ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

На правах рукописи

Нагорная Марина

РЕГИОСЕЛЕКТИВНЫЙ СИНТЕЗ И СВОЙСТВА АЦЕТИЛЬНЫХ ПРОИЗВОДНЫХ ФЕНОЛГЛИКОЗИДОВ

02.00.03 – Органическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель: Профессор, д. х.н.Филимонов В.Д.

Томск 2018

Содержание

ВВЕДЕНИЕ	6
1. 2-О-АЦЕТИЛАРИЛГЛИКОЗИДЫ. МЕТОДЫ СИНТЕЗА.	
ЛИТЕРАТУРНЫЙ ОБЗОР	11
1.1 2-О-Ацетиларилгликозиды. Нахождение в природе и биологиче	еская
активность	11
1.2 Методы защиты гидроксильных групп углеводов для получения	
строительных блоков	14
1.2.1 Ацильные группы (сложноэфирная защита)	15
1.2.1.1 Ацетаты	15
1.2.1.2 Бензоаты	
1.2.1.3 Пивалоильная защита	19
1.2.1.4 Хлорацетаты	21
1.2.2 Простые эфиры	
1.2.2.1 Бензиловые эфиры	
1.2.2.2 Аллиловые эфиры	24
1.2.2.3 Кремний содержащие эфиры	
1.2.3 Ацетали и кетали	
1.2.4 Аномерные защитные группы	
1.3 Особенности О-гликозидной связи. Методы гликозилирования	
1.3.1 Метод Фишера	
1.3.2 Метод Кенигса и Кнорра	
1.3.3 Гликозилирование по Михаэлю	
1.3.4 Межфазное гликозирование	
1.3.5 Катализ кислотами Льюиса	
2. ИССЛЕДОВАНИЕ КИСЛОТНО-КАТАЛИЗИРУЕМОГО АЛКОГО	ЭЛИЗА
ДЛЯ СЕЛЕКТИВНОГО УДАЛЕНИЯ АЦЕТИЛЬНЫХ ГРУПП В	
АРИЛГЛИКОЗИДАХ	

2.1 Исследование факторов, влияющих на реакцию кислотно-	
катализируемого алкоголиза и получение 2-ацетил арилгликозидов	6
2.2 Определение кинетики реакции алкоголиза ацетильной группы 2-О-	
ацетиларилгликозидов4	1
2.3. Квантово- химическое моделирование реакции алкоголиза ацетильных	
групп ацетилгликозидов4	6
3. ПРИМЕНЕНИЕ АЛКОГОЛИЗА В СИНТЕЗЕ СТРОИТЕЛЬНЫХ БЛОКОВ	3
ДЛЯ ПОЛУЧЕНИЯ ОЛИГОСАХАРИДОВ И ПРИРОДНЫХ	
АРИЛГЛИКОЗИДОВ	;3
3.1 Использование 2- <i>О</i> -ацетилгликозидов в синтезе сиалил-(α2-3)-	
галактозного блока5	;3
3.1.1 Получение 2-О-ацетилметоксифенил галактопиранозида 5	54
3.1.2 Получение галатозил акцепторов (11 и 17)5	6
3.1.3 Применение галактозил-акцепторов 11 и 17 в синтезе сиалил-	
галактозного блока5	58
3.1 Применение кислотно-катализируемого дезацетилирования на примере	
синтеза дигликозидов сложных эфиров гидроксибензойных кислот и	
салицилового спирта 6	51
3.2.1 Ретросинетический анализ дигликозидов на примере Virgaureoside A . 6	52
3.2.2 Применение кислотно-катализируемого алкоголиза в синтезе	
Virgaureoside А и <i>iso-</i> Virgaureoside А б	55
4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ б	<u>i9</u>
4.1 Получение доноров для гликозилирования7	0'
4.1.1 Получение 2,3,4,6 тетра-О-ацетил-α-D-глюкопиранозилбромида 7	0'
4.1.2 Получение <i>пер</i> -ацетилированных гликозидных доноров	1'
4.2 Получение фенолгликозидов 7	'2
4.2.1 Гликозилирование по Гельферху, катализируемое BF3 * Et3N	'2
4.2.2 Гликозилирование методом сплавления с <i>п</i> -толуолсульфокислотой 7	'3
4.2.3 Гликозилирование с использованием оксида серебра и хинолина 7	'4

4.2.4 Гликозилирование с использованием карбоната калия и безводно	ГО
ацетона	74
4.2.5 Получение α-фенолгликозидов методом сплавления с ZnCl2	75
4.3 Бромирование метильной группы гликозида (2)	76
4.4 Общая процедура снятия защитных групп и ацетилирования гликоз	зидов
29 и 30	77
4.5 Конденсация гликозидных частей 25 и 26, 25 и 31	78
4.6 Селективное снятие ацильной защиты	80
4.7 Получение 2- <i>О</i> -ацил-β- <i>D</i> -галактопиранозидов 12а и 16 с использов	анием
стратегии защитных групп	85
4.8 Селективное снятия ацильной защиты дигликозидов	87
4.9 Синтез галактозил-акцептора	89
4.10 Получение дисахаридного блока ганглиозида GM3	91
4.11 Синтез полностью ацетилированного РМР-дисахарида 22	93
4.12 Синтез имидатного донора 24 из 22	95
ВЫВОДЫ:	97
СПИСОК ЛИТЕРАТУРЫ	98
ПРИЛОЖЕНИЕ А	122
ПРИЛОЖЕНИЕ Б	124

Список использованных сокращений

- АБГ-ацетобромглюкоза,2,3,4,6-тетра-О-ацетилглюкопиранозилбромид
- ВЭЖХ высокоэффективная жидкостная хроматография
- ГХ-МС газовая хроматография и масс-спектроскопия
- ТБАБ тетрабутиламмоний бромистый
- ТСХ тонкослойная хроматография
- Ас ацетил
- Bz бензоил
- Bn бензил
- СА хлорацетил
- САМ церий аммоний нитрат
- **CSA** камфорасульфокислота
- **DMP** 2,2-диметоксипропан
- LG уходящая группа
- NIS N-I сукцинимид
- Piv –пивалоил
- **PG** защитная группа
- Ph-фенил
- РМВ *п*-метоксибензойная группа
- **ТFA** трифторуксусная кислота / группа
- **TsOH** *n*-толуолсульфокислота
- Tf трифторметансульфокислота
- **DABCO** 1,4-диазобицикло [2.2.2] октан
- **TMS** триметилсилил
- **TES** триэтилсилил
- **TBDPS** трет-бутилдифенилсилил
- **РМР** *п*-метоксифенил
- **HDTC** гидразиндитиокарбонат

Введение

Актуальность работы. В природе широко встречаются частично ацетилированные фенолгликозиды. Такие соединения интересны для фармакологии, поскольку имеют биологическую активность, отличную от неацетилированных соединений с тем же скелетом. Наибольший интерес представляют природные фенолгликозиды, содержащие одну ацетильную группу на 2-гидроксиле углеводной части. Также, 2-*O*-ацетилированные арилгликозиды являются специфическими маркерами для растений определенных семейств и служат своеобразными «отпечатками пальцев» для хемотаксономии.

Выделение таких соединений из растительного сырья представляет собой сложный процесс, не дающий гарантии выделения необходимого компонента с достаточными выходами. Помимо этого, содержание 2-*O*-ацетилгликозидов в природном сырье зависит от ряда факторов, таких как: сезон сбора растительного материала, вид растения, место сбора и условия сушки и обработки сырья. Кроме того, выход 2-*O*-ацетилгликозидов зависит и от метода их выделения. Так, при высоких значениях pH при экстрагировании (выше 5.5) снижается их количество [1] в связи с нестабильностью моноацетов в щелочной среде и вероятной миграцией ацетильных групп.

Получение 2-*О*-ацетилгликозидов прямым введением ацетильной группы в углеводный остаток невозможно, так как в этом случае преимущественно образуются 6-*О*-ацетильные производные [2]. Известны лишь единичные примеры многостадийных синтезов 2-*О*-ацетилгликозидов. Так, учеными из Китая был предложен полусинтетический путь получения 2-ацетилсалицина в 5 стадий [3]. Описан также синтез 2-*О*- ацетилгалактозида в 8 стадий как интермедиата в синтезе олигосахаридов [4].

Ранее на кафедре биотехнологии и органической химии ТПУ была открыта система HCl/EtOH/CHCl₃, позволяющая проводить селективное дезацетилирование некоторых *пер*-ацетилгликозидов с получением ценных 2-

О-ацетилгликозидов, а также полностью дезацетилированных соединений с сохранением гликозидной связи. Однако механизм действия этой системы не исследован, равно как неизвестно и влияние строения ацетилированных гликозидов на их реакционную способность и селективность. Понимание механизма действия данной системы необходимо для широкого использования предложенного метода дезацетилирования в химии углеводов.

<u>Цель работы:</u> Разработка новых методов получения 2-*О*ацетиларилгликозидов путем дезацетилирования *пер*-ацетатов под действием системы HCl/EtOH/CHCl₃, исследование механизма этого процесса и применение реакции дезацетилирования в химии углеводов.

Положения, выносимые на защиту:

1. Препаративный метод получения ряда 2-*О*-ацетиларилгликозидов дезацетилированием *пер-О*-ацетиларилгликозидов действием HCl/EtOH/CHCl₃.

2. Закономерности влияния структуры *nep-O*-ацетиларилгликозидов на их реакционную способность и селективность в реакции кислотнокатализируемого дезацетилирования.

3. Результаты кинетических и квантово-химических исследований дезацетилирования и гипотеза, объясняющая найденную селективность стерическим экранированием 2-*O*-ацетильной группы со стороны агликонового фрагмента в ходе дезацетилирования.

4. Первый пример успешного применения 2-*O*-ацетил галактопиранозида в качестве нуклеофила в реакции сиалилирования для синтеза ценного сиалил-(α2-3)-галактозного блока.

5. Первый полный синтез природного дигликозида Virgareoside A и его аналога *iso*- Virgaureoside A, которые были получены при использовании разработанной системы HCl/EtOH/CHCl₃.

Научная новизна работы.

1. Впервые экспериментально и теоретически исследованы закономерности кислотно-катализируемого дезацетилирования *пер*ацетилированных арилгликозидов, определено влияние строения углеводного фрагмента и агликона на селективность.

2. Впервые предложен одностадийный метод синтеза ряда 2-*О*ацетиларилгликозидов.

3. Впервые определена скорость кислотно-катализируемого алкоголиза 2-*O*- ацетильной группы для ряда 2-*O*-ацетиларилгликозидов и выявлено влияние строения углеводного фрагмента и агликона на скорость алкоголиза.

4. Впервые предложены и реализованы подходы к получению ценных природных дигликозидов (Virgareoside A и *iso-* Virgaureoside A), а также строительных блоков практически важных олигосахаридов, в частности, сиалил-(a2-3)-галактозного блока.

Практическая значимость.

1. Предложен простой одностадийный метод селективного алкоголиза *пер*-ацетилированных арилгликозидов для получения 2-*О*-ацетиларилгликозидов, что делает их доступными для применения в химии углеводов.

