УТВЕРЖДАЮ Іроректор по научной работе и инневациям ФГАОУ ВО национальный исследовательский Томский политехнический университет

И.Б. Степанов

«24 05 2019 г.

ЗАКЛЮЧЕНИЕ

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Диссертация на соискание степени доктора технических наук «Физикохимические закономерности получения применение И стеклокристаллических материалов шпинелид-пироксенового состава из природного техногенного сырья» выполнена Федеральном государственном образовательном автономном учреждении образования «Национальный исследовательский Томский политехнический (Инженерная школа новых производственных технологий, Научно-образовательный центр Н.М. Кижнера) и Федеральном государственном бюджетном образовательном учреждении высшего образования «Пермский национальный исследовательский политехнический университет» (Институт безопасности труда производства и человека) Игнатовой Анной Михайловной.

В 2008 году Игнатова А.М. окончила Государственное образовательное учреждение высшего профессионального образования «Пермский государственный технический университет» по специальности «Машины и технологии литейного производства».

В 2011 г. защитила диссертацию на соискание степени кандидата технических наук в диссертационном совете ФГБОУ ВО Санкт-Петербургского государственного университета технологии и дизайна.

В период 2015—2018 гг. Игнатова А.М. обучалась и окончила докторантуру Федерального государственного автономного образовательного учреждении высшего образования «Национальный исследовательский Томский политехнический университет» (Инженерная школа новых производственных технологий, Научно-образовательный центр Н.М. Кижнера).

В период подготовки диссертации соискатель Игнатова А.М. работала в должностях старшего и ведущего научного сотрудника структурного подразделения $\Phi\Gamma EOY$ ВО «Пермский национальный исследовательский политехнический университет» — «Институт безопасности труда производства и человека».

Научный консультант – д.т.н., профессор, заслуженный деятель науки РФ Верещагин Владимир Иванович (Национальный исследовательский Томский политехнический университет, Научно-образовательный центр Н.М. Кижнера).

Обсуждение проходило на научном семинаре Научно-образовательного центра Н.М. Кижнера **22 мая 2019 г.**

На семинаре присутствовали:

- 1. Верещагин В.И. профессор, д.т.н.
- 2. Погребенков В.М. профессор, д.т.н.
- 3. Вакалова Т.В. профессор, д.т.н.
- 4. Хабас Т.А. профессор, д.т.н.
- 5. Казьмина О.В. профессор, д.т.н.
- 6. Коршунов А.В. профессор, д.х.н.
- 7. Петровская Т.С. доцент, д.т.н.
- 8. Митина Н.А. доцент, к.т.н.
- 9. Дитц А.А. доцент, к.т.н.
- 10. Ревва И.Б. доцент, к.т.н.

Были заданы следующие вопросы:

- 1. Есть ли сравнение показателей свойств литых стеклокристаллических материалов шпинелид-пироксенового состава с указанными аналогами и с материалами шпинелид-пироксенового состава наблюдающими сферолитной структурой?
- 2. Уточните какое соотношение стеклофазы и кристаллических составляющих в составе структуры Ваших материалов?
- 3. Как индекс сферолита соотносится с применением литых стеклокристаллических материалов шпинелид-пироксенового состава?
- 4. Какое преимущество перед корундовой керамикой у литых стеклокристаллических материалов шпинелид-пироксенового состава с точки зрения использования в качестве транспортной защитой?
- 5. К какому содержанию стеклофазы вы стремились и почему не происходит ее полной кристаллизации?
- 6. Как оценить возможность полной кристаллизации Ваших материалов и подобных им?
- 7. Какова разница между каменным литьем и ситаллами?
- 8. Каким образом Вы представляете взаимосвязь ионного баланса расплава и его кристаллизации? Есть ли прямая зависимость ионного баланса с морфологическими параметрами структуры материала?
- 9. Поясните зависимость уровня свойств материалов с размером сферолитов в структуре материала.
- 10. Чем обеспечивается двухслойное строение сферолитов, со шпинелидным ядром? Поясните тип шпинелида, формирующего ядро.
- 11. Каким образом Вы определяли индекс сферолита, зачем Вы его использовали для параметризации структуры?

- 12. Какова сходимость модельных и реальных параметров структуры литых стеклокристаллических материалов шпинелид-пироксенового состава?
- 13. Какие условия обеспечивают на практике получение структуры с заданным индексом сферолита?
- 14. Объясните почему именно индекс сферолита на уровне десяти обеспечивает повышенную термостойкость?
- 15. Каков механизм изнашивания Ваших материалов со сферолитной структурой?
- 16. Поясните, что Вы понимаете под разветвлённостью стеклофазы и каким образом Вы ее определяли?
- 17. Каким образом была зафиксирована ликвационная структура материала?
- 18. Чем Вы объясняете параболический вид зависимости уровня прочности при сжатии от размера сферолита в структуре материала?
- 19.Выделяли ли Вы отдельно коэффициент поглощения или рассматривали только коэффициенты пропуская и отражения при исследовании взаимодействия материала с электромагнитным излучением в СВЧ-диапазоне?

По итогам обсуждения принято следующее заключение:

Диссертация «Физико-химические закономерности стеклокристаллических литых материалов пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны является законченной работой, соответствует положению о присуждении ученых степеней утвержденному постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842 и отвечает по содержанию паспорту специальности «05.17.11 - Технология силикатных и тугоплавких неметаллических материалов», так как в диссертации рассматриваются физикохимические процессы и технологии получения литых стеклокристаллических материалов шпинелид-пироксенового состава, включающие стадии подготовки исходных материалов, смешивания и гомогенизации шихт, получения литых заготовок или изделий; физико-химические свойства готовых материалов и изделий в зависимости от химического состава и структуры. Результаты, полученные в диссертации, соответствуют паспорту специальности, частности п.п. 1.1 и 1.2.

Диссертация «Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны оформлена в соответствии с ГОСТ Р 7.0.11-2011. Диссертация соответствует требованиям, предъявляемым Положением о присуждении учёных степеней к кандидатским (докторским) диссертациям, в том числе п. 95, является научно квалификационной работой.

Личный вклад автора заключается в том, что им сформулирована научная гипотеза диссертационной работы, проведён сбор образцов сырья, проведены экспериментальные работы по получению образцов литых

стеклокристаллических материалов шпинелид-пироксенового организованы работы по исследованию их свойств. По результатам проведенных работ автором предложен усовершенствованный метод оценки пригодности сырья для получения литых стеклокристаллических материалов шпинелид-пироксенового состава, а также компонентные составы шихтовых композиций на основе природного и техногенного сырья; представлены механизмы фазообразования в расплавах, механизмы структурообразования и модели структур литых материалов. Автором организованы и проведены материаловедческие исследования литых стеклокристаллических материалов шпинелид-пироксенового состава, интерпретированы процессы деформации и разрушения при статических и ударно-волновых нагрузках; проведен анализ и статистическая обработка полученных результатов математических методов. Автором оптимизированы технологии и разработаны регламенты получения литых стеклокристаллических материалов шпинелидпироксенового состава.

Научные и технологические решения апробированы автором на предприятиях и в организациях: ОАО «Первоуральский завод горного оборудования», ЗАО НПО Специальные материалы», ОАО «Композит», Пермский военный институт войск национальной гвардии РФ. Технологические разработки, предложенные в диссертации, апробированы автором на предприятии в рамках стажировки в камнелитейном цехе ОАО «Первоуральского завода горного оборудования», в качестве инженератехнолога.

Достоверность результатов исследования подтверждается тем, что экспериментальные исследования проведены в аттестованных лабораториях на оборудовании, имеющем сертификаты, удостоверяющие их соответствие российским стандартам; использованием современных стандартных и оригинальных методик, приборов и технических средств; многократным повторением экспериментов; статистической обработкой экспериментальных данных; отсутствием противоречий с основными физико-химическими и материаловедческими правилами и закономерностями.

Научные результаты диссертационной работы Игнатовой А.М. заключаются в следующем:

- 1. Разработаны технологические принципы получения новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава, дано их физико-химическое обоснование.
- 2. Установлены основные закономерности химических превращений Уральского сырья техногенного региона температурно-временные режимы моделирующих дугового Обнаружен и объяснен эффект селективного сферолитообразующего действия ионных групп серы и фосфора, содержащихся в сырье. Впервые установлена взаимосвязь в расплаве количества ионных групп, содержащих серу и фосфор, с количеством ионных групп, содержащих алюминий, ванадий, хром и железо

