogenes, is thought to permit the rapid cessation
of protein production in response to rapidly changing
physiological conditions. Conversely, the high degree of
stability of some mRNAs, such as the globins, colla-
gens, and crystallins, ensures their accumulation to
high steady-state levels following an increase in tran-
scription (107). Thus, the recognition that the meta-
bolic stability of mRNA can have profound effects on
gene expression has led to specific suggestions for po-
tential therapeutic interventions (107). The potential
ability to extend significantly the half-life of tran-
scripts offers an attractive means of enhancing protein
production in mammalian expression systems.

One determinant of eukaryotic mRNA lability is an
AU-rich sequence in the 3" UTR of many unstable
mammalian mMRNAs (108-110). The insertion of an
AU-rich element into the 3" UTR of a stable mRNA
destabilizes the chimeric transcript (109,111). The op-
timal sequence for this destabilizing determinant is
believed to be UUAUUUAUU (111) or UUAUUUA(U/
A)(U/A) (112). The removal of these sequences from the
3" UTR of unstable mRNAs is desirable for maximal
protein production.

Synthetic 5’ secondary structures have been shown
to increase mMRNA half-lives in E. coli (113). In seeking
to maximize transcript stability and protein production
in mammalian cells, investigators have substituted the
UTRs of stable mRNAs, such as B-globin, for the UTRs
of transcripts of interest (e.g., 114,115). This strategy,
effective in specific cases, may not have universal ap-
plication, as MRNA degradation is effected by multiple
pathways in mammalian cells (116,117). Thus, in ad-
dition to exonucleolytic activity at both the 5’ and 3’
termini, determinants of mMRNA half-life have been
mapped to the coding regions of several mMRNA species
(106,117,118). In this case, the addition of a stabilizing
UTR probably will have no effect on transcript stabil-
ity. Furthermore, mRNA stability is modulated by a
variety of cell-specific proteins that act in trans to
destabilize (119,120) or stabilize transcripts (121-123).
The use of a specific UTR for the purpose of stabilizing
a heterologous transcript in mammalian cells assumes
the presence of the cognate UTR-binding proteins in
the same cells. At present, our knowledge of the distri-
bution of such proteins in different mammalian cell
lines used for protein production is incomplete
(107,120).

It would be a significant omission not to mention
that levels of heterologous proteins are also affected by
protein degradation pathways. This is an important
topic, beyond the scope of this review. Strategies for
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TABLE 5
Fusion Moieties for Gene Expression in Mammalian Cells*

Commercial source

Fusion partner (source) Ligand/substrate Detection Application Reference” of expression vector®
FLAG peptide Anti-FLAG Antibody Purification, detection 219, 220 Stratagene
monoclonal (www.stratagene.com)
antibodies M1
and M2
(Histidine)g Ni?*-nitrilotriacetic ~ Antibody Purification, detection 221, 222 Invitrogen
acid (www.invitrogen.com)
Qiagen
(www.giagen.com)
Glutathione S-transferase Glutathione Biochemical, antibody Purification, detection 223, 224, 225 Amersham Pharmacia
(Schistosoma japonicum) (www.apbiotech.com)
c-myc epitope Antibody Antibody Purification, detection Invitrogen
Calmodulin-binding peptide Calmodulin Purification Stratagene
Fc-Hinge Protein A Purification, protein 226, 227
dimerization, higher
protein yield, longer
protein half-life
1gG1 and IgM heavy chain Longer protein half-life 228
constant regions
Streptococcal protein G Serum albumin Purification, longer protein 229
half-life
Serum albumin Longer protein half-life 229, 230¢
Viral glycoprotein Surface expression for 231
transmembrane domain vaccination
Platelet-derived growth factor Surface expression for Invitrogen
receptor (PDGFR) ligand-binding
transmembrane domain interactions
Herpes simplex virus Antibody Antibody Purification 232
glycoprotein D (gD) domain
Epstein-Barr virus nuclear Longer protein half-life 125
antigen 1 GGAGAGAG
Growth hormone (human, rat)  Antibody Immunoassay Detection, monitor promoter 233, 234
activity
Alkaline phosphatase p-Nitrophenyl Electrochemical, Detection, monitor promoter 143, 234, 235, 236  Clontech

(mammalian/bacterial)

B-Galactosidase (Escherichia
coli)

Chloramphenicol
acetyltransferase (E. coli)
Luciferase (Photinus pyralis)

(Luciola mingrelica)
Luciferase (Vibrio harveyi)

Luciferase (Renilla reniformis)

Green fluorescent protein and
its variants (Aequorea
victoria)

Aequorin (A. victoria)

phosphate
B-Galactosides
Chloramphenicol or

its derivatives
Firefly luciferin
n-Decyl aldehyde

Coelenterazine

Coelenterazine

chemiluminescence,
fluorescence
Electrochemical,
chemiluminescence,
fluorescence
Radioisotope,
fluorescence
Bioluminescence