2. Осуществлен синтез нового галактозильного строительного блока (*n*-метоксифенил 2-*O*-ацетил-4,6-*O*-бензилиден-β-D-галактопиранозида) с использованием кислотно-катализируемого алкоголиза ацетильных групп и показана возможность его применения для синтеза важного сиалил-(α2-3)-галактозного блока.

3. Впервые осуществлен синтез дигликозида растения *Solidago virgaurea L*-**Virgaureoside A**, а также дигликозида не найденного в природных источниках и не описанного в литературе - *изо*-**Virgaureoside A** с применением кислотно-катализируемого алкоголиза ацетильных групп *пер*-

ацетилированных дигликозидов, благодаря чему возможно получение дигликозидов в количествах, достаточных для фармакологического изучения.

Апробация работы.

Отдельные части работы докладывались и обсуждались на II и III Всероссийской научно-технической конференции молодых ученых, аспирантов и студентов с международным участием «Высокие технологии в современной науке и технике» (Томск, 2013 г., 2014 г); Всероссийской конференции «Химия и химическая технология в XXI веке» (Томск, 2014, 2018) гг.); Всероссийской конференции «Актуальные проблемы органической химии» (Новосибирск, 2015 г.); 18th European Carbohydrate Symposium: Eurocarb18 2015 г.); VI Всероссийской (Москва, конференции с международным участием «Актуальные вопросы химической технологии и окружающей среды» (Чебоксары, 2016 г.); Международном защиты юбилейном конгрессе, посвященном 60-летию Иркутского института химии им. А.Е. Фаворского СО РАН «Фаворский-2017» (Иркутск, 2017 г.).

Публикации. По теме диссертации опубликовано 2 статьи, 10 докладов, тезисы 13 докладов.

Объем и структура работы. Работа изложена на 126 страницах, содержит 11 рисунков и 9 таблиц. Состоит из введения, 4 глав, выводов и списка литературы из 226 наименований, 2 приложений. Первая глава диссертации посвящена литературному обзору о нахождении в природе 2-Оацетиларилгликозидов, защиты гидроксильных методах групп В арилгликозидах, а также методов гликозилирования для получения промежуточных продуктов. Вторая глава посвящена кинетическому и термодинамическому исследованию кислотно-катализируемого алкоголиза для селективного удаления ацетильных групп в арилгликозидах С использованием как экспериментальных методов, так и квантово-химических расчетов, в третьей главе описывается применение кислотно-катализируемого алкоголиза в синтезе строительных блоков для получения олигосахаридов и природных арилгликозидов. Четвертая глава посвящена описанию экспериментальной части работы.

Работа выполнена в Научно-образовательном центре им. Н.М.Кижнера Томского Политехнического университета. Работа поддержана проектами РФФИ № 18-33-00365 мол_а, РНФ №. 16-13-10244 и ВИУ - НОЦ Н.М. Кижнера - 213/2018.

благодарность Автор выражает искреннюю К.Х.Н., старшему преподавателю Е.В. Степановой (Томский Политехнический университет) за всестороннюю помощь и постоянное внимание к работе. Отдельную благодарность, автор выражает д.х.н., ведущему научному сотруднику Л.О. Кононову (лаборатория химии углеводов им. Н.К. Кочеткова Института органической химии им. Н.Д. Зелинского РАН) за возможность проведения отдельных исследований диссертационной работы, а также обсуждения этих результатов. Автор выражает признательность к.ф.-м.н., доценту Валиеву Р. Р. (кафедра оптики и спектроскопии физического факультета Национального исследовательского Томского государственного университета) за ценные консультации и помощь в проведении квантово-химических исследований.

1. 2-*О*-Ацетиларилгликозиды. Методы синтеза. Литературный обзор

1.1 2-О-Ацетиларилгликозиды. Нахождение в природе и биологическая активность

Арилгликозиды являются одними из наиболее распространенных вторичных метаболитов растений. Они играют важную роль в развитии растений и их взаимодействии с другими организмами, в частности, в защите растений от микробов, насекомых и травоядных животных [5]. В настоящее время проведено большое количество исследований, доказывающих противопаразитарную, противоопухолевую, противовирусную активность фенолгликозидов [6, 7]. Помимо этого, в природе встречаются частично Многие ацетилированные арилгликозиды. природные арилгликозиды содержат одну ацетильную группу во втором положении глюкозного фрагмента. 2-О-ацетил арилгликозиды представляют отдельный интерес для фармакологии, поскольку они имеют биологическую активность, отличную от дезацетилированных соединений с тем же скелетом [8, 9].

В растительном мире достаточно часто встречаются 2-*О*ацетиларилгликозиды. Первые 2-*О*-ацетиларилгликозиды были обнаружены еще в середине XX столетия, например, в молодых листьях груши был найден 2-*О*-ацетиларбутин [10].

В растении Salix lasiandra (семейство Salicaceae), помимо основного компонентна, саликортина, встречаются и его ацетильные производные: 2-*O*-ацетилсаликортин и 2-*O*-ацетилсалицин [11-14]. Также данный тип ацетилированых соединений был обнаружен в растениях вида *Populus Tremula* [15, 16]. В пределах растений семейства Salicaceae 2-*O*-ацетиларилгликозиды применяются в качестве таксономических маркеров [12]. В листьях растений семейства *Pear* обнаружен 2-*O*-ацетиларбутин, в экстракте которого в зависимости от метода выделения найдены другие ацетильные производные

арбутина. Данное разнообразие соединений моноацетиларбутина объясняется способностью миграции ацетила 2→3→4→6 [17].

При выделении гликозидов с 2-О-ацетильной группой из соединений семейства Salicaceae было замечено, что при высоких значениях pH (выше 5.5) наблюдается содержания снижение данных продуктов В связи с щелочной нестабильностью моноацетов В среде [1]. Например, В (Ива необработанных S. Pentandra пятитычинковая) 2-Олистьях ацетилсаликортин был обнаружен в превалирующем количестве, в то время как в гомогенате измельченных листьев при любом значении *pH* данное соединение не фиксировалось. На основании этого можно предположить, что 2-О-ацетилпроизводные арилгликозидов в целом вносят существенный вклад в биологическую активность растительного сырья.

В настоящее время 2-*O*-ацетилгликозиды все больше привлекают исследователей, так, например, исследование метаболизма 2-*O*-ацетилсалицина и 2-*O*-ацетилсаликортина при применении человеческого фермента β-глюкозидазы, показало, что 2-*O*-ацетилгликозиды не разлагаются этим ферментом [18]. Согласно исследованиям, китайских ученных Н. Янга и коллег [19] 2-*O*-ацетилсаликортин продемонстрировал высокий потенциал в качестве активного компонента, подавляющего когнитивные расстройства организма.

Содержание 2-*О*-ацетилгликозидов в природном сырье зависит от таких факторов как сезон сбора, разновидность растения, места сбора [20], гендерной принадлежности растения [21], условий и методов сушки сырья [22]. При наличии соседней свободной ОН группы ацильная группа может мигрировать в это положение в основных условиях. Такая миграция имеет место во всех положениях, кроме С6 в гексозах (нет возможности дальнейшей миграции) [9], поэтому при выделении из растительного сырья существленное влияние на качественный и количественный состав оказывает подбор условий выделения. Получение моноацетилгликозидов из природного сырья представляет собой очень сложный и трудоемкий процесс, не дающий полной гарантии выделения необходимого компонента с достаточными выходами. Также при экстракции из природного сырья 2-*O*-ацетилгликозидов в зависимости от условий может происходить миграция единственной ацетильной группы и это существенно снижает выход ценного 2-*O*-ацетата [17]. Прежде всего, сложность заключается в том, что все лекарственные растения имеют очень сложный химический состав и содержание биологически активных компонентов в них колеблется. По этим причинам поиск синтетических путей получения этих соединений весьма актуален.

Важно отметить, что получение 2-*O*-ацетилгликозидов прямым ацилированием незащищенного углевода невозможно, так как в этом случае образуются 6-*O*-ацильные производные [2, 23, 24].

В литературе описаны немногочисленные попытки синтеза 2-*О*ацетилгликозидов и все они многостадийны. Так, Шао, С и коллегами предложен синтетический путь получения 2-*О*-ацетилсалицина, включающий 5 стадий [3]. Также в литературных источниках упоминается пример синтеза 2-*О*- ацетилгалактозида, предпринятый с целью получения строительного блока для олигосахаридов. Предложенная схема синтеза целевого строительного блока включает 8 стадий [4].

Таким образом, 2-*O*-ацетилгликозиды представляют собой интересный и малоизученный класс соединений. Помимо этого, 2-*O*-ацетилгликозиды могут быть использованы в качестве строительного блока для построения более сложных углеводных структур, например, олигосахаридов с $1 \rightarrow 2$ и $1 \rightarrow 3$ гликозидными связями, которые представляют собой важный класс природных веществ с обширнейшим спектром фармацевтических и биологических свойств, однако малая доступность 2-*O*-ацетилгликозидов не позволяет реализовать эти возможности.

1.2 Методы защиты гидроксильных групп углеводов для получения строительных блоков

Защитные группы используются для временной защиты функциональных групп углеводов и способны влиять на стереохимические результаты [25]. Защитные группы в химии углеводов часто используются для стереоселективного создания гликозидной связи, как для относительно простых арил- и алкилгликозидов [26], так и для более сложных олигосахаридов [27]. Помимо этого, защитные группы также могут повысить растворимость и упростить очистку соединения.

Наиболее широко применимы для этих целей ацетаты, бензоаты, бензиловые эфиры и некоторые ацетали, силиловые эфиры, которые имеют достаточно высокую стабильность и в то же время легко вводятся и снимаются. Таким образом, эти защитные группы в значительной степени являются основой для всех групповых стратегий защиты в углеводном синтезе.

В олигосахаридном синтезе заместитель углерода, при С-2, оказывает существенное влияние на стереоселективность реакции гликозилирования. Поэтому выбор защитной группы для О-2 в синтезе олигосахаридов является решающим для создания 1,2-*транс*- или 1,2-*цис*-гликозидных связей [28]. Более того, некоторые экспериментальные данные [29-32] указывают на наличие дальнего действия 6-*O*-ацильной или карбамоильной группы (схема 1), способствующих образованию преимущественно α-гликозидов [33, 34].

Схема 1. Селективное гликозилирование гликопиранозил фторидом, имеющим диэтилтиокарбамоильную группу

Далее мы рассмотрим эти защитные группы более подробно.

1.2.1 Ацильные группы (сложноэфирная защита)

В настоящее время в химии углеводов широко используется сложноэфирная защита, например, ацетаты, хлорацетаты, ди- и трихлорацетаты, бензоаты, левулинаты и пивалоаты (рис. 1) [35].

Рисунок 1. Примеры ацильных защитных групп

Данные защитные группы обычно используют для обеспечия 1,2-*транс*селективности реакции гликозилирования.

Эти группы легко вводятся в относительно мягких кислотных либо нейтральных условиях. Эти сложные эфиры широко применимы в химии углеводов, хотя они и склоны к миграции [36].