- (III) и фазообразованием сферолитной структуры литых стеклокристаллических материалов шпинелид-пироксенового состава.
- 3. Предложены основные закономерности фазообразования в расплавах различных зон плавильного пространства в условиях, моделирующих температурно-временные режимы дугового переплава. Выявлено. основными реакциями в расплавах шпинелид-пироксенового состава являются реакции обмена магния и железа в парах «клинопироксен-ортопироксен» и «оливин-ортопироксен». Обнаружен и объяснен эффект дифференциации в расплаве. Впервые установлена взаимосвязь в расплаве количества кислых оксидов с количеством основных оксидов, летучестью кислорода и расслоением расплава на две жидкие фазы.
- 4. Выявлены основные условия структурообразования шпинелидпироксенового состава. Установлено, что определяющим фактором является соотношение количества кислых оксидов с количеством основных оксидов и летучестью кислорода в расплаве. Впервые установлена взаимосвязь в расплаве количества кислых оксидов с количеством основных оксидов, летучестью кислорода, температурно-химическими параметрами расплава и формированием основных элементов структуры: пироксенового сферолита, шпинелидного ядра и стеклофазы и их химического состава, количества, размеров, распределения относительно друг друга.
- 5. Обнаружено, что стеклофаза в структуре литых стеклокристаллических материалов шпинелид-пироксенового состава образует сетчатый каркас дендритной геометрии со степенью разветвлённости, определяемой отношением общего количества ветвей к общему количеству их тройных и четвертных пересечений.
- 6. Установлено, что морфометрические параметры элементов структуры (ядро сферолита шпинелид, оболочка сферолита пироксена двух и/или четырех цепочного строения и стеклофазная прослойка) комплексно выражаются индексом сферолита, то есть отношением толщины пироксеновой прослойки к приведенному диаметру шпинелидного ядра. Впервые показана взаимосвязь индекса сферолита, определяющегося, толщиной стеклофазной прослойки с размером шпинелида, количество сферолитов в единице объема материала, свойствами и назначением (износостойкость, термостойкость, диссипативная способностью) материала.
- 7. Предложена и экспериментально подтверждена модель структуры литых стеклокристаллических материалов шпинелид-пироксенового состава для различного функционального назначения.
- 8. Впервые выявлено, что литой стеклокристаллический материал шпинелид-пироксенового состава обладает ранее неизвестным свойством, а именно высокой диссипирующей способностью.
- 9. Впервые установлено, что деформация и разрушение литых стеклокристаллических материалов шпинелид-пироксенового состава при статических и ударно-волновых нагрузках реализуются по разным механизмам. При статических нагрузках деформация и разрушение начинаются внутри

сферолитов и сопровождаются движением и накоплением дислокаций внутри шпинелидов и пироксенов, после чего переходят в образование магистральных трещин. При ударно-волновых нагрузках деформация происходит в условиях локализации сжимающих нагрузок в ограниченном объеме материала в месте удара, что приводит к возникновению растягивающих напряжений на границе этого локального объема, затем переходит в сжатие основного элемента структуры — сферолита, в результате чего происходит фрагментация ядра сферолита с нарушением химических связей и выделением тепла, возникающие при этом напряжения приводят к фрагментации аморфной прослойки с образованием мелкодисперсных частиц.

Теоретическая значимость диссертационной работы соискателя заключается в том, что:

- 1. Расширены представления и получены новые данные о процессах плавления и кристаллизации фаз в многокомпонентных системах SiO_2 – Al_2O_3 –RO– R_2O (RO CaO, MgO, FeO; R_2O Na_2O , K_2O). Получены новые сведения о процессах плавления сложных многокомпонентных минеральных силикатных систем в присутствии соединений серы и фосфора.
- 2. Получены сведения о физико-химических условиях, обеспечивающих формирование сферолитной структуры литых стеклокристаллических материалов шпинелид-пироксенового состава. Расширены представления о влиянии ионного баланса на скорость образования количества центров кристаллизации и скорость роста центров кристаллизации, на формирование структуры и обеспечение свойств литых стеклокристаллических материалов шпинелид-пироксенового состава при разной степени переохлаждения расплава.
- 3. Определена взаимосвязь между соотношениями элементов макроструктуры (пироксеновый сферолит с шпинелидным ядром и стеклофаза), составом, размером кристаллов, их количеством в единице объема материала и эксплуатационными свойствами новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава.
- 4. Выявлены особенности деформации и разрушения новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава в условиях статических и ударно-волновых нагрузок.

Практическая значимость диссертационной работы соискателя заключается в том, что:

- 1. Предложен регламент оценки пригодности природного и техногенного сырья и рекомендации по составлению сырьевых композиций для получения новой группы литых стеклокристаллических материалов шпинелидпироксенового состава со сферолитной структурой.
- 2. Разработан и реализован ряд сырьевых композиций для получения новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава с интенсивностью износа 0.02-0.06%, величиной истираемости 0.005-0.015 кг/м², пределом прочности при сжатии 230-250 МПа и

диссипативной способностью 50-58 Дж/м³, с термостойкостью 250-300 теплосмен при температуре 400-500 °C.

- 3. Предложены и реализованы на практике рекомендации по оптимизации режимных параметров технологии получения новой группы литых стеклокристаллических материалов шпинелид-пироксенового состава и изделий из них от подготовки сырья, шихтовых композиций, подготовки расплава и литейных форм, заливки в литейные формы, термообработки и охлаждении отливок до контроля качества и отбраковки.
- 4. Предложены и реализованы на практике рекомендации по получению и применению материалов устройств повышенной износостойкости, термостойкости, радиоактивной стойкости, экранированию электромагнитных излучений, предохранения И обеспечения жизнедеятельности населения и технических объектов от экстремальных террористических воздействий.

По результатам диссертационного исследования получены патенты РФ №№ 2448824, 2465237, 2474541, 2485061, 2494847, 2496750, 2497646, 2504465, 2510374, 2601868, 2601303, 2601305, 2600719, 2602539, 2605118, 2606600, 2606602, 2607217, 2614992, 2615408, 2637442, 2664382.

Актуальность результатов диссертационного исследования соискателя подтверждается, тем что тематика работы соответствует п.6 (рациональное природопользование) перечня приоритетных направлений науки, технологий и техники согласна Указа Президента РФ № 899 от 07.07.2011 г. Полнота научных работ подтверждается, тем что 15 публикаций автора входят в научные базы ВАК, Scopus и Web of Science, 10 опубликованы в изданиях, рекомендованных ВАК по специальности 05.17.11 - Технология силикатных и тугоплавких неметаллических материалов (технические науки), 26 опубликованы, в изданиях, рекомендованных ВАК по различным специальностям, патентами защищено 24 разработки, кроме того автором опубликовано 4 монографии, также материалы диссертации были доложены на более 30 конференциях различного уровня.

Список основных публикаций соискателя на тему диссертационной работы:

Монографии

- 1. **Игнатова, А.М.** Мониторинг петрургического сырья Урала / А.М. Игнатова, В.И. Верещагин. Пермь: Гармония, 2017. 84 с.
- 2. **Игнатова, А.М.** Производство стекло- и слюдокристаллических материалов и изделий (технологический регламент) / М.В. Юдин, А.М. Игнатова Пермь-Березники: Гармония, 2017. 146 с.
- 3. **Игнатова, А.М.** Природное и техногенное петрургическое сырье Урала / А.М. Игнатова, В.И. Верещагин Пермь: Гармония, 2016. 93 с.
- 4. **Игнатова, А.М.** Потенциал минерально-сырьевой базы Урала для создания сварочных материалов: монография / А.М. Игнатова, М.Н. Игнатов, С.В. Наумов. Пермь: Гармония. 2014. 148 с.

- 5. **Игнатова, А.М.** Функциональные литые синтетические минеральные сплавы и изделия из них / А.М. Игнатова, А.О. Артемов, М.Н. Игнатов. Пермь: Гармония, 2014. –140 с.
- 6. **Игнатова, А.М.** Дизайн художественных камнелитых изделий на основе симиналов (материаловедческие основы применения синтетических минеральных сплавов (симиналов) в дизайне) / А.М. Игнатова, М.Н. Игнатов. Германия: Lambert, 2012. 172 с.

Статьи (в журналах, индексируемых в международных наукометрических базах данных Scopus и Web of Science, рецензируемых перечнем ВАК)

- 7. **Ignatova**, **A.M.** Fabrication of cast stone art and architectural-decorative articles / A.M. Ignatova, M.M. Chernykh, M.N. Ignatov // Glass and ceramics. 2011. Vol. 68, Iss. 6. P. 31–35.
- 8. **Ignatova**, **A.M.** Relationship of structure and color stone-casting materials made of mineral aggregates and technogenic raw materials / A.M. Ignatova // Polymers Research Journal. -2011.- Vol. 5, No. 1.- P. 47–54.
- 9. **Ignatova**, **A.M.** Shock Metamorphism of Petrurgical Materials: Synthetic Mineral Alloys / A.M. Ignatova // Glass and ceramics. 2013. Vol. 30, Iss. 1. P. 34–38.
- 10. **Ignatova**, **A.M.** Structural changes in synthetic minerals / A.M. Ignatova, M.N. Ignatov // Physics and Chemistry of Classical Materials: Applied Research and Concepts. 1 Jan. 2014. P. 181–191.
- 11. **Ignatova**, **A.M.** Application of Synthetic Mineral Alloys as Materials for Bulletproof Vests and Products for Different Objects Protection / A.M. Ignatova // TEM Journal. –2015. No. 4(4). P. 328-331.
- 12. **Ignatova, A.M.** The Measurement of hardness and elastic modulus of non-metallic inclusions in steely welding joints / A.M. Ignatova, M.N. Ignatov // TEM Journal. -2015. No. 4(3). P. 314-318.
- 13. **Ignatova**, **A.M.** Analysis of fragmentation of plates of synthetic mineral alloys under impact of ball high velocity by visualization technique /A.M. Ignatova, M.A. Nikhamkin, L.V. Voronov, M.N. Ignatov // PNRPU Mechanics Bulletin. 2015. No. 3. P. 63–73.
- 14. **Ignatova**, **A.M.** The contact-free evaluation of porosity of nickel foam by 3d x-ray tomography / A.M. Ignatova, M.N. Ignatov // Russian Journal of Non-Ferrous Metals. 2016. Vol. 57, No. 6. P. 618–624.
- 15. **Ignatova**, **A.M.** Synthesis of synthetic mineralbased alloys liquation phenomena of differentiation / M.N. Ignatov, A.M. Ignatova // Materials Science and Engineering: Physical Process, Methods, and Models. 2016. P. 189–198.
- 16. **Ignatova**, **A.M.** Restructuring of synthetic mineral alloys under impact / M.N. Ignatov, A.M. Ignatova // Materials Science and Engineering: Physical Process, Methods, and Models. 2016. P. 199–211.
- 17. **Ignatova**, **A.M.** Submerged arc welding using slag base of west urals mineral raw resources with low detrimental impurities content / S.V. Naumov, A.M. Ignatova, M.N. Ignatov // Procedia Engineering 2017. Vol. 206. P. 1355–1359.