Bioluminescence
Bioluminescence

Fluorescence

Bioluminescence

activity, biosensors

(www.clontech.com)

Detection, monitor promoter 143, 234, 237 Clontech
activity, biosensors
Detection, monitor promoter 143, 234, 238, 239 Promega

activity, biosensors
Detection, monitor promoter
activity, biosensors

143, 234, 240-242

(www.promega.com)
Promega

Detection, monitor promoter 143, 240°
activity, biosensors
Detection, monitor promoter 243
activity, biosensors
Detection, monitor promoter 143, 144, 244, Clontech, Invitrogen
activity, higher protein 245, 246
yield, biosensors
Immunoassay, hybridization 143

assay, Ca®" reporter

@ This table does not include heterologous signal sequences or antibody variable regions used for protein targeting.
® References indicate application of fusion moieties in mammalian cells and do not necessarily reflect the original development of said

fusion partner.

° No effort has been made to provide a complete list of commercial suppliers.

4 Expression of albumin-CD4 fusion in yeast.

¢ Low expression of bacterial luciferase in mammalian cells, with an increase of more than 10-fold when cells were grown at 30°C.

minimizing protein degradation in prokaryotes have
been reviewed (82,124). In contrast, less light ap-
pears to shine on this complex issue with regard to
mammalian protein production. It is worthwhile to
point out an interesting recent study on ubiquiti-
nated proteins (125,126) that has implications for
the modulation of protein degradation in eukaryotes.
The insertion of a minimal eight-residue glycine—
alanine repeat into a protein that is targeted for

proteolysis via the ubiquitin—proteasome pathway
inhibited its degradation.

6. POLYCISTRONIC MESSAGES

The scanning model of translation initiation (see sec-
tion 4) does not apply to many viral (127,128) and
apparently, some cellular messages (91,129). These are
translated in a cap-independent manner at internal
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sites known as internal ribosome entry sites (IRES). It
is believed that cellular trans-acting proteins bind to
the IRES element and facilitate ribosome binding and
translational initiation (130). However, the precise
mechanism of IRES-mediated translation is unclear.
In a critical examination of published studies on IRES
elements, Kozak (130a) concluded that recent concepts
about the mechanism of internal translation initiation
at putative IRES complexes are premature. Moreover,
the experimental evidence for the presence of IRES
elements in cellular mRNAs from mammals has been
challenged (130a). Similarly, reports of internal initia-
tion in yeast have been questioned (130b). The reader
is referred to Kozak (130a) for a detailed discussion of
this topic.

Earlier designs of polycistronic constructs for the
expression of two or more genes from a single tran-
script had several limitations, discussed previously
(131,132). Robust polycistronic vectors now utilize
IRES elements that facilitate internal ribosome bind-
ing to the second and subsequent transcription units
(128,133,134). Vectors containing IRES elements have
a variety of applications: (1) establishment of stable
mammalian cell lines which requires coexpression of
the gene of interest and a selectable marker (135,136);
(2) efficient gene amplification in the generation of
stable cell lines (137); (3) clonal selection of cells ex-
pressing inducible gene products (138); (4) character-
ization of antibody responses in DNA immunization
protocols (139); and (5) coexpression of genes for posi-
tive—negative (suicide) selections in gene therapy. For
example, the multidrug resistance gene MDR1 has
been coexpressed with the Herpes simplex virus thy-
midine kinase (TK) gene (140). The TK gene acts both
as a selectable marker in TK-deficient cells and as a
suicide gene. Thus, cells expressing the TK gene can be
selected against using the nucleoside analog ganciclo-
vir. Additional applications of IRES elements include
(6) gene trapping for the identification of developmen-
tally regulated genes (134); (7) gene targeting
(134,141); and (8) coordinated constitutive or adjust-
able high-level expression of three genes in mamma-
lian cells (142).

7. FUSION MOIETIES

Their wide range of applications makes fusion com-
ponents valuable tools in both prokaryotic and eukary-
otic gene expression systems (82). Fusion moieties (Ta-
ble 5) can be used as affinity handles for the facile
isolation and purification of proteins, as reporter genes
for the study of promoter activity or localization of
proteins in cellular compartments, as protein dimer-
ization domains, to increase expression, solubility, and
secretion of proteins, or to display polypeptides on the
surface of cells for vaccine development, protein—pro-
tein interactions, drug screening, and other potential
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applications. Fusion constructs have also been used to
increase the half-life of target proteins for potential
therapeutic applications (Table 5). In recent years, the
fusion of reporter genes to heterologous promoters is
being actively pursued for the engineering of bacterial
biosensors in analytical, environmental, and clinical
research (143,144). Many of the reporter genes used in
bacterial biosensors should have applications in mam-
malian expression systems.

The design of protease cleavage sites between the
fusion moiety and the target protein facilitates the
separation of the two components. Technical issues
pertaining to site-specific proteolysis of fusion proteins
have been reviewed (145). The design of fusions for
protein targeting to specific cellular compartments has
been reviewed (146,147).
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