Довольно распространенным методом для снятия сложноэфирной группы является метод Земплена [37], который представляет собой омыление сложноэфирной группы метилатом натрия в метаноле. Помимо этого, известны методы снятия сложноэфирной группы путем обработки стехиометрическим количеством гидроксида калия в этаноле [38], амином в водном спирте [39] или кислотно катализируемым гидролизом [40, 41], но при этом может подвергнуться гидролизу и сама гликозидная связь.

1.2.1.1 Ацетаты

Ацетильную защиту углеводных гидроксильных групп можно вводить при использовании ангидрида или галогенангидридов уксусной кислоты в пиридине, который, как катализирует эту реакцию, так и нейтрализует высвобожденную кислоту [42]. Также известны методы ацетилирования углеводов уксусным ангидридом с применением хлорида цинка (II) [43]. С кислотным катализатором HClO₄ реакция ацетилирования протекает согласно термодинамическому контролю и, в результате, преобладает более термодинамически стабильный α -аномер. Добавка ацетата натрия способствует быстрой аномеризации исходного углевода и ацетилированию более реакционноспособных аномеров с образованием β –изомеров (схема 2) [44].

Схема 2. Общая схема введения ацетильной защиты в зависимости от условий

Добавка *I*₂, способствует переэрерификации бензильной группы в ацетильную по 6 положению (схема 3) [45]:

Схема 3. Региоселективная трансформация бензила в ацетат по 6 положению

В настоящее время в химии углеводов существует ряд методов, позволяющих эффективно снимать ацетильные группы, прежде всего выбор метода зависит от структуры самого углеводного соединения.

Достаточно часто для удаления ацетильных групп в гликозидах и олигосахаридах применяется метод Земплена, который заключается в обработке метилатом натрия в метиловом спирте (схема 4) [37]:

Схема 4. Удаление ацетильной защиты методом Земплена

Снятие *О*-ацетильной защиты сахаров проводят также с применением метанольного раствора гуанидина / гуанидин нитрата, которые позволяют провести удаление ацетильных групп с высокими выходами [46].

Достаточно широко используется метод дезацетилирования действием аммиака в метиловом спирте, однако при этом возникает необходимость отделения полученного моносахарида от ацетамида [47].

Все эти основно-катализируемые методы являются неселективными, и наряду с гидролизом ацетильных, идет также расщепление любых других сложноэфирных групп. Поэтому, основные методы хорошо применимы в тех случаях, когда необходимо удалить все сложноэфирные защитные группы.

Существуют примеры удаления наиболее реакционноспособных 6-Oацетильных групп в присутствии других ацилокси, основанные на применении кислого катализа, например, системы $H_2SO_4/(CH_3)_2CO$ [48]. Также встречаются некоторые вариации кислых систем в полярных растворителях, например, $HBF_4/MeOH$ [49] и HCl/MeOH [50], но данные методы имеют ряд ограничений, не позволяющих их применять ко всем молекулам. Так, данные реагенты требуют точного соблюдения температуры и времени реакции, в противном случае может расщепиться кислотолабильная гликозидная связь [51]. Кроме того, большинство ацетилированных углеводов обладают низкой растворимостью в полярных растворителях, использующихся в этих реакциях.

Для селективного снятия ацильной защиты в углеводах, в виду низкой полярности ацетатов и высокой полярности продуктов дезацетилирования, необходимо применение амфифильных растворителей, таких как ДМСО, ДМФА, пиридин или диметилацетамид [52], однако, от них довольно трудно избавляться в процессе очистки.

Относительно недавно для селективного ацетилирования и дезацетилирования были предложены различные ферментативные синтезы (схема 5) [53-55].

Схема 5. Селективное ацетилирование и дезацетилирование ферментами и энзимами

Однако, реакции с применением ферментов имеют ряд ограничений, так как многие органические растворители способны дезактивировать сами ферменты, поэтому прежде необходим тщательный подбор растворителей [56]. Чтобы не снизить активность ферментов в органическом растворителе должна присутствовать вода [57]. Дегидратация ферментов также может изменить специфичность самого субстрата [58, 59].

Таким образом, получение селективно защищенных ацетилированых углеводов является довольно сложной, нетривиальной и нерешенной до настоящего времени задачей.

1.2.1.2 Бензоаты

Данную защитную группу вводят такими бензоилирующими агентами как бензоилхлорид в пиридине [60], ангидрид бензойной кислоты с триэтиламином в ДМФА (схема 6) [61], бензонитрил [62].

Схема 6. Общая схема введения бензоильной защиты

В случае галактозидов, возможно селективное бензоилирование в положения *О* -2, *О* -3 и *О*-6 в довольно мягких уловиях (- 30 °C) [24, 63] (схема 7) либо с использованием менее реакционноспособных реагентов, таких как *N*-бензоилимидазол [64] или 1-бензоилоксибензотриазол [65]:

Схема 7. Селективное введение бензоильной защиты по 2,3,6-положению

Бензоильная группа удаляется также, как и ацетильная группа методом Земплена, но часто требует более длительного времени реакции (схема 8) [66]:

Схема 8. Удаление бензоильной защиты методом Земплена

Бензоаты, как и ацетаты, являются отличными защитными группами. Их можно вводить и удалять с высокими выходами в мягких условиях. Однако, данная защитная группа имеет существенные недостатки, связанные с относительно ограниченной стабильностью в основных условиях и тенденцией к миграции [67].

1.2.1.3 Пивалоильная защита

Пивалоильную защитную группу вводят в основном таким ацилирующим агентом как триметилацетилхлорид в пиридине (схема 9) [68].

Схема 9. Введение пивалоильной защиты в углеводах

Из всех сложноэфирных защитных групп, пивалоил наименее склонен к образованию побочных продуктов - ортоэфиров, образующихся путем нуклеофильной атаки диоксоленового атома углерода на аномерный центр [69]. Данная защитная группа является достаточно объёмной и в определенных условиях преимущественно реагирует с наименее стерически затрудненными гидроксильными группами (схема 10) [70]:

Схема 10. Введение пивалоильной защиты в 2 и 6 положения

Известны примеры, в которых пивалоильная группа служит временной защитой при свободных гидроксильных группах и в определенных условиях происходит миграция *Piv*-группы на свободную гидроксильную группу, так, L. Cui с коллегами продемонстрировал возможность миграции *Piv*- группы с *O*-3 на сводную 4-OH группу (схема 11) [71].

Схема 11. Миграция *Piv*-защиты на свободную гидроксильную группу

Значительным недостатком *Piv*-эфира как временной защиты является намного большая стабильность, чем для ацетатов и бензоатов [72]. Чтобы обеспечить расщепление *Piv*-эфира при менее щелочных условиях предпринят ряд попыток заменить данную защиту различными *Piv*- аналогами, представленными на рисунке 2 [69, 73].

Рисунок 2. Пивалоильные аналоги

1.2.1.4 Хлорацетаты

Хлорацетаты довольно широко используются как временная защитная группа в химии углеводов. Данная защитная группа ортоганально совместима с другими ацилзащитными группами, такими как ацетил, бензоил, пивалоил [74].

Хлорацетаты довольно легко вводятся при использовании хлоруксусного ангидрида в пиридине или хлоруксусного ангидрида с прменением 2,4,6-колидина (схема 12) [75], они достаточно стабильны и выдерживают многие синтетические превращения.

Схема 12. Введение хлорацетатов хлоруксусным ангидридом с 2,4,6-колидином

Хлорацетатная группа может быть селективно удалена при применении тиомочевины (схема 13) [76], HDTC [77] или DABCO [78], боргидрида натрия NaBH₄ [79].

Схема 13. Снятие хлорацетатов с применением тиомочевины

Данная защитная группа имеет свои недостатки и прежде всего это связано с методами снятия хлорацетильной группы. Например, при использовании тиомочевины требуются относительно суровые условия и длительное время реакции, в некоторых случаях это приводит к миграции ацетильных групп [80], применение HDTC требует его использования сразу после свежего приготовления, DABCO ограничивается реакционной средой в качестве которой могут использоваться только спиртовые растворители [81].

1.2.2 Простые эфиры

Часто, помимо сложноэфирной защиты используется простая эфирная защита для гидроксильных групп углевода, которая устойчива как к кислотным, так и к основным условиям (за исключением аллильной группы). Для эффективной защиты олиго- и полисахаридов часто используют триметилсилильные (TMS) метиловые эфиры, особенно И ДЛЯ газохроматографических целей. Для синтетических целей широкое применение нашли бензиловые эфиры (PhCH2-O-R). Они устойчивы к кислотам и основаниям, и легко удаляются в нейтральных условиях путем гидрогенолиза на палладиевом катализаторе [82].

1.2.2.1 Бензиловые эфиры

Бензильная (*Bn*) защитная группа широко используется в синтезе сложных олигосахаридов и гликоконъюгатов. Для их образования используют различные подходы (схема 14):

Схема 14. Методы введения бензильной защиты в углеводы

Одним из наиболее удобных и часто используемых методов введения бензильной защиты является введение бензилирующего реагента с ДМФА NaHCO₃[83], использованием И также применяется арилметилгалогенид и *NaH* [84] или *Ag*₂*O* [85, 86]. В качестве применяют бензилтрихлорацетимидат бензилирующего реагента при кислотном катализе [87-90].

Помимо этих классических активаторов для бензилирования, таких как NaH, Ag₂O также применяется TfOH в нейтральных условиях [91] или TMSOTf в кислых условиях [92].

Бензиловые эфиры обычно снимают с помощью каталитического гидрогенолиза используя *Pd*-катализатор [93]. Но данный метод не применим в случае, когда углевод содержит функциональные группы, которые могут отравлять катализатор, например, тио- и аминогруппы.

Помимо этого, существует целый ряд различных бензиловых эфиров с различными заместителями, удаляющимися в разных условиях, которые можно применить к определенным лабильным субстрантам (Схема 15).

Схема 15. Снятие бензильной защиты в углеводах

Таким образом, бензил - достаточно надежная защитная группа, так как она устойчива к действию сильных кислот и оснований.

Существенным недостатком данной защитной группы, является ее ограниченность, в частности для получения неогликоконьюгатов. Так, известны методы синтеза 1,2-*цис*-арабинофуранозидов (β-гликозидов) основаны на использовании *О*-бензил защитных групп [94-97], которые трудно удалить в присутствии азидогруппы в агликоне [98], поэтому, в последнее время в химии углеводов предпочтение отдают «безбензильному» подходу [99, 100].

1.2.2.2 Аллиловые эфиры

Аллиловая защитная группа вводится с использованием аллилбромида или эфиров аллилового спирта [101]. Данная защита легко вводится, имеет умеренную стабильность и снимается в мягких условиях [72, 102].

Аллиловая группа может применятся для защиты всех гидроксильных групп углевода. Введение данной группы осуществляется как в основных условиях при помощи аллилбромида и BaO/Ba(OH)₂ [103, 104], так и в кислых условиях при использовании аллилтрихлорацетимидата с каталитическим количеством TfOH [105, 106] и даже в нейтральных условиях с применением аллилэтилкарбоната в качестве аллилирующего реагента в присутствии каталитического количества катализатора Pd (0) (схема 16) [107, 108].