- 18. **Ignatova**, **A.M.** Development of slag base for welding fluxes from manmade mineral formations of Ural mining and smelting companies / S.V. Naumov, M.N. Ignatov, A.M. Ignatova, A.O. Artemov // Key Engineering Materials. 2017. Vol. 743. P. 406–410.
- 19. **Ignatova, A.M.** Composition development and production technology of stone casting silicate materials and items / A. Artemov, M. Ignatov, A. Ignatova, S. Naumov // Key Engineering Materials. 2017. Vol. 743. P. 401–405.
- 20. **Ignatova**, **A.M.** Influence of structural components on strength properties of silicate stone casting materials during controlled crystallization / A. Artemov, M. Ignatov, A. Ignatova // Solid State Phenomena. 2017. –Vol. 265. P. 1148–1151.
- 21. **Ignatova**, **A.M.** Morphological changes in lung tissues of mice caused by exposure to nano-sized particles of nickel oxide / N.V. Zaitseva, M.A. Zemlyanova, A.M. Ignatova, M.S. Stepankov // Nanotechnologies in Russia. 2018. Vol. 13, Iss. 7–8. P. 393–399.
- 22. **Игнатова, А.М.** Исследование и разработка схемы абразивного изнашивания поверхности синтетических минеральных сплавов склерометрическими измерениями/А.М. Игнатова // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2010. Том 15, N_2 3—2. С. 1203—1207.
- 23. **Игнатова, А.М.** Использование каменного литья для изготовления портретных барельефов и горельефов / А.М. Игнатова, М.М. Черных, А.А. Кутергин, М.М. Каминский // Дизайн. Материалы. Технология. 2010. № 1. С. 69–75.
- 24. **Игнатова, А.М.** Оценка пригодности и доступности базальтоидных и габброидных комплексов Западного Урала (Пермский край) для производства сварочных материалов/ А.М. Игнатова, С.В. Наумов, М.Н. Игнатов, С.А. Пушкин, С.Б. Суслов // Вестник Пермского государственного технического университета. Машиностроение. Материаловедение. 2010. Т. 12, № 4. С. 198—205.
- 25. **Игнатова, А.М.** Исследование взаимосвязи акустической эмиссии и разрушения камнелитых материалов в условиях одноосного сжатия / А.М. Игнатова, М.Н. Игнатов, А.О. Артемов, В.А. Асанов // Вестник Самарского государственного технического университета. Серия Технические науки. 2011. N 2 (30). C. 126 132.
- 26. **Игнатова, А.М.** Изучение структурных изменений симиналов при деформации и разрушении методом акустической эмиссии / А.О. Артемов, А.М. Игнатова, М.Н. Игнатов, А.М. Ханов // Фундаментальные и прикладные проблемы техники и технологии. − 2011. − №5. − С. 50−60.
- 27. **Игнатова, А.М.** Сравнительная петрография природных материалов и синтетических минеральных сплавов каменного литья / А.М. Игнатова, А.М. Шехирева // Вестник Пермского университета. Геология. 2011. №4 (13). С. 20–32.
- 28. Игнатова, А.М. Технология лабораторной, опытной и промышленной переработки горных пород для производства симиналов/ А.М. Игнатова, С.В.

- Наумов, А.О. Артемов, М.Н. Игнатов, А.М. Ханов //Вестник Пермского национального исследовательского политехнического университета. Машиностроение. Материаловедение. − 2011. − Том 13, № 4. − С. 117–129.
- 29. **Игнатова, А.М.** Рациональные направления использования камнелитых изделий из синтетических минеральных сплавов в строительстве / А.М. Игнатова, В.Л. Попов, Ю.Б. Антонов, В.В. Вагин, М.Н. Игнатов, В.П. Чернов, А.М. Ханов // Известия высших учебных заведений. Строительство. $2011. N_2 8-9. C. 3-16.$
- 30. **Игнатова, А.М.** Принципы выбора фактуры камнелитых изделий в зависимости от их функционального назначения и способы ее достижения / А.М. Игнатова, М.Н. Игнатов, М.М. Черных // Дизайн. Материалы. Технология. -2011. № 3 (18). -C. 34—39.
- 31. **Игнатова, А.М.** Материал на основе синтетических минеральных сплавов для цветных дорожных покрытий / А.М. Игнатова, М.Н. Игнатов // Архитектура и строительство России. -2011. № 7. -C. 10-17.
- 32. **Игнатова**, **А.М.** Изготовление художественных и архитектурнодекоративных изделий каменного литья / А.М. Игнатова, М.М. Черных, М.Н. Игнатов // Стекло и керамика. -2011. № 6. С. 31–35.
- 33. **Игнатова, А.М.** Окислительно-восстановительные реакции при синтезе силикатных шихт в электродуговых печах / А.М. Игнатова // Фундаментальные исследования. -2012. N 11-3. -C.604 608.
- 34. **Игнатова, А.М.** Взаимосвязь структуры и цветности камнелитых материалов, полученных на основе минерального нерудного и техногенного сырья / А.М. Игнатова, М.Н. Игнатов // Фундаментальные исследования. − 2012. № 6-2. C. 435-440.
- 35. **Игнатова**, **А.М.** Методика исследования диссипативных свойств синтетических минеральных сплавов при высокоскоростном пробивании / А.М. Игнатова, А.О. Артемов, М.Н. Игнатов, М.А. Соковиков // Фундаментальные исследования. -2012. N 9 1. C. 145 150.
- 36. **Игнатова, А.М.** Анизотропия структуры и механических свойств синтетических минеральных сплавов / А.М. Игнатова, М.Н. Игнатов, А.О. Артемов // Фундаментальные исследования. -2012. -№11, ч.1. С. 134-139.
- 37. **Игнатова, А.М.** Роль ликвационных явлений в структурообразование синтетических минеральных сплавов / А.М. Игнатова, М.Н. Игнатов // Фундаментальные проблемы современного материаловедения. -2012. Т. 9, № 2. С. 169-179.
- 38. **Игнатова, А.М.** Минералого-петрографическая характеристика вторичных техногенных металлургических ресурсов Урала и Предуралья для их переработки петрургией / В.П. Чернов, А.М. Игнатова // Фундаментальные исследования -2012. -№11. -c. 670-674.
- 39. **Игнатова, А.М.** О феноменологическом описании релаксационных процессов при деформировании синтетических минеральных сплавов / А.М. Игнатова, А.О. Артемов, М.Н. Игнатов // Научно-технический вестник Поволжья -2012. -№5. -C. 16–21.

- 40. **Игнатова**, **А.М.** Особенности деформирования и разрушений при испытаниях синтетических минеральных сплавов на изгиб / А.М. Игнатова, А.О. Артемов, М.Н. Игнатов // Научно-технический вестник Поволжья 2012. N 6. С. 253 260.
- 41. **Игнатова, А.М.** Информативность методов и алгоритм оценки и выбора петрургического сырья / А.М. Игнатова, А.О. Артемов, С.В. Наумов // Научно-технический вестник Поволжья. -2012. -№ 4. C. 111-116.
- 42. **Игнатова, А.М.** Взаимосвязь структуры и цветности камнелитых материалов, полученных на основе минерального природного и техногенного сырья / А.М. Игнатова, М.Н. Игнатов, Е.В. Чикулаева // Вестник Пермского университета. Геология. 2012. \mathbb{N} 1. С. 15–22.
- 43. **Игнатова, А.М.** Исследование диссипативных свойств синтетических минеральных сплавов для создания на их основе броневой защиты / А.М. Игнатова, А.О. Артемов, В.В. Чудинов, М.Н. Игнатов, М.А. Соковиков // Вестник Самарского государственного технического университета. Серия: Технические науки. 2012. № 3 (35). С. 105—112.
- 44. Игнатова. A.M. Геохимическое исследование техногенных образований доменного И феррованадиевого производств Чусовского электродугового металлургического завода С целью петрургического рециклинга / А.М. Игнатова, С.А. Пушкин, В.А. Наумов // Научно-технический вестник Поволжья. – 2013. – №5. – С. 173–179.
- 45. **Игнатова, А.М.** Синтетические минеральные сплавы как износостойкий материал верхнего слоя дорожного покрытия/ А.М. Игнатова, А.О. Артемов// Вестник гражданских инженеров. 2013. № 1 (36). С. 102–111.
- 46. **Игнатова, А.М.** Конструктивно-технологическая характеристика реконструированной промышленной кристаллизационно-отжигательной печи для термической обработки литых петрургических изделий/В.Л. Попов, Б.Ю. Антонов, А.М. Игнатова, М.Н. Игнатов // Научно-технический вестник Поволжья. 2013. N 2. C. 185-188.
- 47. **Игнатова, А.М.** Ударный метаморфизм петрургических материалов на примере синтетических минеральных сплавов / А.М. Игнатова // Стекло и керамика. -2013. -№ 1. C. 40–45.
- 48. **Игнатова, А.М.** Механизм деформации, растрескивания и разрушения структурных составляющих синтетических минеральных сплавов / А.М. Игнатова //Фундаментальные проблемы современного материаловедения. 2013. T.10, № 2. C. 227-232.
- 49. **Игнатова, А.М.** Исследование поглощения ИК-излучений синтетическими минеральными сплавами и возможное практическое применение / А.М. Игнатова, Г.З. Файнбург, М.Н. Игнатов // Машиностроение и инженерное образование. − 2014. − № 3 (40). − С. 8−12.
- 50. **Игнатова, А.М.** Исследование влияния соединений фтора на восстановление железа в процессе плавки железосиликатных шихт / А.М. Игнатова // Вестник Пермского национального исследовательского