Схема 16. Общая схема введения аллильной защиты

Большинство методов для снятия аллилового эфира, изначально основано на изомеризации пропенил-2 в пропенил-1 [109, 110], которые представляют собой двухэтапные процедуры. Для этих целей применяется *трет*-бутоксид калия/ДМСО или катализатор Уилкинсона [$Rh(PPh_3)_3Cl$] и 1,4-диазабицикло [2.2.2] октан (DABCO) [110, 111] с последующим кислотным гидролизом [105, 112] или окислением [113-115]. Существуют и одноэтапные методы снятия алильной защиты, основанные на применение *Pd* (0) или *Ni* (0) в сочетании с *K*₂*CO*₃ в *MeOH* [116-118].

Успешное применение аллильной группы в углеводной химии объясняется главным образом ее относительной стабильностью вовремя гликозилирования или удалении других защитных групп [119].

Существенным недостатком данной защитной группы, как временной защиты, является сложность снятия, включающая изомеризацию аллилового эфира с последующим кислотным гидролизом.

1.2.2.3 Кремний содержащие эфиры

Силиловые эфиры, такие как триметилсилил (TMS), триэтилсилил (TES), триизопропилсилил (TIPS), *трет*-бутилдиметилсилил (TBS) и *трет*-бутилдифенилсилил (TBDPS) часто используются в углеводной химии из-за их способности стабилизировать конформацию углевода и влиять на стереоселективность реакции гликозилирования [73].

Эти группы обычно вводят в молекулу путем обработки соответствующим силилгалогенидом или трифлатом и основанием, таким как *Et*₃*N*, *Py*, 2,6-лутидин или имидазол [120, 121].

Снятие данной защиты осуществляется путем кислотного гидролиза, но для более кислотоустойчивого TIPS и TBDPS, применяются сильные кислоты, такие как CH₃COOH, TsOH, HF в пиридине, которые также могут расщепить и саму гликозидную связь (схема 17) [122].

Схема 17. Общая схема образования и расщепления силиловых эфиров

Устойчивость силиловых эфиров связана с электронным и стерическим эффектом заместителей атома кремния. Алкильные заместители атома кремния повышают устойчивость силильных групп к кислоте, так в ряду силильных эфиров стабильность увеличивается следующим образом: TMS <TES <TBS <TIPS <TBDPS, в основных условиях это закономерность несколько другая TMS < TES < TBS ~ TBDPS< TIPS [122, 123]. Также эта группа склона к 1,2 и 1,3 – миграции [124, 125].

1.2.3 Ацетали и кетали

В химии углеводов довольно часто используются циклические ацетали и кетали, особенность которых заключается в одновременной защите двух соседних гидроксильных групп [126].

Наиболее важными ацетальными группами для защиты углеводов являются изопропилиденовая и бензилиденовая группы. Бензилиденовую группу обычно вводят обработкой углевода бензальдегидом в кислых условиях (схема 18) [127, 128] или с *ZnCl*₂, позволяющим получать бензилиден - производные с хорошими выходами.

Также достаточно часто для введения бензилиденовой группы применяется диметилацеталь с добавлением TsOH (схема 18) [129]. Существенным недостатком ацетальной защиты, например, такой как изопропилиден является его ограничение для применения к определенным углеводам. Так, данная защитная группа может легко защищать 4,6положение галактозы.

Схема 18. Ацетальная и кетальная защита диолов.

Ацетали очень устойчивы к действию оснований. Данную ацетальную защитную группу часто можно выборочно удалять кислотами без нарушения гликозидной связи [128].

Данная защитная группа может быть снята в кислых условиях (схема 19) [130-133]. В последние годы разработан ряд методов для удаления бензилидена с образованием бензилового эфира [134].

Схема 19. Восстановительное превращение 4,6-бензилидена в бензил

1.2.4 Аномерные защитные группы

Аномерный центр может быть защищен как ацеталь, алкил или аллил. Эти гликозиды могут быть получены классической реакцией Фишера, которая заключался в обработке спиртового раствора углевода *HCl* (схема 20) [135].

Схема 20. Ацетальная защита аномерного гидроксила

Бензильная защитная группа при аномерном центре широко используется для временной защиты гликозильного центра, и, в отличие от метильной, является легко удаляемой [136].

Специфическими аномерными защитными группами являются 2триметилсилилэтил (TMSE) [137] и *п*-метоксифенил (схема 21) [138].

Схема 21. Введение п-метоксифенильной защиты

Описанные аномерные защитные группы легко удаляются С освобождение полуацетального гидроксила сахара, что делает возможным введение хороших уходящих групп на более поздних этапах олигосахаридного Так, TMSE удаляется обработкой BF_3 синтеза. легко Et_2O , рметоксифенильная (PMP) группа - церий аммоний нитратом (CAN) [139].

Традиционные гликозильные доноры, такие как гликозилгалогениды, являются довольно неустойчивыми, поэтому часто их преобразуют в другие группы, выдерживающими групповые манипуляции и превращения углеводного производного в гликозильный донор, который может быть непосредственно активирован при гликозилировании с получением различных олигосахаридов.

Помимо этого, для защиты аномерного центра используется 4-(2хлорэтокси) фенильная (СЕР) (схема 22) [140] или 4- (2-азидоэтокси) фенильная (АЕР) группы [141].

Схема 22. Введение СЕР защиты в аномерное положение

При создании олигосахаридов, очень важна правильность подбора защиты гидроксильной группы при аномерном центре. Для этих целей существуют и другие пре-спейсерные защитные группы, примером таких групп является 3-Бром-2- (бромметил) пропил (дибромизобутил или DIB) гликозиды [142].

1.3 Особенности О-гликозидной связи. Методы гликозилирования

О-гликозидная связь является основным типом связи для важнейших природных углеводных соединений. Относительная легкость образования и расщепления гликозидных связей обеспечивает метаболическую подвижность соответствующих соединений в живой клетке [143]. *О*-гликозидная связь представляет собой частный случай ацетальной связи и не отличается от последней по своим фундаментальным свойствам. Соединения с гликозидной связью устойчивы в слабощелочных растворах, но легко гидролизуются в кислой среде (схема 23) [144].

Схема 23. Общая схема гликозилирования с кислотным катализатором

Полуацетальный гидроксил углевода способен подвергаться очень активному нуклеофильному замещению. Высокая активность ОН – группы при аномерном положении в полуацеталях или OR в ацеталях при замещении на нуклеофил (в кислотном катализе) связана с возможностью образования относительно устойчивых карбений-оксониевых ионов *i* (схема 20), стабилизированных за счет сопряжения положительного зарядра углерода с *p*орбиталями соседнего атома кислорода.

О-гликозиды вступают в реакции нуклеофильного замещения при гликозидном центре с сохранением циклической структуры [145]. На этой особенности и строятся современные подходы к гликозидному синтезу. Для протекания этой реакции необходимо наличие хорошо уходящей группы при гликозидном центре (схема 24).

Схема 24. Общая схема нуклеофильного замещения, где x – анионная уходящая группа, z = H, Na, Ph₃C и др

Гликозидная связь всех типов связана с изомерией циклов и хиральностью гликозидного центра. Для многих углеводов этот центр находится при C1 углеродном атоме, что приводит к двум различным конфигурациям α или β, которая определяет конфигурацию образующейся гликозидной связи (схема 25).

Схема 25. Общая схема образования гликозидной связи конфигурации α или β

В настоящее время выявлено, что на реакцию гликозилирования и стереоселективность в целом существенно могут влиять следующие факторы: природа уходящей группы [146-148], температура [149, 150], давление [151], промоторы [152], а также растворитель [153, 154], соучаствующие группы [155].

1.3.1 Метод Фишера

Метод гликозилирования по Фишеру применим для получения простых алкильных и арильных гликозидов. Реакция гликозилирования протекает в присутствии минеральных кислот (H₂SO₄, HClO₄) которая выступает в качестве катализатора и со спиртом как растворителем. Основным недостатком этой реакции является длительное время реакции, а также равновесное образование α - и β – аномеров пираноз и фураноз (схема 26) [156].

Схема 26. Гликозилирование по Фишеру

Гексозы, при непродолжительном времени реакции обычно приводят к фуранозной форме, а более продолжительное время реакции приводит к пиранозной форме. Помимо этого, при длительном времени реакции образуется наиболее термодинамически стабильный гликозид, который является, как правило, α-аномером [157].

Таким образом, метод Фишера представляет собой общий метод превращения сахаров в смеси изомерных гликозидов, который во многих частных случаях может эффективно применяться для синтеза *О*-гликозидов, например, *пер*-ацетиларилгликозиды [158]. Основная область применения метода Фишера – синтез гликозидов низших спиртов.

1.3.2 Метод Кенигса и Кнорра

Этот метод основан на использовании гликозилгалогенидов (бромидов, хлоридов) в качестве гликозилдоноров. Данная реакция представляет собой конденсацию гликозилгалогенидов со спиртами, катализируемую карбонатом или оксидом серебра в среде неполярного растворителя (CHC1₃, CH₂C1₂, нитрометан, ацетонитрил и др.) при комнатной или немного повышенной температуре [159]. Активация проходит одинаково как для α – так и для β – конфигураций углеводного фрагмента. Аномерный бромид дает комплекс с катализатором, что делает его более реакционноспособным к нуклеофильной атаке [160].

Схема 27. Гликозилирование по методу Кенигса и Кнорра

Наличие защиты ацильного типа приводит преимущественно к 1,2 – *транс-О*-гликозидам (Схема 27) за счет образовния промежуточных ортоэфиров **III**. Ключевой стадией гликозилирования по предложенному механизму является образование циклического ацилоксониевого иона **II** из первоначального оксикарбониевого иона **I** при участии ацильной группы при втором атоме углерода С-2 [161].

На основе реакции Кёнигса – Кнорра были разработаны модифицированные методы образования гликозидной связи:

1) Метод Гельфериха. Этот метод основан на применении в качестве катализатора $Hg(COOCH_3)_2$ или $Hg(CN)_2$ в гомогенной среде [162]. Гликозилирование по данному методу приводит к образованию смеси 1,2-*цис*-и 1,2-*транс*-гликозидов;

Модификация Шредера. Особенность данной модификации заключается в использовании в качестве катализатора смеси *HgO* и *HgBr*₂
[163].

Одним из альтернативных методов гликозилирования по Кенигсу-Кнорру является гликозилирование трихлорацетимидом. Данный метод был предложен в 1980 году Шмидтом [164].

Термодинамически более выгодные α-трихлорацетимидаты глюкозы и галактозы, которые легко получают обработкой полуацеталей трихлорацетонитрилом в присутствии оснований с высокими выходами [165].

1.3.3 Гликозилирование по Михаэлю

Одной из первых работ по гликозилированию является работа Михаэля [166], в которой растворы α-D-глюкопиранозилхлорида и фенолята натрия в этаноле превращаются в фенолглюкозид β-конфигурации.

Реакции по типу Михаэля протекают по S_N2 механизму с обращением конфигурации гликозидного центра (схема 28).