- политехнического университета. Машиностроени. Материаловедение. 2014. Том 16. № 2. С. 35–41.
- 51. **Игнатова, А.М.** Противокумулятивная защита техники с применением синтетических минеральных сплавов / А.М. Игнатова, А.О. Артемов, М.Н. Игнатов // Двойные технологии. $-2014. N \ge 2$ (67). -C. 13-17.
- 52. **Игнатова, А.М.** Обзор современных методик прогнозирования и оценки баллистических характеристик неметаллических материалов/ А.М. Игнатова, Н.М. Сильников // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. 2014. № 9–10. С. 89–95.
- 53. **Игнатова, А.М.** Механизм ликвационных явлений в синтетических минеральных сплавах / А.М. Игнатова // Вестник Пермского национального исследовательского политехнического университета. Машиностроение. Материаловедение. 2015. Т. 17, N 1. С. 79—96.
- 54. **Игнатова**, **А.М.** Визуализация трещинообразования и разрушения синтетических минеральных сплавов при высокоскоростном ударе / А.М. Игнатова, М.А. Нихамкин, Л.В. Воронов, М.Н. Игнатов // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. − 2015. − №11–12 (89–90). − С. 79–87.
- 55. **Игнатова, А.М.** Анализ фрагментации пластин из синтетических минеральных сплавов при высокоскоростном ударе шаром методом визуализации / А.М. Игнатова, М.А. Нихамкин, В.Л. Воронов, М.Н. Игнатов // Вестник Пермского национального исследовательского политехнического университета. Механика. -2015.- N = 3.-C.63-73.
- 56. **Игнатова, А.М.** Бесконтактная оценка пористости пеноникеля методом рентгеновской томографии 3D / А.М. Игнатова, М.Н. Игнатов // Изв. ВУЗов. Порошковая металлургия и функциональные покрытия. − 2015. − № 3. − с. 36–43.
- 57. **Игнатова, А.М.** Оценка пригодности магматических горных пород Западного Урала для технологий каменного литья / А.М. Игнатова, В.И. Верещагин // Новые огнеупоры. 2016. № 9. С. 11–15.
- 58. Игнатова, А.М. Применение метода анализа изображений исследовании статистической оценке параметров частиц составляющей сварочных аэрозолей силикатного и оксидного состава / А.М. Верещагин Вестник // Пермского национального университета. исследовательского политехнического Машиностроение, материаловедение. – 2017. – Т. 19, № 1. – С. 41–57.
- Функциональная 59. Игнатова, A.M. технологическая И производства фторфлогопитовых изделий/ М.В. Юдин, М.М. Николаев, А.М. Игнатова, M.H. Игнатов Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2017. – Т. 19, № 2. – С. 118–132.
- 60. **Игнатова, А.М.** Модель структуры материала каменного литья с повышенной износостойкостью / А.М. Игнатова, В.И. Верещагин // Материаловедение. -2017. -№ 5. С. 13-17.

Патенты

- 61. Пат. 2448824 Российская Федерация. МПК51 В23К 35/362, В23К 35/40. Шихта для получения сварочного плавленного флюса / Игнатов М.Н., **Игнатова А.М.**, Наумов С.В. Опубл. 27.04.2012, Бюл. № 12. 3 с.
- 62. Пат. 2465237 Российская Федерация. МПК51 С04В 32/00, С03С 10/06. Цветное шлакокаменное литье и шихта для его получения / **Игнатова А.М.,** Черных М.М., Чикулаева Е.В., Антонов Б.Ю., Игнатов М.Н. Опубл. 27.10.2012, Бюл. № 30. 4 с.
- 63. Пат. 2474541 Российская Федерация. МПК51 С03С 10/06. Цветное шлакокаменное литье и шихта для его получения / **Игнатова А.М.**, Черных М.М., Чикулаева Е.В., Попов В.Л., Игнатов М.Н. Опубл. 10.02.2013, Бюл. № 4.-3 с.
- 64. Пат. 2485061 Российская Федерация. МПК51 С03С 8/00. Способ получения цветного декоративного покрытия на камнелитом изделии / **Игнатова А.М.,** Черных М.М., Чикулаева Е.В., Игнатов М.Н. Опубл. 20.06.2013, Бюл. № 17. 2 с.
- 65. Пат. 2494847 Российская Федерация. МПК51 В23К35/40 В01Ј2/02. Способ гранулирования флюса / Игнатов М.Н., **Игнатова А.М.,** Наумов С.В. Опубл. 10.10.2013, Бюл. № 28. 5 с.
- 66. Пат. 2496750 Российская Федерация. МПК51 С04В41/68. Способ получения эмалированного камнелитого изделия / **Игнатова А.М.** Опубл. 27.10.2013, Бюл. № 10. 2 с.
- 67. Пат. 2497646 Российская Федерация. МПК51 В23К35/36. Минеральный сплав для покрытий сварочных электродов / Игнатов М.Н., **Игнатова А.М.**, Артемов А.О. Опубл. 10.11.2013, Бюл. № 31. 3 с.
- 68. Пат. 2504465 Российская Федерация. МПК51 В23К35/365 Электродное покрытие / Игнатов М.Н., **Игнатова А.М.**, Наумов С.В. Опубл. 20.01.2014, Бюл. № 2. 6 с.
- 69. Пат. 2510374 Российская Федерация. МПК51 С04В30/00, С03С10/06, F41Н5/00. Каменное литье / Игнатов М.Н., **Игнатова А.М.,** Артемов А.О. Опубл. 27.03.2014, Бюл. № 9. 6 с.
- 70. Пат. 2601868 Российская Федерация. МПК51. G21F 5/00 (2006.01). Контейнер для радиационно-опасных грузов / **Игнатова А.М.** Опубл. 10.11.2016, Бюл. № 31. 7 с.
- 71. Пат. 2601303 Российская Федерация. МПК51. С11D 3/02 (2006.01), С11D 3/08 (2006.01), С11D 3/14 (2006.01). Чистящий порошок / **Игнатова А.М.** Опубл. 10.11.2016. Бюл. № 31. 6 с.
- 72. Пат. 2601305 Российская Федерация. МПК51. С11D 3/02 (2006.01), С11D 3/08 (2006.01), С11D 3/14 (2006.01). Чистящая паста / **Игнатова А.М.** − Опубл. 10.11.2016, Бюл. № 31. − 5 с.

Публикации в других источниках РИНЦ

73. **Игнатова, А.М.** Идентификация структурных составляющих синтетических минеральных сплавов методом наноиндентирования и наносклерометрии / А.М. Игнатова, М.В. Юдин, М.Н. Игнатов // Будущее

машиностроения России: сб. тр. VI Всерос. конф. молодых ученых и специалистов. – Москва, 2013. – С. 306–308.

- 74. **Игнатова, А.М.** Прогнозирование вязкости силикатных неметаллических расплавов для получения камнелитых материалов методами базальтовых технологий / А.М. Игнатова, В.И. Верещагин // Неорганическая химия фундаментальная основа в материаловедении керамических, стеклообразных и композиционных материалов: сб. тр. науч. конф. СПб, 2016. С. 85–89.
- 75. **Игнатова, А.М.** Графо-математическая интерпретация роли стеклообразной структурной составляющей каменного литья в достижении его оптимальной износостойкости / А.М. Игнатова, В.И. Верещагин // Неорганическая химия фундаментальная основа в материаловедении керамических, стеклообразных и композиционных материалов материалы: сб. тр. науч. конф. СПб, 2016. С. 82—85.

Диссертация «Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны рекомендуется к защите на соискание ученой степени доктора технических наук по специальности 05.17.11 — Технология силикатных и тугоплавких неметаллических материалов.

Диссертация **«Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны** соответствует порядку присуждения ученых степеней в Национальном исследовательском Томском политехническом университете от 06 декабря 2018 г. №93/од.

Заключение принято на научном семинаре Научно-образовательного центра Н.М. Кижнера. Присутствовало на научном семинаре — 10 чел. Результаты голосования: «за» — 10 чел., «против» — нет, «воздержалось» — нет, протокол № 70 от 22.05.2019 г.

Заключение составила проф., д.т.н. О.В. Казьмина

УТВЕРЖДАЮ
Проректор по науке и инновациям
ФГБОУ ВО Пермский
пациональный исследовательский
политехнический университет

д.т.н.
В.Н. Коротаев

ЗАКЛЮЧЕНИЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ПЕРМСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

TOTAL HEAD

Диссертация на соискание степени доктора технических наук «Физикополучения применение химические закономерности И литых стеклокристаллических материалов шпинелид-пироксенового состава из природного техногенного сырья» выполнена Федеральном государственном образовательном высшего бюджетном учреждении образования «Пермский национальный исследовательский политехнический университет» Игнатовой Анной Михайловной.

В 2008 году Игнатова А.М. окончила Государственное образовательное учреждение высшего профессионального образования «Пермский государственный технический университет» по специальности «Машины и технологии литейного производства».

В 2011 г. защитила диссертацию на соискание степени кандидата технических наук в диссертационном совете ФГБОУ ВО Санкт-Петербургского государственного университета технологии и дизайна.

В период 2015-2018 гг. Игнатова А.М. обучалась и окончила докторантуру Федерального государственного автономного образовательного учреждении высшего образования «Национальный исследовательский Томский политехнический университет» (Институт физики высоких технологий, кафедра Технологии силикатов и наноматериалов).

В период подготовки диссертации соискатель Игнатова Анна Михайловна работала в должностях старшего и ведущего научного сотрудника структурного подразделения Федерального государственного автономного бюджетного образовательного учреждения высшего образования «Пермский национальный исследовательский политехнический университет» — «Институт безопасности труда производства и человека».

Научный консультант — д.т.н. Верещагин Владимир Иванович, Национальный исследовательский Томский политехнический университет, кафедра технологии силикатов и наноматериалов, профессор, заслуженный деятель науки $P\Phi$.

Обсуждение проходило на объединенном научном семинаре **12 апреля 2017** г.

На семинаре присутствовали:

- 1. Аношкин А.Н. проф., д.т.н.
- 2. Береснев Г.А. проф., д.т.н.
- 3. Игнатов М.Н. проф., д.т.н.
- 4. Колмогоров Г.Л. проф., д.т.н.
- 5. Островский С.В. проф., д.т.н.
- 6. Пойлов **В**.3. проф., д.т.н.
- 7. Синани И.Л. проф., д.т.н.
- 8. Наумов В.А. проф., д. геол-м. наук. (ПГНИУ Пермский государственный национальный исследовательский университет)
- 9. Паньков А.А. проф., д. физ-мат. н.
- 10. Вахрушев В.В. к.т.н.
- 11. Данилов Н.Ф. доцент, к.т.н
- 12. Наумов С.В. к.т.н.
- 13. Углев Н.П. к. хим. Н.
- 14. Шавшуков В.Е. к.физ-мфт. н.
- 15. Саулин Д.В. доцент
- 16. Кокшаров В.С. аспирант

Были заданы следующие вопросы:

- 1. От чего зависит смещение максимумов на кривых, описывающих скорость роста и скорость зарождения кристаллов? Как количество диоксида кремния влияет на сдвиг максимума, какой механизм?
- 2. Можно ли формализовать эти кривые? Вывести обобщённый закон или формулу? Отношения влияния скорости роста, скорости кристаллизации извлечь из этого какие-то константы, например, относящиеся к активации процесса.
- 3. От чего зависит распределение структурных составляющих в форме сферолита с ядром?
- 4. Чем вы подтверждаете, гипотезу о диссипативном объеме?
- 5. Как вы рассчитывали величину межфазных, разрушений, которые приводят к разрушению (15 МПа)? Где это показано? Можете показать на модели где эти напряжения возникают?
- 6. Шпинелиды, которые есть в сырье, оплавляются полностью или частично?
- 7. Вы проверяли на химическую стойкость? Каким образом?
- 8. В какой степени равновесные структуры у Вас получаются? Если они неравновесные, о как у Вас это влияло на свойства?

- 9. Могли бы вы назвать длину цепочки шпинелидов?
- 10. Как вы оценивали размеры структурных составляющих? Меня интересует методика, на шлифах или как-то еще?
- 11. Вы указывали минимальный и максимальный размер или есть программы обработки, которые дают кривые распределения по размерам?
- 12. Каково содержание серы в основных сырьевых компонентах?
- 13. Каким образом определяли пористость? Можно ли ей управлять делать больше или меньше и какие газы внутри пор?
- 14. Указано, что отношение шпинелид/пироксен/ стекло-фаза и даны значения, как можно это доказать? На основе чего сделан вывод? Что отражает это соотношение? Объемная или массовая доля?
- 15. На какой модели вы докажете, что, указанное соотношение, способствует снижению износа?
- 16. Как изменился состав полученных материалов в отличие от сырьевых? Ведь у Вас написано о закономерностях изменения состава фаз. Как они меняются?
- 17. Анизотропия, что вы понимаете под этим понятием?
- 18. Как влияет температура плавления фаз, которые входят в исходную шихту или сырье на конечные результаты и характеристики? Проводился ли такой анализ?
- 19. Чем отличается степень кристалличности и кристаллизационная способность?

По итогам обсуждения принято следующее заключение:

Актуальность работы

Каменное литье, материал, получаемый неполной кристаллизацией расплавов горных пород (базальты, габбро-диабазы, основные и ультраосновные породы) и техногенного минерального сырья (отходы добычи железных руд, металлургические и твёрдые топливные шлаки), содержащих оксиды кремния, алюминия, кальция, магния и железа. Кристаллические составляющие представлены силикатными, пироксеновыми, оливиновыми, шпинельными фазами, реже, слюдами. Каменное литье обладает плотностью 2,7-2,9 г/см³, механической прочностью при сжатии 240-290 МПа, твердостью по Moocy 6-8, низким коэффициентом теплопроводности $\sim 4,6$ Вт/м·°С при температуре до 100°С и коэффициентом термического расширения $\sim (7,8-8,4)$ $\alpha \cdot 10^6$.

Камнелитые материалы по свойствам сравнимы с керамическими материалами, при этом сырье для получения каменного литья доступнее и не требует сложной переработки перед получением расплава. Срок службы камнелитых изделий в условиях абразивного износа превышает срок службы аналогов в среднем в 2-3 раза. При высоких эксплуатационно-технических показателях характеристик каменного литья, доля его использования в качестве конструкционного материала, составляет 1–2%.

Основная научная проблема в технологии каменного литья заключается в отсутствии закономерностей, определяющих взаимосвязь процессов фазо- и динамически изменяющимися структуробразования каменного литья С параметрами расплава в процессе затвердевания и кристаллизации и морфологическими параметрами его структуры, определяющими свойства камнелитых материалов. Отсутствие решений указанной проблемы не позволяет улучшать целевые функциональные свойства каменного литья (износостойкость, термостойкость, диссипативность и т.д.) и расширять номенклатуру природного и техногенного сырья для его получения, за счет привлечения ресурсов на развитым промышленным комплексом. территориях существующая периодичность спроса на камнелитую продукцию с большими временными интервалами приводит к отсутствию равномерной загрузки производственных мощностей предприятий.

Опубликованные в научной литературе сведения о физико-химических процессах получения каменного литья не являются универсальными, они отражают частные случаи, зачастую с привязкой к территориальному расположению места добычи сырья.

Актуальным является решение научных проблем, поставленных ранее, через изучение и установление закономерностей физико-химических процессов затвердевания и кристаллизации фаз и формирования морфологических структуры зависимости динамически изменяющихся параметров ОТ параметров расплава каменного литья процессе затвердевания кристаллизации.

Цель и задачи диссертационной работы.

Установление физико-химических закономерностей формирования фазового состав, структуры и свойств шпинелид-пироксеновых камнелитых материалов из природного и техногенного сырья для получения изделий с прогнозируемым уровнем эксплуатационных свойств.

Для достижения, поставленной цели, решались следующие задачи:

- 1. обобщение требований к расплаву для получения каменного литья со сферолитной структурой и выявление критериев пригодности природного и техногенного сырья для получения шпинелидпироксенового каменного литья со сферолитной структурой на их основе;
- 2. исследование политермических процессов формирования структуры при затвердевании и кристаллизации расплавов для получения шпинелидпироксенового каменного литья расчетными и экспериментальными методами;
- 3. выявление морфологических элементов структуры каменного литья шпинелид-пироксенового состава, их параметров и оптимального количественного соотношения для обеспечения заданного уровня эксплуатационных свойств;
- 4. разработка моделей структур камнелитых материалов с различными эксплуатационными свойствами;

- 5. выявление физико-химических закономерностей, обеспечивающих литья шпинелид-пироксенового получение каменного состава контролируемыми параметрами структуры, для обеспечения эксплуатационных свойств (износостойкость, термостойкость, прочность, способность к диссипации и т.д.);
- 6. реализация научных основ на практике.

Научная новизна результатов диссертационного исследования заключается в следующем:

- 1. установлено, что фазовый состав шпинелид-пироксенового каменного литья (пироксен 88-95%; шпинелид 1-6%) определяется химическим составом расплава. Содержание оксидов, обеспечивающее, формирование шпинелидных и пиркосеновых фаз, мас.%: $SiO_2 44-48\%$; $Al_2O_3 13-17$; MgO 13-16,5; CaO 11-14. При этом содержание оксидов железа не превышает 9,5 мас. %. Формирование сферолитной структуры обеспечивается в присутствие Cr_2O_3 или V_2O_5 более 1 мас. %;
- 2. впервые установлено, что различным этапам затвердевания И кристаллизации расплава для получения шпинелид-пирокенового каменного литья соответствуют точки перехода, заданные оксидным составом расплава, выраженным через отношение $SiO_2/RO=\sum RO+R_2O+R_2O_3$ (0,78-1,03), и летучестью кислорода ($ln(fO_2)=-9,6\div-5,5$). Так расслоению расплава на две соответствуют следующие точки перехода: $SiO_2/RO=1,08$, $ln(fO_2)=-8,08$; конец $SiO_2/RO=1,15$, $ln(fO_2)=-8,52$); началу $(SiO_2/RO=0.91,$ $ln(fO_2)=-6,76$ формирования шпинелида формирования пироксеновой оболочки сферолита (начало: SiO₂/RO=0,96, $ln(fO_2)=-8,00$, конец: $SiO_2/RO=1,03$, $ln(fO_2)=-8,21$), началу затвердевания стекло-фазы (SiO₂/RO=0,92, $ln(fO_2)$ =-8,54);
- 3. впервые установлена корреляция между величинами скорости роста (V_p) и скоростью образования зародышей кристаллизации (V_3) с размером структурных составляющих шпинелид-пироксенового каменного литья. При V_p =1-9 мкм/мин и V_3 =200-300 шт/мм³·мин размер кристаллических фаз составляет 4-16 мкм, а при V_p =10-17 мкм/мин и V_3 =100-200 шт/мм³·мин размер кристаллических фаз составляет 16-130 мкм. Установлено, что степень кристалличности в диапазоне 94-97% достигается при переохлаждении расплава от температуры ликвидуса 10-240 °C, при условии, что количество жидкой фазы сокращается при охлаждении на 1°C на 0,12% в интервале температур 1360-1230°C, и на 1,6% в интервале 1230-1170°C;
- 4. установлено, что основными реакциями в расплаве каменного литья являются реакции обмена магния и железа в парах «клинопироксен— ортопироксен» и «оливин—ортопироксен», коэффициенты распределения железа для указанных обменных реакций в условиях электродугового синтеза составляют 1,86-2,35 в первом случае и 0,03-0,2 во втором;
- 5. впервые определены элементы структуры шпинелид-пироксенового каменного литья: сферолит, ядра сферолита шпинелид, оболочка сферолита