Схема 28. Гликозилирование по Михаэлю

Было выявлено, что более высокие выходы глюкозидов наблюдаются в случае более высоких начальных концентраций реагентов, поэтому использовался избыток водного раствора *NaOH*. Довольно часто сильное основание приводит к низким выходам продукта, поэтому в этом случае применяют карбонат калия в безводном ацетоне [167].

1.3.4 Межфазное гликозирование

Многие методы гликозилирования не не обеспечивают высоких выходов продуктов, поэтому данные методики постоянно совершенствуются.

В настоящее время широко используются методы межфазного гликозилирования. Применение данного метода обусловлено легкостью транспорта в органическую фазу анионного агликона с помощью межфазного катализатора. Было предложено *О*-гликозилирование в двухфазной системе (CH₂Cl₂/H₂O) с использованием тетрабутиламмоний бромида (ТБАБ) в качестве межфазного катализатора и *NaOH* в качестве основного катализатора, выходы гликозидов по данной методике составляют 53-73% (схема 29) [168].

Схема 29. Межфазное гликозирование при помощи ТБАБ

Используются также такие межфазовые катализаторы, как краун-эфиры при применении двухфазной системы «твердый *K*₂*CO*₃ - ацетонитрил», что позволяет селективно и с хорошими выходами трансформировать замещенные фенолы и некоторые гетероциклы в соответствующие гликозидные соединения [169], четвертичные аммонийные соли, линейные полиэфиры – олиго-полиэтиленгликоли и их простые эфиры [170].

1.3.5 Катализ кислотами Льюиса

Достаточно широко используются методы создания *О*-гликозидной связи с применением различных кислот Льюиса. Первые успешные попытки гликозилирования с применением кислот Льюиса были предприняты Гельферхом, который в качестве катализатора использовал *TsOH* или *ZnC1*² для гликозилирования фенолов [171]. На сегоднийшний день спектр применяемых кислот Люьиса достаточно разнообразен, так, например, используется *SnCl*⁴ (Лемье, Ханесян [172]) *FeCl*³ (Кисо и Андерсон [173]) *BF*₃·*Et*₂*O* (Магнуссон [174]) *TMSOTf* (Огава и др. [175]), *TrC1O*₄ (Мукоями и др. [176]) и др.

Схема 30. Гликозилирование фенол с применением кислот Льюиса.

Для получения гликозидов по данному методу в качестве гликозилдоноров применяется гликозилгалогениды, тиогликозиды, имидаты, *nep*-ацетаты и др [177].

Данный метод гликозилирования позволяет получать фенолгликозиды с хорошим выходом и стереоселективностью. Помимо этого, подбор определенного катализатора может стереоселективно направлять реакцию гликозилирования. Например, Шмидт с коллегами, выявили влияние на селективность гликозилирования условий реакции, так использование *TMSOTf* как промотора предпочтительно дает α -гликозид, тогда как активация α -имидата посредством BF₃·Et₂O обеспечивает β -селективность (схема 31) [178].

Схема 31. Влияние условий на селективность гликозилирования действием гликозилимидатов

2. Исследование кислотно-катализируемого алкоголиза для селективного удаления ацетильных групп в арилгликозидах

2.1 Исследование факторов, влияющих на реакцию кислотнокатализируемого алкоголиза и получение 2-ацетил арилгликозидов

Для исследования селективности снятия ацетильной защиты гликозидов нами была использована система, содержащая раствор HCl (ρ= 1.18 г/мл), EtOH (96 %) и CHCl₃ в объемном соотношении 1:3:1, предложенная ранее на кафедре биотехнологии и органической химии TПУ [179].

Исследование дезацетилирования *пер*-ацетилированных гликозидов **1-9** (схема 32) проводилось с использованием метода ВЭЖХ. На рис. 3 представлена в качестве примера динамика изменений хроматографический картины реакции *орто*-крезилгликозида **2** через 1 и 8 часов.

Рисунок 3. ВЭЖХ анализ реакционной массы кислотно-катализируемого алкоголиза *орто*-крезилгликозида **2** через 1 и 8 часов

Из рисунка **3** видно, что по истечении 8 часов почти полностью исчезает исходный гликозид **2**, появляется пик полностью дезацетилированного гликозида **2b** с t_{уд}= 8 мин, интенсивный пик t_{уд} = 10.2 мин и малоинтенсивный
пик $t_{y_A} = 9.8$ мин, помимо этого появляются пики при $t_{y_A}=13.0$ и 11.8 мин, которые исчезают со временем. Установлено, что при 8 ч проведения реакции пик с площадью ($t_{y_A} =10.2$ мин) принадлежит целевому 2-*O*-ацетилгликозиду **2а.** Почти во всех случаях, кроме пиков основных продуктов **1а-9а** и **1b-9b**, на хроматограммах наблюдаются малоинтенсивные пики, соответствующие 3-*O*-ацетилгликозидам **1c, 2c, 4c, 6c-9c** (на рис. 3 пик $t_{y_A}=9.8$ мин). Мерой селективности в исследуемом нами процессе дезацетилирования является отношение концентраций, образующихся 2-*O*-ацетилгликозидов **1а-9а** к 3-*O*-ацетилгликозидам **1c-9c** (схема 32). Таким образом, данные ВЭЖХ позволяют проводить мониторинг образования моноацетилированных гликозидов **1а-9а** и полностью дезацетилированных гликозидов **1b-9b** в ходе алкоголиза действием HCl/CHCl₃/EtOH.

Схема 32. Реакция кислотно-катализируемого алкоголиза ацетильных групп *пер*ацетилированных арилгликозидов 1-9 (R представлены в таблице 1).

Следует отметить, что препаративно выделить и идентифицировать 3-*О*моноацетил гликозиды нам удалось только для метоксифенилгликозидов 7с и 8c. В остальных случаях в виду малого их количества препаративное выделение не проводилось.

Таблица 🛾	I. Результаты	кислотно-катализируемого	алкоголиза	ацетилированных
гликозидов 1-9 и	синтеза 2-О-ац	етилгликозидов 1а-9а.		

	Исходное соединение/ 2- <i>О</i> - ацетильный	R	t _{уд} (ВЭЖХ)2- О-ацетильного продукта, мин	Селекти вность ^а	Время реакции, ч	Препарат ивный выход 2- <i>О</i> - ацетильно	t _{пл} 2- <i>О</i> - ацетиль ного продукт а, ⁰ С
	продукт		1.5			го продукта, %	
	1	2	3	4	5	6	7
1	1/1a	Н	12.1 (11.2)	98:2	6	45	128-129
2	2/2a	o-CH ₃	10.2 (9.2)	96:4	12	55	159-161
3	3/3a	o-CH ₃ (β- D-Galp) ^b	10.2 (-)	100:0	11	35	161-162
4	4/4a	п-СН3	10.2 (9.1)	94:6	10	25	144-145
5	5/5a	0-NO ₂ ,	9.3 (-)	100:0	12	22	164-165
6	6/6a	п-NO2	9.5 (8.5)	92:8	10	19	172-173
7	7/7a	o-OMe,	8.8 (7.8)	85:15	12	45	149-150
8	8/8a	п-ОМе	9.1(8.5)	80:20	8	21	184-185
9	9/9a	o-CH ₃ , (α-D- Glcp) ^c	9.9 (8.8) ^e	60:30	8 ^d	-	-

а) Отношение площади пика (ВЭЖХ) гликозида 1а-9а к 1с-9с, соответственно

b) В качестве исходного соединения использовали 2-метилфенил 2,3,4,6-тетра-Оацетил-β-D-галактопиранозид

с) В качестве исходного соединения использовали 2-метилфенил 2,3,4,6-тетра-Оацетил-α-D-глюкопиранозид

d) Время максимальной концентрации моноацетилгликозида, определяемое ВЭЖХ е) Время удерживания 3-О-гликозидов 1с, 2с, 4с, 6с-9с.

Структура полученных 2-*O*-ацетилгликозидов **1а-8а**, а также изомерных моноацетатов **7c** и **8c** была доказана с помощью ЯМР-спектроскопии ¹H, ¹³C в растворах CD₃OD или DMSO-d₆ на приборах с частотой 300, 400 или 500 МГц. Интерпретация сигналов в спектрах ЯМР проводились с использованием методов 2D-ЯМР спектроскопии (COSY, HSQC, HMBC). Помимо этого, для всех 2-*O*-ацетилгликозидов **1а-8а**, а также изомерных моноацетатов **7c** и **8c**, были получены масс-спектры высокого разрешения (ионизация

электрораспылением, HR-ESI-MS). В качестве примера на рис. 4 приводится фрагмент спектра ЯМР НМВС для соединения **2а.**

Рисунок 4. Фрагмент ЯМР НМВС (DMSO-d6) соединения 2а. Обведен кросс-пик, соответствующий корреляции δС_{C=O} 169.8/ δ_{H-2} 4.82 м.д.

Наличие ацетильной группы в соединениии **2a** идентифицируется в ЯМР ¹Н наличием сигнала δ 2.04 м.д., с интегральной интенсивностью 3H, что соответствует одной ацетильной группе. В ЯМР ¹³С наблюдается сигнал δ 20.0 м.д, соотвествующий CH₃ ацетильной группы, а также сигнал δ 169.8 м.д., соответствущий карбонильному углероду ацетильной группы (C=O). В спектре ЯМР НМВС соединения **2a** наблюдается корреляция карбонильного углерода от ацетильной группы с H-2 $\delta C_{C=O}$ 169.8/ δ_{H-2} 4.82 м.д. (на рисунке 4 обвиденный кросс-пик).

данные 1) позволяют Полученные (табл. определить влияние углеводной части и агликона в гликозидах 1-9 на 2-О-селективность (селективное образование 2-О-моноацетата) изученных реакций алкоголиза. В соединений частности, ДЛЯ с одинаковым агликоном, но разными образования 2-0углеводными фрагментами селективность

ацетиларилгликозида уменьшается в следующем порядке: β -D-галактозид (**3a**)> β -D-глюкозид (**2a**)>> α -D-глюкозид (**9a**). Действительно, в случае гликозида **9** методом ВЭЖХ в продуктах алкоголиза было обнаружено несколько пиков изомерных моноацетильных продуктов. При этом, нам не удалось препаративно выделить индивидуальные продукты. Таким образом, для α -гликозида **9** селективность дезацетилирования резко снижается.

Строение агликона, как мы показали, также влияет в определенной степени на селективность (табл. 1). В случае сильной электронодонорной метокси группы в фенильном ядре (соединения **7**, **8**) селективность алкоголиза резко падает. Наличие в фенильном ядре менее электронодонорной метильной группы (соединения **2**, **4**) также вызывает снижение селективности, но в существенно меньшей степени. С другой стороны, сильный электроноакцептор NO₂ (соединение **5**) в *орто*-положении бензольного кольца резко увеличивает селективность. Однако, та же нитрогруппа в *пара*-положении (соединение **6**) не приводит к увеличению селективности.