- пироксен и стекло-фазная прослойка. На основании выявленных шпинелид-пироксенового предложены модели структур каменного литья, где главный элемент – сферолит, имеет двухслойное строение: ядро, образованное шпинелеподобной фазой, и оболочка, образованная пироксенами 2-4 цепочного строения. Сферолиты диффузно распределяются в стекло-фазе, таким образом, что стекло-фаза образует прослойку между ними. Согласно предложенной модели, параметры структуры шпинелд-пироксенового каменного литья характеризуются индексом сферолита. Индекс сферолита определяется отношением толщины пироксеновой прослойки к приведенному диаметру шпинелидного ядра. Доказано, что индекс сферолита коррелируется с толщиной стекло-фазной прослойки и с количеством сферолитов в единице объема материала, характер корреляции зависит от ионного баланса сырьевой композиции для получения расплава. При величине индекса сферолита 1,9-2,1 толщина стеклофазной прослойки составляет 3-5 мкм и количество сферолитов в единице объема $0.5-1.5\cdot10^6$ шт/мм³. При величине индекса сферолита 1-1.5толщина стеклофазной прослойки составляет 5-7 мкм и количество сферолитов $6-7\cdot10^6$ шт/мм³. При величине индекса сферолита 10 толщина стеклофазной прослойки составляет менее 1,5 мкм, сферолиты склонны к взаимному прорастанию и количество в единице объема материала составляет $0.9-1.1\cdot10^6$ шт/мм³;
- 6. впервые установлена корреляция между функциональными свойствами шпинелид-пироксеновго каменного литья и индексом сферолита в его структуре. Шпинелид-пироксеновому каменному литью с повышенной износостойкостью соответствует индекс сферолита 1,9 (размер шпинелида 3-4 мкм); с повышенной диссипативной способностью 1,5 (размер шпинелида 2-3 мкм); с повышенной термической стойкостью 10 (размер шпинелида 1-3 мкм);
- 7. впервые установлено, что расплав для получения каменного литья шпинелид-пироксенового состава обладает характерными показателями ионного баланса примесей, мерой которого является отношение грамм-ионов соединений серы и фосфора (S^{4+} , S^{6+} и P^{5+}) к грамм-ионам металлов (Al^{3+} , Fe^{3+} , V^{5+} , Cr^{3+}). Шпинелид-пироксеновому каменному литью соответствует ионный баланс (N_{SP}/N_{Xme}) в диапазоне 0,005-0,09, при этом сферолитная структура формируется при величине ионного баланса в диапазоне 0,005-0,01. Ионный баланс обеспечивается вышеуказанным соотношением компонентов шихты и при содержании серы и фосфора не более 2 мас. %;
- 8. впервые установлено, что деформация и разрушение шпинелидпироксеновых камнелитых материалов при динамических механических нагрузках (удар ускоренным пробойником) локализуется в ограниченном объеме структуры, затем переходит в сжатие сферолитовой оболочки, в результате чего происходит фрагментация «ядра сферолита», с нарушением химических связей и выделением тепла, а возникающие напряжения

приводят к фрагментации материала аморфной прослойки с образованием мелкодисперсных частиц.

Практическая значимость результатов диссертационного исследования заключается в следующем:

- предложены критерии, экспресс-метод оценки пригодности природного и техногенного сырья для получения каменного литья шпинелид-пироксенового состава со сферолитной структуры и рекомендации по составлению сырьевых композиций на его основе, которые обеспечивают отношение грамм-ионов S^{4+} , S^{6+} и P^{5+} к грамм-ионам Al^{3+} , Fe^{3+} , V^{5+} , Cr^{3+} через сочетание сырьевой основы с показателем вышеуказанного отношения равным 0,03-0,06 в количестве 70-95% и добавки в количестве 5-30% с показателем 0,06-0,1;
- разработан состав шихты на основе габбро-диабаза с добавкой пироксеновых техногенных отходов в количестве 5-30% или с добавкой хромовой руды в количестве 5%, и технология, обеспечивающая получение износостойкого каменного литья с интенсивностью износа 0,02–0,06%, величиной истираемости в диапазоне 0,005 0,015 кг/м², пределом прочности при сжатии 230–250 МПа диссипативной способностью 53-55 Дж/см³; разработан состав шихты на основе габбро-диабаза с добавкой пироксен—оливиновых техногенных отходов обогащения железных руд в количестве 5-30% для получения термостойкого каменного литья, обеспечивающего 250—300 теплосмен при температуре 400–500°С и величину КТР 6–9·106; разработан состав шихты на основе габбро-диабаза с добавкой доменного шлака в количестве 5-30%, обеспечивающего величину истираемости в диапазоне 0,010–0,020 кг/м² (патенты РФ № 2448824, 2465237, 2474541, 2497646, 2504465, 2510374,);
- разработана технологическая схема получения камнелитых изделий, включающую электродуговую плавильную установку и предусматривающую ступенчатую термическую обработку изделий, установлены граничные режимы для разных степеней кристалличности изделий (патенты $P\Phi$ № 2485061, 2494847, 2496750, 2601303, 2601305, 2601868).

Реализация результатов исследований:

- проведено производсвенное опробирование предложенных составов на опытной плавильной установке (г. Первоуральск);
- выпущена опытная партия камнелитых шпинелид-пироксеновых износостойких и пулестойких плит;
- проведены полигонные испытания камнелитых шпинелид-пироксеновых пулестойких плит;
- результаты работы имеют практическое значение и рекомендованы к реализации на производственных предприятиях, проводящих первичную обработку нерудных природных материалов и переработку техногенных образований.

Достоверность результатов исследования подтверждена, тем, что экспериментальные исследования проведены в аттестованных лабораториях на оборудование, имеющем сертификат, удостоверяющий их соответствие российским стандартам; использованием современных стандартных и оригинальных методик, приборов и технических средств и статистической обработкой экспериментальных данных; многократным повторением экспериментов, отсутствием противоречий с основными физико-химическими и материаловедческими правилами и закономерностями.

Личный вклад автора заключается в том, что им сформулирована научная гипотеза диссертационной работы, согласно которой проведено планирование экспериментальной части работы и подобраны методы аналитической обработки полученных результатов на предмет их достоверности и интерпретации. Автор проводил сбор образцов компонентов сырья экспериментальные работы по получению камнелитых материалов, а также принимал участие исследованиях со специализированным В оборудованием. По результатам проведенных работ, автором предложен усовершенствованный метод оценки пригодности сырья для получения каменного литья, а также компонентные составы шихтовых композиций, на основе предварительно отобранного, природного и техногенного сырья. Автором на основе аналитических изысканий разработаны состав и технология получения износостойкого, термостойкого и диссипирующего каменного литья, эти составы опробованы на практике. В процессе синтеза образцов материалов с свойствами установлены физико-химические зависимости и заданными закономерности процессов затвердевания кристаллизации И шпинелид-пироксеновых камнелитых материалов.

Достижение заданных свойств было достоверно доказано автором в ходе экспериментальных исследований, при которых были определены физикомеханические свойств полученных материалов.

Автором проведены материаловедческое исследование каменного литья, в ходе которого были установлены типовые элементы структуры шпинелидпироксеновых камнелитых материалов на различном размерном уровне и предложены модели структур камнелитых материалов с различным набором свойств. Для описания структуры автором разработан оригинальный подход и предложен показатель для описания структуры – индекс сферолита. Также автором впервые интерпретированы процессы разрушения камнелитых материалов при статических и ударно-динамических нагрузках; проведен анализ обработка полученных результатов статистическая применением математических методов. Автором разработаны технологические регламенты производства камнелитых изделий, которые были лично апробированы автором на предприятии в рамках стажировки в камнелитейном цеха Первоуральского завода горного оборудования, в качестве инженера-технолога.

Апробация работы. Материалы диссертации доложены и обсуждены на научно-технических конференциях регионального, всероссийского и международного уровня в период от 2004 по 2017г.г. в городах: Екатеринбург, Новоуральск, Магнитогорск, Челябинск, Миасс, Пермь, Ижевск, Ульяновск, Санкт-Петербург, Москва, Королёв, Шатура, Саров, Тула, Селигер, Владимир, Барнаул, Томск, Ростов-на-Дону, Омск, Новосибирск, Красноярск, Иркутск, Прага (Чехия), Нюрнберг, Ганновер (Германия).

За совокупность работ по разработке качественных и экономически выгодных камнелитых материалов и изделий автор была удостоена 10 грамотами, 4 сертификатами и дипломом за участие в «Зворыкинском проекте» с личной встречей с Президентом РФ Путиным В.В.

Материалы диссертации опубликованы в изданиях, рекомендованных ВАК, и в профильных международных журналах, индексируемых в базах данных Scopus и Web of Science. В частности, основные результаты диссертации представлены в 133 научных публикациях, из которых в автореферате представлено 58, в том числе 4 монографии, 12 патентов $P\Phi$, 3 в сборниках международных конференций и 39 в рецензируемых научных журналах.

Основные результаты работы представлены в следующих публикациях

Монографии

- 1. **Игнатова, А.М.** Природное и техногенное петрургическое сырье Урала/А.М. Игнатова, В.И. Верещагин. Пермь: Изд-во «Гармония», 2016. 93 с.
- 2. **Игнатова, А.М.** Потенциал минерально-сырьевой базы Урала для создания сварочных материалов/А.М. Игнатова, М.Н. Игнатов, С.В. Наумов. Пермь: Изд-во «Гармония», 2014. 148 с.
- 3. **Игнатова А.М.**, Артемов А.О., Игнатов М.Н. Функциональные литые синтетические минеральные сплавы и изделия из них/А.О. Артемов, **А.М. Игнатова**, М.Н. Игнатов. Пермь: Изд-во «Гармония», 2014. 140 с.
- 4. **Игнатова А.М.** Дизайн художественных камнелитых изделий на основе симиналов (материаловедческие основы применения синтетических минеральных сплавов (симиналов) в дизайне)/ А.М. Игнатова, М.Н. Игнатов. Германия, Lambert, -2012.-172 с.

Статьи (издания, рекомендованные ВАК, по специальности 05.17.11 — Технология силикатных и тугоплавких неметаллических материалов)

5. **Игнатова А.М.** Ударный метаморфизм петрургических материалов на примере синтетических минеральных сплавов/ А.М. Игнатова//Стекло и керамика. — $2013. - N_2 1. - c. 40-45.$

Ignatova, **A.M.** Shock Metamorphism of Petrurgical Materials: Synthetic Mineral Alloys/ A.M. Ignatova//Glass and ceramics. – 2013. – Vol. 30. Issue 1. – pp. 34-38.

6. **Игнатова А.М.**, Черных М.М., Игнатов М.Н. Изготовление художественных и архитектурно декоративных изделий каменного литья/ А.М. Игнатова, М.М.

Черных, М.Н. Игнатов //Стекло и керамика. 2011. — № 6. – С. 31-35.

Ignatova, A.M. Fabrication of cast stone art and architectural-decorative articles/ A.M. Ignatova, M.M. Chernykh, M.N. Ignatov//Glass and ceramics. – 2011. – Vol. 68. Issue 6. – pp. 31-35.

- 7. **Игнатова А.М.**, Верещагин В.И. Оценка пригодности магматических горных пород Западного Урала для технологий каменного литья/ А.М. Игнатова, В.И. Верещагин //Новые огнеупоры. -2016. -№9. -c. 11-15.
- 8. **Игнатова, А.М.** Механизм деформации, растрескивания и разрушения структурных составляющих синтетических минеральных сплавов/А.М. Игнатова //Фундаментальные проблемы современного материаловедения. 2013. Том 10. № 2. с. 227-232.
- 9. **Игнатова, А.М.**, Игнатов, М.Н. Роль ликвационных явлений в структурообразование синтетических минеральных сплавов/А.М. Игнатова, М.Н. Игнатов //Фундаментальные проблемы современного материаловедения. 2012. Том 9. \mathbb{N} 2. с. 169-179.
- 10. **Ignatova, A.M.** Application of Synthetic Mineral Alloys as Materials for Bulletproof Vests and Products for Different Objects Protection/A.M. Ignatova//TEM Journal. -2015. N₂4(4). pp. 328-331.
- 11. **Игнатова, А.М.** Минералого-петрографическая характеристика вторичных техногенных металлургических ресурсов Урала и Предуралья для их переработки петрургией/В.П. Чернов, А.М. Игнатова//Фундаментальные исследования. 2012. № 11-3. с. 670-674.
- 12. **Игнатова А.М.**, Верещагин В.И. Модель структуры материала каменного литья с повышенной износостойкостью//Материаловедение. 2017. № 5. С. 13-17.
- 13. **Игнатова, А.М.** Окислительно-восстановительные реакции при синтезе силикатных шихт в электродуговых печах/А.М. Игнатова //Фундаментальные исследования. -2012. -№ 11-3. -c. 604-608.
- 14. **Игнатова А.М.**, Игнатов М.Н. Взаимосвязь структуры и цветности камнелитых материалов, полученных на основе минерального нерудного и техногенного сырья//Фундаментальные исследования. 2012. № 6-2. С. 435-440.
- 15. **Игнатова А.М.**, Артемов А.О., Игнатов М.Н., Соковиков М.А. Методика исследования диссипативных свойств синтетических минеральных сплавов при высокоскоростном пробивании/ **А.М. Игнатова**, А.О. Артемов, М.Н. Игнатов, М.А. Соковиков//Фундаментальные исследования. − 2012. − № 9-1. − С. 145-150.
- 16. **Игнатова А.М.**, Игнатов М.Н., Артемов А.О. Анизотропия структуры и механических свойств синтетических минеральных сплавов/Игнатова А.М., Игнатов М.Н., Артемов А.О. //Фундаментальные исследования. 2012. № 11-1. с. 134-139.
- 17. **Ignatova A.M.** Relationship of structure and color stone-casting materials made of mineral aggregates and technogenic raw materials/ A.M. Ignatova //Polymers research journal. -2011. Vol. 5. No 1. pp. 47-54.

Патенты

18. Пат. 2448824 Российская федерация. МПК51 В23К 35/362, В23К 35/40 Шихта для получения сварочного плавленного флюса/ Игнатов М.Н., **Игнатова**

- А.М., Наумов С.В. опубл. 27.04.2012, бюл. № 12. 3 с.
- 19. Пат. 2465237 Российская федерация. МПК51 С04В 32/00, С03С 10/06 Цветное шлакокаменное литье и шихта для его получения/**Игнатова А.М.**, Черных М.М., Чикулаева Е.В., Антонов Б.Ю., Игнатов М.Н. опубл. 27.10.2012, бюл. № 30. -4 с.
- 20. Пат. 2474541 Российская федерация. МПК51 С03С 10/06 Цветное шлакокаменное литье и шихта для его получения/**Игнатова А.М.**, Черных М.М., Чикулаева Е.В., Попов В.Л., Игнатов М.Н. опубл. 10.02.2013, бюл. № 4. 3 с.
- 21. Пат. 2485061 Российская федерация. МПК51 С03С 8/00 Способ получения цветного декоративного покрытия на камнелитом изделии/**Игнатова А.М.**, Черных М.М., Чикулаева Е.В., Игнатов М.Н. опубл. 20.06.2013, бюл. № 17. 2 с.
- 22. Пат. 2494847 Российская федерация. МПК51 B23K35/40 B01J2/02 Способ гранулирования флюса/ Игнатов М.Н., **Игнатова А.М.**, Наумов С.В. опубл. 10.10.2013, бюл. № 28. 5 с.
- 23. Пат. 2496750 Российская федерация. МПК51 С04В41/68 Способ получения эмалированного камнелитого изделия/ **Игнатова А.М.** опубл. 27.10.2013, бюл. № 10.-2 с.
- 24. Пат. 2497646 Российская федерация. МПК51 В23К35/36 Минеральный сплав для покрытий сварочных электродов/ Игнатов М.Н., **Игнатова А.М.**, Артемов А.О. опубл. 10.11.2013, бюл. № 31. 3 с.
- 25. Пат. 2504465 Российская федерация. МПК51 В23К35/365 Электродное покрытие/ Игнатов М.Н., **Игнатова А.М.**, Наумов С.В. опубл. 20.01.2014, бюл. № 2.-6 с.
- 26. Пат. 2510374 Российская федерация. МПК51 С04В30/00, С03С10/06, F41Н5/00 Каменное литье/ Игнатов М.Н., **Игнатова А.М.**, Артемов А.О. опубл. 27.03.2014, бюл. № 9. 6 с.
- 27. Пат. 2601868 Российская федерация. МПК51. G21F 5/00 (2006.01). Контейнер для радиационно-опасных грузов/ **Игнатова А.М**. 10.11.2016. Бюл. № 31. 7 с.
- 28. Пат. 2601303 Российская федерация. МПК51. С11D 3/02 (2006.01), С11D 3/08 (2006.01), С11D 3/14 (2006.01). Чистящий порошок/ **Игнатова А.М.** 10.11.2016. Бюл. № 31. 6 с.
- 29. Пат. 2601305 Российская федерация. МПК51. С11D 3/02 (2006.01), С11D 3/08 (2006.01), С11D 3/14 (2006.01). Чистящая паста/ **Игнатова А.М.** 10.11.2016. Бюл. \mathbb{N} 31. 5 с.