Таким образом, можно сделать вывод, что реакция кислотнокатализированного этанолиза с селективным образованием 2-*O*моноацетилированных продуктов может быть применима только для β-глюкои галактопираноз. Строение же агликона имеет не существенное значение, и даже при наличии незамещенного фенола в качестве агликона мы наблюдаем наименьшую реакционную спопособность 2-*O*-ацетильной группы.

Кроме определения влияния строения гликозидов на реакцию алкоголиза, мы также исследовали влияние внешних факторов на эту реакцию на примере *орто*-крезилгликозида **2** (мониторинг ВЭЖХ).

1. Температура реакции. Температура менее 30 °C (20 °C) замедляет скорость реакции (полная конверсия субстрата 2 достигается за 26 ч), но не влияет на селективность. Температура 40 °C и выше увеличивает скорость реакции (полная конверсия субстрата 2 достигается за 6 ч), но при этом преимущественно образуется полностью дезацетилированный продукт 1b.

Таким образом, температура 30 °С является оптимальной для получения 2-*О*ацетилкрезилглюкозида **2а**.

2. Состав растворителя. Изменение соотношения этанол-хлороформ (от 1:1 и до 2:1) приводит к потере гомогенности с образованием либо двух несмешивающихся фаз, либо кристаллизации гликозида. Таким образом, изначальное соотношение 3:1 является оптимальным и позволяет растворять как исходный *пер*-ацетилированный гликозид, так и продукты дезацетилирования.

3. Количество (концентрация) HCl. 36 % HCl с общей концентрацией в реакционной массе 2 моль / л. Снижение концентрации HCl приводит к снижению скорости реакции и, соответственно, более медленному накоплению 2-О-ацетата 2а. Более высокие концентрации HCl (3 моль/л) приводят к более высоким скоростям реакции (полная конверсия субстрата 2 достигается за 5 ч) и с преимущественным образованием полностью дезацетилированного продукта 1b, также в этом случае возможно расщепление самой гликозидной связи.

Таким образом, показанные выше условия протекания реакции дезацетилирования являются оптимальными, позволяющими получать помимо полностью дезацетилированного арилгликозида и селективно защищенный 2-*O*-ацетиларилгликозид в зависимости от строения агликона в *nep*-ацетилгликозидах.

2.2 Определение кинетики реакции алкоголиза ацетильной группы 2-*О*-ацетиларилгликозидов

Определение константы скорости реакции кислотно-катализируемого алкоголиза ацетильной группы 2-*O*-ацетиларилгликозидов **1а-8а** проводилось с целью определения реакционной способности данных соединений, а также выяснения причин указанной выше селективности дезацетилирования. Далее, на примере гликозида **1а** (схема 33) представлен ход вычислений и результаты определения константы скорости для реакции алкоголиза 2-*О*-ацетильной группы (таблица 2).

Схема 33. Реакция алкоголиза гликозида 1а

Для этого строилась калибровочная кривая (зависимость площади пика от концентрации) для гликозида 1а в концентрациях 0.25, 0.5 и 1 мг / мл с использованием ВЭЖХ (рис. 4 А). Реакцию осуществляли следующим образом: заполняли 0.5 мл ампулы с навинчивающейся крышкой 2-Оацетилглюкозидом 1a (5 мг, 16.7 мкмоль) и смесью EtOH (28.5 мкл), CHCl₃ (12.5 мкл) и HCl 36 % (4.5 мкл, 45 мкмоль) с общей концентрацией HCl 1 М. Ампулу термостатировали при 30 °C. В определенные промежутки времени отбирали 2 мкл аликвоты, гасили смесью ацетонитрил-вода 1: 1 (200 мкл), анализировали с помощью ВЭЖХ три раза и рассчитывали среднюю площадь пика. Концентрации соединения 1а в реакционной смеси были найдены в соответствии с калибровочной кривой. Затем были построены графики зависимости концентрации 1a (C) от времени (t) (рис. 4 B) и ln (C) от t (рис. 4 C). Константа скорости реакции k оценивалась по наклону последней прямой (рис.4 С), предполагая, что реакция кислотно-катализируемого алкоголиза по гликозиду 1а является реакцией псевдопервого порядка (т.к. концентрация этанола в разы превышает концентрацию гликозида 1а).

Для построения графика зависимости *ln* (С) от t и расчета константы скорости дезацетилирования ацетильной группы соединения **1a** использовались следующие значения, полученные в ходе ряда экспериментов, представленны в таблице 2:

С моль/л	0.289	0.250	0.188	0.156	0.133
lnC	-1.242	-1.387	-1.671	-1.857	-2.014
t, ч	0.15	2	4	6	8

Таблица 2. Расчет зависимости lnC_{1a} от времени при 30 °C

Рисунок 5. Кинетические измерения для реакции алкоголиза ацетильной группы соединения **1a**. А): калибровочная кривая для гликозида **1a**, которая показывает зависимость площади пика (ВЭЖХ) от концентрации гликозида **1a**; В): изменение концентрации (моль / л) гликозида **1a** от времени реакции; С): линейный график зависимости ln (С) гликозида **1a** от времени.

Для вычисления значения константы скорости построен график зависимости lnC_{1a} от t (рисунок 4С). График был приведен к линейному виду y = a + bx, где y = lnC, x = t. Согласно вычисленным коэффициентам, уравнение прямой имеет вид:

$$lnC = -1.221 - 0.102 \times t$$

Подставляя произвольные значения t по уравнению зависимости были вычислены *ln*С в соответствующие промежутки времени (таблица 3):

t, ч	2	4
lnC	-1.425	-1.630

Таблица 3. Расчет *ln*С_{1а} по уравнению прямой

По полученным значениям вычисляли константу скорости, которая равна тангенсу угла наклона прямой *ln*C - t (Puc 4C) к оси у:

$$k_1 = tg(a) = \frac{lnC_1 - lnC_2}{t_2 - t_1} = \frac{-1.425 - (-1.630)}{4 - 2} = 0.102 \text{ y}^{-1}$$

Для установления воспроизводимости данных, мы осуществляли описанную реакцию, процедуру анализа и расчета еще один раз. Полученное значение константы скорости $k_2=0.142 \text{ ч}^{-1}$. Далее было вычисленно среднее значение $k_{\text{скор}}=0.122 \pm 0.028 \text{ ч}^{-1}$.

Для гликозида **1а** была также вычислена энергия активации алкоголиза 2-*O*-ацетильной группы путем определения констант скоростей этой реакции при 30, 40 и 50 °C. Энергия активации оценивалась по наклону полученной прямой зависимости ln(k) - 1/T с использованием графика Аррениуса (рис. 6), которая составила 21,4 ккал/моль. Полученные результаты согласуются с квантово-химическими расчетами (см. таблицу 5 в разделе 2.3).

Рисунок 6. график Аррениуса для реакции этанолиза 2-*О*-ацетильной группы 2-*О*-ацетилфенилглюкопиранозида 1а.

Описанные процедуры применялись также для оценки констант скорости алкоголиза 2-*O*-ацетиларилгликозидов **2а-8а**. Полученные экспериментальные данные констант скорости реакции кислотнокатализируемого алкоголиза гликозидов **1а-8а** приведены в таблице 4. Таблица 4. Результаты определения констант скорости реакции кислотнокатализируемого алкоголиза гликозидов 1а-8а

		HCI/CHCl₃/EtOH 30 °C HO a-8a	OH OH OH Ib-8b
	2-О-ацетильный	R	Константа
	продукт	Κ	скорости, ч ⁻¹
	1	2	3
1	1 a	Н	0.122±0,028
2	2a	<i>o</i> -CH ₃ -	0.106±0,011
3	3 a	o-CH ₃ (β-D-Galp) ^a	$0.084{\pm}0,008$
4	4 a	<i>n</i> -CH ₃	0.111±0,005
5	5a	$o-NO_2$	0.183±0,019
6	6a	$n-NO_2$	0.235±0.035
7	7 a	o-OMe	0.282±0,034
8	8 a	<i>n</i> -OMe	0.315±0,037

а) В качестве исходного соединения использовали 2-метилфенил 2,3,4,6-тетра-О-ацетил-β-Dгалактопиранозид

В результате проведения кислотно-катализируемого алкоголиза ацетильной группы 2-*O*-ацетиларилгликозидов, было выявлено что скорость реакции образования полностью дезацетилированного продукта **1b-8b** зависит как от углеводного фрагмента, так и от строения агликона. Так, в случае арилгликозидов с одинаковым агликоном **2a** и **3a**, оказалось, что константа скорости реакции намного ниже для арилгликозида **3a** с галактозным фрагментом, чем с глюкозным **2a**. Данный факт согласуется с тем, что алкоголиз тетраацетилгалактозида **3** происходит с высокой селективностью (таблица 1), а также наибольшим выходом 2-*O*-ацетилгалактозида **3a**, т.е. соблюдается общее правило «высокая активность-низкая селективность».

Подобная же закономерность активность-низкая «высокая 2-0селективность» видна при сравнении скоростей алкоголиза ацетилгликозидов 7а, 8а содержащих в агликоне электронодонорный заместитель ОМе и селективности образования этих гликозидов в реакции алкоголиза (табл. 1). Соединения 7а, 8а показывают максимальную скорость алкоголиза (табл. 4) и наименьшую селективность при их образовании (табл. 1). В то же время для гликозидов 1а, 2а, 4а-ба данная закономерность -

высокая активность-низкая селективность -отсутствует. Обращает на себя внимание, что как электроноакцепторная группа NO_2 (соединения **5a**, **6a**), так и сильная электронодонорная ОМе группа (соединения 7а, 8а) в агликоне повышают скорость алкоголиза В сравнении с незамещенным фенилгликозидом 1а, т.е. нет простой корреляции с электронными эффектами заместителей. При сравнении скоростей алкоголиза пар изомерных гликозидов 2a и 4a, 5a и 6a, а также 7a и 8a, можно заметить, что во всех случаях 2-О-ацетильные группы изомеров с пара-замещенным агликоном оказываются активней таковых с орто-замещенным агликоном. Интересно, что и селективность образования 2-О-ацетил арилгликозидов с *пара*замещенным агликоном в реакциях дезацетилирования оказывается несколько ниже, чем с *орто*-замещенным агликоном (табл. 1).

Таким образом, более высокая скорость дезацетилирования гликозидов 1a-8a, соответствует высокой скорости образования полностью дезацетилированного продукта **1b-8b** И, соответственно, меньшей селективности образования 2-ацетата из соответствующих *пер*-ацетатов 1-8, ввиду высокой скорости дезацетилирования ацетильной группы для 2ацетатов арилгликозидов.

2.3. Квантово- химическое моделирование реакции алкоголиза ацетильных групп ацетилгликозидов

Для определения причин выявленных закономерностей реакций дезацетилирования ацетилгликозидов мы провели ряд квантово-химических расчетов этих процессов.