Статьи (издания, рекомендованные ВАК, по другим специальностям)

- A.M. Исследование и разработка схемы абразивного 30. Игнатова. минеральных изнашивания поверхности синтетических сплавов измерениями/А.М. Игнатова// Вестник Тамбовского склерометрическими университета. Серия: Естественные и технические науки. – 2010. – Том 15, №3-2. – c. 1203-1207.
- 31. Рациональные направления использования камнелитых изделий из синтетических минеральных сплавов в строительстве/**А.М. Игнатова**, В.Л. Попов, Ю.Б. Антонов, В.В. Вагин, М.Н. Игнатов, В.П. Чернов, А.М. Ханов/Известия

- высших учебных заведений. Строительство. 2011. № 8-9. с. 3-16.
- 32. **Игнатова, А.М.** Механизм ликвационных явлений в синтетических минеральных сплавах/А.М. Игнатова //Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2015. Том 17. № 1. с. 79-96.
- 33. Визуализация трещинообразования и разрушения синтетических минеральных сплавов при высокоскоростном ударе/**А.М. Игнатов**, М.А. Нихамкин, Л.В. Воронов, М.Н. Игнатов//Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. − 2015. − №11-12 (89-90). − с. 79-87.
- 34. **Игнатова, А.М.** Исследование поглощения ИК-излучений синтетическими минеральными сплавами и возможное практическое применение/А.М. Игнатова, Г.З. Файнбург, М.Н. Игнатов// Машиностроение и инженерное образование. -2014. -№ 3 (40). -c. 8-12.
- 35. **Игнатова, А.М.** Противокумулятивная защита техники с применением синтетических минеральных сплавов/А.М. Игнатова, А.О. Артемов, М.Н. Игнатов//Двойные технологии. -2014. -№ 2 (67). -c. 13-17.
- 36. Использование каменного литья для изготовления портретных барельефов и горельефов/**А.М. Игнатова**, М.М. Черных, А.А. Кутергин, М.М. Каминский//Дизайн. Материалы. Технология. 2010. № 1. с. 69-75.
- 37. Минералого-петрографическая характеристика техногенных минеральных ресурсов Урала и Предуралья для их переработки петрургией/А.О. Артемов, С.В. Наумов, **А.М. Игнатова**, М.Н. Игнатов//Георесурсы. − 2012. − № 6 (48). − с. 79-83.
- 38. **Игнатова, А.М.**, Игнатов, М.Н. Бесконтактная оценка пористости пеноникеля методом рентгеновской томографии в 3D/A.М. Игнатова, М.Н. Игнатов//Известия вузов. Порошковая металлургия и функциональные покрытия. 2015. N 2. c. 36-43.
- 39. Оценка пригодности и доступности базальтоидных и габброидных комплексов Западного Урала (Пермский Край) для производства сварочных материалов/**А.М. Игнатова**, С.В. Наумов, М.Н. Игнатов, С.А. Пушкин, С.Б. Суслов//Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2010. Том 12. № 4. С. 104-116.
- 40. Исследование взаимосвязи акустической эмиссии и разрушения камнелитых материалов в условиях одноосного сжатия/ М.Н. Игнатов, А.М. Игнатова, А.О. Артемов, В.А. Асанов//Вестник Самарского государственного технического университета. Серия: Технические науки. − 2011. − № 2 (30). − с. 126-132.
- 41. Геохимическое исследование техногенных образований доменного и феррованадиевого производств Чусовского металлургического завода с целью электродугового петрургического рециклинга/**А.М. Игнатова,** С.А. Пушкин, В.А. Наумов//Научно-технический вестник Поволжья. 2013. –№ 5. с. 173-179.
- 42. **Игнатова, А.М.**, Шехирева, А.М. Сравнительная петрография природных материалов и синтетических минеральных сплавов каменного литья/ А.М. Игнатова,

- А.М. Шехирева// Вестник Пермского университета. Геология. $-2011. N_2 4. c. 20-31.$
- 43. **Игнатова, А.М.,** Игнатов, М.Н., Чикулаева, Е.В. Взаимосвязь структуры и цветности камнелитых материалов, полученных на основе минерального природного и техногенного сырья/А.М. Игнатова, М.Н. Игнатов, Е.В. Чикулаева//Вестник Пермского университета. Геология. 2012. № 1. —с. 15-22.
- 44. Исследование диссипативных свойств синтетических минеральных сплавов для создания на их основе броневой защиты/**А.М. Игнатова**, А.О. Артемов, В.В. Чудинов, М.Н. Игнатов, М.А. Соковиков//Вестник Самарского государственного технического университета. Серия: Технические науки. − 2012. − № 3 (35). − с. 105-112.
- 45. **Игнатова, А.М.** Исследование влияния соединений фтора на восстановление железа в процессе плавки железосиликатных шихт/ А.М. Игнатова //Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. -2014. Том 16. N 2. с. 35-41.
- 46. **Игнатова, А.М.** Принципы выбора фактуры камнелитых изделий в зависимости от их функционального назначения и способы ее достижения/ А.М. Игнатова, М.Н. Игнатов, М.М. Черных //Дизайн. Материалы. Технология. -2011. № 3 (18). с. 34-39.
- 47. **Игнатова, А.М.** Синтетические минеральные сплавы как износостойкий материал верхнего слоя дорожного покрытия/ А.М. Игнатова, А.О. Артемов// Вестник гражданских инженеров. 2013. № 1 (36). с. 102-111.
- 48. **Игнатова, А.М.** Материал на основе синтетических минеральных сплавов для цветных дорожных покрытий/А.М. Игнатова, М.Н. Игнатов//Архитектура и строительство России. -2011. № 7. c. 10-17.
- 49. **Игнатова, А.М.** Информативность методов и алгоритм оценки и выбора петрургического сырья/А.М. Игнатова, А.О. Артемов, С.В. Наумов// Научнотехнический вестник Поволжья. 2012. № 4. с. 111-115.
- 50. Конструктивно-технологическая характеристика реконструированной промышленной кристаллизационно-отжигательной печи для термической обработки литых петрургических изделий/В.Л. Попов, Б.Ю. Антонов, **А.М. Игнатова**, М.Н. Игнатов // Научно-технический вестник Поволжья. − 2013. − № 2. − с. 185-188.
- 51. Технология лабораторной, опытной и промышленной переработки горных пород для производства симиналов/ **А.М. Игнатова**, С.В. Наумов, А.О. Артемов, М.Н. Игнатов, А.М. Ханов //Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. − 2011. Том 13. № 4. с. 117-129.
- 52. **Игнатова А.М.** Обзор современных методик прогнозирования и оценки баллистических характеристик неметаллических материалов/ **А.М. Игнатова,** Н.М. Сильников // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. 2014. \mathbb{N} 9-10. с. 89-95.
 - 53. Analysis of fragmentation of plates of synthetic mineral alloys under impact of

ball high velocity by visualization technique/**A.M. Ignatova**, M.A. Nikhamkin, L.V. Voronov, M.N. Ignatov//PNRPU Mechanics Bulletin. – 2015. – №3. – pp. 63-73.

- 54. **Игнатова А.М.**, Верещагин В.И. Применение метода анализа изображений в исследовании и статистической оценке параметров частиц твердой составляющей сварочных аэрозолей силикатного и оксидного состава/А.М. Игнатова, В.И. Верещагин //Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. -2017. Т. 19. $-\mathbb{N}_2$ 1. $-\mathbb{C}$. 41-57.
- 55. **Игнатова А.М.** Функциональная и технологическая схема производства фторфлогопитовых изделий/ М.В. Юдин, М.М. Николаев, **А.М. Игнатова**, М.Н. Игнатов //Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. − 2017. Т. 19. − № 2. − С. 118-132.

Публикации в других источниках

- 56. Оценка диссипативной способности синтетических минеральных сплавов через их фрагментационное разрушение после ударно-волнового воздействия с использованием рельсотрона/ **А.М. Игнатова**, В.П. Полищук, А.В. Шурупов, А.В. Котов //В сборнике: Будущее машиностроения России Сборник трудов VI Всероссийской конференции молодых ученых и специалистов. 2013. с. 309-311.
- 57. **Игнатова**, **А.М.**, Верещагин В.И. Графо-математическая интерпретация роли стеклообразной структурной составляющей каменного литья в достижении его оптимальной износостойкости/ А.М. Игнатова, В.И. Верещагин// В сборнике: Неорганическая химия фундаментальная основа в материаловедении керамических, стеклообразных и композиционных материалов. (материалы научной конференции). Санкт-Петербург, 2016. с. 82-85.
- 58. **Игнатова, А.М.**, Верещагин В.И. Прогнозирование вязкости силикатных неметаллических расплавов для получения камнелитых материалов методами базальтовых технологий/ А.М. Игнатова, В.И. Верещагин// В сборнике: Неорганическая химия фундаментальная основа в материаловедении керамических, стеклообразных и композиционных материалов. (материалы научной конференции). Санкт-Петербург, 2016. с. 85-89.

Диссертация «Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны является законченной работой, по содержанию отвечает паспорту специальности 05.17.11 — Технология силикатных и тугоплавких неметаллических материалов, соответствует положению о присуждении ученых степеней утвержденному постановлением Правительства Российской Федерации от 24 сентября 2013 г. №842 и формуле паспорта специальности. Результаты, полученные в диссертации, соответствуют следующим пунктам паспорта специальности, в частности п.п. 1.1 и 2.

Диссертация «Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны оформлена в соответствии с пунктом 24.14 Положения о совете по защите диссертаций на соискание учёной степени кандидата наук, на соискание учёной степени доктора наук и с ГОСТом Р 7.0.11-2011. Диссертация соответствует требованиям, предъявляемым Положением о присуждении учёных степеней к кандидатским (докторским) диссертациям, в том числе п.95, является научно-квалификационной работой.

Диссертация **«Физико-химические закономерности получения и применение литых стеклокристаллических материалов шпинелид-пироксенового состава из природного и техногенного сырья» Игнатовой Анны Михайловны** рекомендуется к защите на соискание ученой степени доктора технических наук по специальностям 05.17.11 – Технология силикатных и тугоплавких неметаллических материалов.

Заключение принято на объединённом научном семинаре. Присутствовало на научном семинаре 19 чел. Результаты голосования: «за» - 19 чел., «против» - нет, «воздержалось» - нет, протокол заседания кафедры Химических технологий N_2 от M_2 от M_3 от M_4 от $M_$

Заключение составили:

Заведующий кафедрой химических технологий ПНИПУ, проф., д.т.н.

Пойлов В.З.

Заведующий кафедрой механики композиционных материалов и конструкций ПНИПУ, проф., д.т.н.

Аношкин А.Н.