Прежде всего, требовалось понять, является ли обнаруженная региоселективность дезацетилирования термодинамически контролируемым процессом. Для ответа на это мы получили оптимизированные структуры всех четырех возможных изомеров *О*-моноацетилфенилгликозида и определили их

О-ацетилфенилгликозид	Газовая фаза		Водный раствор (СРСМ)	
	ΔH	ΔG	$\Delta H_{ m H2O}$	ΔG_{H2O}
2-О-ацетилгликозид 1а	-4.51	-5.10	-2.16	-2.26
3- <i>О</i> -ацетилгликозид 1с	-4.65	-4.86	-2.92	-3.00
4-О-ацетилгликозид	-2.01	-2.88	-2.06	-2.77
6-О-ацетилгликозид	0	0	0	0

Таблица 5. Вычисленные методом DFT b3lyp/aug-cc-pvdz относительные энтальпии и свободные энергии изомерных О-моноацетилфенилгликозидов, ккал/моль

Полученные данные показывают, что относительные свободные энергии △G *О*-моноацетилфенилгликозидов снижаются в неполярной среде (газовой) в следующем порядке: 2-О-ацетил- <3-О-ацетил- <4-О-ацетил- <6-О-ацетил. Из этого следует, что наивысшей термодинамической стабильностью обладает 2-О-ацетилгликозид, обсуждаемая селективность алкоголиза nepацетиларилглизидов определяется термодинамическими факторами. Однако, в сильно полярной среде (вода) энтальпии ∆Н изомерных *О*-ацетилгликозидов выравниваются, а свободные энергии 3-О- и 4-О-ацетилгликозидов становятся даже чуть ниже, чем у 2-О-изомера 1а. Полярность используемой в эксперименте для алкоголиза среды HCl/CHCl₃/EtOH не измерялась, но она должна быть промежуточной между водой и газовой фазой. Из этого следует, что проведенные расчеты указывают на наибольшую термодинамическую устойчивость 2-О- и 3-О-ацетилгликозидов (особенно с учетом известных ограничений И неточностей континуальных моделей вычисления неспецифической сольватации на основе РСМ) [180]. Следовательно, факторы термодинамические должны вносить некоторый вклад В установленную экспериментально селективность дезацетилирования перацетилгликозидов с преимущественным образованием 2-*О*ацетилгликозидов.

Для определения действия кислотно-катализируемой системы на реакцию алкоголиза ацетильных групп *пер*-ацетиларилглизида **1** были проведены квантово-химические расчеты энергии Гиббса ΔG этой реакции. Реакция кислотно-катализируемого алкоголиза ацетильных групп *пер*ацетиларилгликозида **1** была рассмотрена как ступенчатый процесс (схема 32), установленный для алкоголиза (гидролиза) сложных эфиров [181], и включающий образование протонированного аддукта **I** с дальнейшей лимитирующей стадией - нуклеофильной атакой этого аддукта этанолом с образованием переходного состояния **TS** [182] и его распадом на конечные продукты RC (устойчивый комплекс из реагентов) и PC(вторичный комплекс из продуктов) (Схема 34). Для моделирования этих этапов реакции кислотнокатализируемого алкоголиза ацетильных групп *пер*-ацетилгликозида **1** была построена квантово-химическая модель с использованием полуэмпирического метода AM1[183] и метода функционала плотности (DFT) B3LYP [184, 185] и базисным набором 6-31G (d, p).

Схема 34. Механизм алкоголиза 2-О-ацетильной группы *пер*-ацетилгликозида (1).

Стадия протонирования была рассчитана для каждой ацетильной группы гликозида 1. В качестве примера на рисунке 7 приведена структура протонированого комплекса I, в котором моделировалась реакция протонирования карбонила 2-O-ацетильной группы. Участвующий в этой стадии протон был принят как сольватный комплекс с тремя молекулами *EtOH* (соединение **a**) [179]. Вычисленные ΔG этого этапа для каждой ацетильной группы (протонирование *O*-2, *O*-3, *O*-4 и *O*-6) приведены в таблице 6, при

соотношении значения ΔG протонирования принимается за ноль наименьшая энергия для O-6. Протонирование карбонила *O*-6 ацетильной группы является наиболее энергетически предпочтительным, тогда как ΔG для стадии протонирования других ацетильных групп (*O*-2, *O*-3 и *O*-4) выше на 7-10 ккал / моль.

Рисунок 7. Моделирование стадии протонирования 2-О-ацетильной группы 1

Таблица 6. Вычисленные методом AM1 свободные энергии О-протонирования каждой ацетильной группы соединения **1** методом AM1, ккал / моль

Положение	ΔG сталии	Относительные
ацетильной	протонирования	значения ∆G
группы	1 1	протонирования
O-2	-132.4	10.2
O-3	-132.4	10.2
O-4	-135.0	7.6
O-6	-142.6	0

Далее были проведены расчеты лимитирующей стадии - нуклеофильной атаки этанолом. Для этого были получены оптимизированные структуры устойчевого комплекса из реагентов (RC), переходного состояния этого комплекса (TS), вторичного комплекса из продуктов (PC) для второй стадии реакции соединения 1 (рис. 7). Количественные характеристики этой стадии для всех ацетильных групп (энергии между RC и PC) суммированы в таблице 5. Как видно из рисунка 8 (B), мнимая частота TS (представлена на рис. 8 стрелкой) включает в себя колебание атома H, переходящего с кислорода этанола на кислород O-2 глюкозы.

Рисунок 8. Оптимизированные геометрии для (A) RC, (B) TS (амплитуда мнимой частоты показана стрелкой) и (C) PC реакции этанолиза *О*-2 ацетильной группы тетраацетилфенилгликозида **1**.

Таблица 7. Относительные энергии RC, TS по отношению к энергии PC; энергии активации и энергии Гиббса на стадии нуклеофильной атаки этанолом каждой ацетильной группы гликозида **1** методом AM1, ккал / моль

Положение ацетильной группы	RC	TS	Энергия активации	РС	ΔG
<i>O</i> -2	4.1	46.0	41.9	0	-4.1
<i>O</i> -3	13.9	53.1	39.2	0	-13.9
<i>O</i> -4	14.9	54.1	39.2	0	-14.9
<i>O</i> -6	31.4	43.7	12.3	0	-31.4

Можно видеть, что ∆G является максимальной для реакции 2-*O*ацетильной группы, что указывает на наименьшую реакционную способность 2-*O*-ацетильной группы в реакции этанолиза, катализируемой кислотой.

Если предположить, что ацетильные группы в положениях 2, 3 и 4 реагируют в одинаковых концентрациях, то отношение $t = \frac{\exp(-E_{3,4}/kT)}{\exp(-E_2/kT)}$ дает значение 88. Эта приблизительная оценка приводит к выводу, что 3-*O*- и 4-*O*- ацетильные группы реагируют почти на два порядка быстрее, чем 2-*O*- ацетильная группа. 6-*O*-ацетильная группа реагирует намного быстрее, чем все другие ацетильные группы, поскольку активационный барьер меньше в 3 раза.

Для уточнения полученных полуэмпирических результатов мы провели расчеты лимитирующей стадии этанолиза 2-*О*-ацетильной группы тетрацетилгликозида **1** по вышеописанной схеме методом DFT B3LYP в

базисе 6-31G (d, p). Вычисленная энергия активации этого процесса совместно с данными AM1 и экспериментальным значением (раздел 2.2) приведена в таблице 8.

Методы для определения энергии активации	Энергия активации, ккал/моль
DFT/B3LYP/6- 31G(d,p)	25.3
AM1	30
ExP	21.4

Таблица 8. Энергия активации для реакции алкоголиза 2-*О*-ацетильной группы 2-*О*-ацетилфенилглюкопиранозида 1а

Как видно из полученных результатов, вычисления методом DFT ожидаемо показали лучшую сходимость с экспериментальными данными (различия составляют 3.9 ккал/моль или 15%). Хорошая сходимость обоих результатов использованных вычислений методов с экспериментальным значением подтверждает корректность проведенного квантово-химического моделирования. В целом, проведенные расчеты указывают на то, что реакционная способность 2-О-ацетильной группы в существенно кислотно-катализируемом этанолизе ниже, реакционной способности остальных О-ацетильных групп тетрацетилгликозида 1. Из сопоставления относительной термодинамической устойчивости изомеров Оацетилгликозидов (табл. 5) и энергий активации этанолиза (табл. 7) следует, что эти величины меняются симбатно и почти линейно относительно друг друга – изомеру с наибольшей устойчивостью отвечает наибольшая энергия активации. Это позволяет сделать вывод о том, что в наблюдаемую экспериментально селективность алкоголиза (раздел 2.2) вносят вклады как термодинамический, так и кинетический контроль реакции.

В качестве гипотезы мы можем предложить следующие объяснения обнаруженной селективности алкоголиза тетраацетилфенилгликозидов и наименьшей реакционной способности 2-*O*-ацетильных групп в этом процессе. На наш взгляд, весьма вероятно, что *O*-*Ar* группы агликона

стерически ингибируют, как атаку протона на C=O группы 2-O-ацетильного фрагмента, так и создают пространственные напряжения в тетраэдрических интермедиатах -CH(OH)OEt и их протонированных формах. Второй фактор выглядит предпочтительней. Близкую аналогию этому можно найти в хорошо ингибировании 2,4,6стерическом гидролиза эфиров известном триметилбензойной кислоты в сравнении с эфирами бензойной кислоты [186, с. 270]. В некоторой степени предложенная гипотеза объясняет и найденную выше (раздел 2.2., табл. 2) закономерность, что в дезацетилировании 2-Оацетиларилгликозидов орто-изомеры (максимальный стерический фактор) оказываются менее реакционноспособными, чем соответствующие параизомеры. Интересно, что данная трактовка позволяет объяснить и причину резкого снижения селективности алкоголиза α-аномера тетраацетилфенилгликозида 9 (таблица 1). Действительно, как можно видеть сравнения строения β-аномеров ИЗ качественного α-И тетраацетилфенилгликозида, вычисленных методом B3LYP/6-31G(d, p) (рисунок 9), отмеченные выше стерические препятствия в меньшей степени должны проявляться для α-аномера.

Рисунок 9. Молекулярные модели α- и β-аномеров тетраацетилфенилгликозида, вычисленные методом B3LYP/6-31G(d,p).

3. Применение алкоголиза в синтезе строительных блоков для получения олигосахаридов и природных арилгликозидов

3.1 Использование 2-*О*-ацетилгликозидов в синтезе сиалил-(α2-3)галактозного блока

Помимо проведенных кинетических квантово-химических И исследований, направленных кислотно-катализируемого на изучение алкоголиза *пер*-ацетилгликозидов, мы применили кислотно катализируемую получения сиалил-(α2-3)-галактозного систему для блока в синтезе олигосахаридов (схема 35).

Сиалоолигосахариды являются важнейшими природными соединениями, определяющими протекание целого ряда иммунологических, нейробиологических, онкологических и других биологических процессов [187, 188].

Схема 35. Ретросинтетический подход к созданию ганглозида GM3 PG = защитная группа, LG = уходящая группа, R = агликон

Одним из важнейших сиалоолигосахаридов является ганглиозид GM3, содержащим терминальный остаток *N*-ацетил или *N*-гликолилнейраминовой (сиаловой) кислоты (Neu5Ac и Neu5Gc), которые являются фрагментами природных ганглиозидов, олигосахаридных цепей гликопротеинов И полисахаридов, имеющих большое значение в медико-биологических исследованиях [189]. В настоящее время в литературе известно несколько подобных подходов К созданию сиалоолигосахаридов. Согласно ретросинтетическому анализу, можно предложить подход, представляющий собой конденсацию глюкозного блока а с сиалил-(α2-3)-галактозным блоком **b** (схема 35) [190], при этом необходимо предварительно получить блок **a** конденсацией сиалового фрагмента **a1** с галактозным фрагментом **a2**. Следует отметить, что формирование гликозидной связи между сиаловым и галактозным фрагментами является трудной синтетической задачей и по известным данным часто сопровождается хорошими выходами в 80-90 % [191, 192], но плохой α/β селективностью.

Необходимым условием для успешного получения дисахаридного блока **а** является подбор соответствующего галактозильного фрагмента, природа защитных групп как на гликозильном доноре, так и на гликозильном акцепторе [193], способов активации [194], концентрация реагентов [195,196], присутствие других соединений (включая различные добавки и примеси) [197, 198].

3.1.1 Получение 2-О-ацетилметоксифенил галактопиранозида

Нами были предложены два пути (путь **A** - применение системы HCl/EtOH/CHCl₃; путь **B** - трехстадийная реакция с использованием защитных групп) получения 4-метоксифенил 2-*O*-ацетил галактопиранозида **12a** (схема 36) для создания галактозного акцептора **B** как гликозильного акцептора в синтезе сиалил-(α2-3)-галактозного блока.

Схема 36. Синтез 2-*O*-ацетилметоксифенил галактопиранозида двумя методами *Реагенты и условия:* **a)** MeONa, MeOH, RT; **b)** 2,2-dimethoxypropane, CSA, RT; **c)** Ac₂O, Py, RT; **d)** TFA, CH₂Cl₂, 0 °C; **e)** HCl, EtOH, CHCl₃, 30 °C.

Первый путь (схема 36, метод **A**) заключался в применении ранее исследованной нами кислотно-катализируемой системы HCl/EtOH/CHCl₃. Как и во всех случаях алкоголиза было зафиксированы 2 продукта, одним из которых является целевое соединение 2-*O*-ацетил галактопиранозид **12a** (выход 55%) и полностью дезацетилированное соединение **12b** (выход 45%). Соединения **12a** и **12b** были разделены хроматографически. При этом, дезацетилированное соединения **12b** может быть легко регенерировано путем вторичного ацетилирования с получением исходного соединения **12**.

Второй путь (схема 36, метод **B**) представляет собой четырехстадийную реакцию с использованием защитных групп. На первой стадии мы снимали все ацетильные группы гликозида **12b** с использованием известной методики для снятия ацетильной защиты (метод Земплена) [37], которая приводит к полностью дезацетилированному гликозиду **12b.** На следующем этапе селективно защищали О-3, О-4-положения ацеталем и О-6-положение изопропилиденом с использованием 2,2-диметокиспропана, с последующим введением ацетильной группы в положение О-2. Заключительным этапом являлось снятие ацетальной защиты в мягких условиях.

Полученные выходы продукта **12а** по методу **A** (55 %) и методу **B** (63 %) соизмеримы. Однако, метод **B** является более трудоемким, многостадийным и времязатратным (общее время реакций по пути **B** заняло ок. 5 дней), что

существенно снижает его синтетическую ценность. Помимо многостадийности, метод **B** имеет ограничения, которые заключаются в том, что данный подход применим лишь для галактопираноз, в то время как метод **A** применим как для галакто-, так и для глюкопираноз, что значительно расширяет область его применения. Существенным преимуществом метода **A** является применение доступных реагентов. Важно отметить, что метод **A** требует строгого соблюдения временных параметров (10 ч), а более длительное время реакции приводит преимущественно к полностью дезацетилированному продукту **12b**.

3.1.2 Получение галатозил акцепторов (11 и 17)

Полученный селективно защищенный метоксифенил 2-*О*-ацетил галактопиранозид **12а** далее был применен для создания нового гликозил-акцептора **11** (схема 37).

Схема 37. Синтез галактозил акцептора (*n*-метоксифенил 2-О-ацетил-4,6-О-бензилиден-β-D-галактопиранозида) 11 *Реагенты и условия:* а) PhCH(OMe)₂, TsOH, MeCN, RT, 18 h

Получение галактозил акцептора **11** представляет собой введение бензилиденовой защиты в О-4, О-6-положения соединения **12a** с получением свободной гидроксильной группы при О-3. Преимуществом данного акцептора **11** является то, что 4,6-*О*-бензилиденовая защита не дезактивирует гидроксильную группу при С-3. Также наличие *пара*-метоксифенильной группы в качестве временной защиты аномерного положения галактозил-

акцептора **11** позволит легко удалить данную группу, когда это станет необходимо, не затрагивая при этом остальные защитные группы и гликозидные связи.

Помимо вышеполученного 2-*O*-ацетил галактозил акцептора **11** мы синтезировали 2-О-бензоил галактозил акцептор **17** по методу **B** (схема 38). Получение акцептора **17** было предпринято с целью сравнения реакционной способности двух полученных акцепторов **10** и **17** в создании сиалил-(α2-3)-галактозных блоков.

Схема 38. Синтез *n*-метоксифенил 2-О-бензил-4,6-О-бензелиден-β-D-галактопиранозид *Реагенты и условия:* **a)** MeONa, MeOH, RT; **b)** 2,2-dimethoxypropane, CSA, RT; **c)** BzCl, Py, CH₂Cl₂, 0 °C; **d)** TFA, CH₂Cl₂, 0 °C; **e)** PhCH(OMe)₂, TsOH, MeCN, RT.

Метод получения соединения **17** (схема 38) отличался лишь тем, что промежуточный продукт **13** не ацетилировали, а бензоилировали с получением 2-*O*-бензоил производного **15**. Далее, аналогичным образом защитные изопропилиденовые группы удаляли в мягких условиях с получением триола **16**, который бензилиденировали с получением галактозил акцептора **17**.

3.1.3 Применение галактозил-акцепторов 11 и 17 в синтезе сиалилгалактозного блока

Для синтеза сиалил-галактозного блока был применен сиаловый донор 10, который хорошо зарекомендовал себя для получения ряда сиалоолигосахаридов [199].

Полученный галактозил акцептор с 2-*О*-ацетильной защитой **11** был применен для синтеза дисахаридного блока **18** (схема 39).

Схема 39. Синтез сиалил-(α2-3)-галактозного блока *Реагенты и условия: а.*NIS, TfOH, MS 3Å, MeCN (для соединения 11); *b*. (CF₃)₂CHOH (для соединения 17), -40 °C

Помимо этого, была осуществлена оптимизация синтеза сиалил-(α2-3)галактозного блока 18 с целью повышения выхода реакции и селективности образования целевого α – изомера соединения 18 (табл.7). Оптимизация заключалось В варьировании соотношения сиалового донора 10 К галактозному акцептору 11. В случае соотношения соединений 10 и 11 как 1:1 экв был достигнут достаточно хороший выход (76%) и хорошая селективность (10:1), данные результаты уже демонстрируют успешное применение галактозного акцептора 11. При соотношении соединения 10 и 11 1.5:1 экв был достигнут максимальный выход 96 %, но почти с той же селективностью (10:1). Более высокую селективность образования а – изомера по отношению к β – изомеру соединения 18 удалось достигнуть при соотношении 2:1 экв с хорошим выходом (74%) (таблица 9).

N⁰	Молярное соотношение 10:11	Выход дисахарида 17	18 α:β соотношение
1	1:1	76 %	10:1
2	1:1.5	96 %	10:1
3	1:2	74 %	19:1

Таблица 9: Оптимизация синтеза сиалил-(α2-3)-галактозного блока 18

При этом, соотношение изомерных продуктов α и β для соединения **18** было определено с помощью метода ЯМР-спектроскопии ¹Н при интегрировании сигналов в области α -H-3eq δ 2.84 м.д. и β -H-3eq δ 2.64 м.д., нейраминовой кислоты дисахарида **18** (рисунок 10).

Рисунок 10. Часть спектра ЯМР ¹Н дисахаридной фракции 18, полученного при рекции 10 и 11 1:1, показывающая сигналы α-H-Зеq и β-H-Зеq нейраминовой кислоты.

Применение в реакции сиалилирвания 2-*О*-бензоил галактозильного акцептора **17** не привело к желаемому продукту **19** (схема 39), в этом случае был получен только побочный продукт, являющийся результатом реакции элиминирования соединения **24** – гликаль *i* (схема 40), который при использовании галактозильного донора **11** был зафиксирован лишь в небольших количествах.

Схема 40. Образование побочного продукта реакции сиалилирования – гликаля і

Помимо этого, мы столкнулись с проблемой растворимости акцептора **17** в ряде органических растворителей, пригодных для гликозилирования (CH₃CN, EtOAc, CH₂Cl₂, (CH₃)₂CO). Был найден единственный приемлемый растворитель – (CF₃)₂CH-OH (гексафторированный изопропанол). Кроме того, из-за плохой растворимости пришлось повысить температуру реакции до -10 °C, однако даже при такой достаточно высокой температуре нами не было зафиксировано образования дисахарида **19**.

Таким образом, 2-*О*-бензоилированный галактозильный акцептор оказался полностью непригодным для реакции сиалилирования, что еще раз демонстрирует ценность предложенного нами подхода и нового 2-*О*-ацетилгалактозильного акцептора **11**. Полученные результаты гликозирования с использованием двух различных галактозильных акцепторов **11** и **17** демонстрируют существенное влияние О-2 защитной группы на создание гликозидной связи между сиаловым фрагментом и галактозным фрагментом.

Полученную смесь α/β дисахаридов 18 разделяли при помощи колоночной хроматографии на силикагеле. Чистый α-изомер 18а модифицировали с целью получения реакционноспособного сиалил-галактозного донора 24 (схема 41).

Схема 41. Синтез сиалил-(α 2-3)-галактозил имидатного донора 24 *Реагенты и условия: а.* AcOH, H₂O, 70 °C, 8 h (78%); *b*. MeONa, MeOH, RT, 48 h (93%); c. Ac₂O, Py, RT 15 h (83%); *d*. CAN, MeCN / H₂O, 0 °C, 1 h (84%); *e*. ClC(NPh)CF₃, Cs₂CO₃, CH₂Cl₂, 0°C \rightarrow RT, 16 h (73%).

Для этого снимали бензилиденовую защиту с получением диола 20, затем снимали все хлорацетильные и ацетильные группы с получением соединения 21. Далее, все гидроксильные группы как сиалового, так и галактозного фрагмента защищали ацетильными группами с получением соединения 22, физикохимические зарактеристики которого совпадают с известными в литературе [200]. Затем снимали временную аномерную защиту - *n*-метоксифенильную группу с получением полуацеталя 23. На последней стадии вводили имидатную аномерную группу с получением дисахаридного донора 24. Общий выход конечного продукта 24 на пять стадий составил 41 %. Полученный имидат 24 является готовым дисахаридным гликозил-донором для гликозилирования и получения ценных сиалоолигосахаридов, в том числе, ганглозида GM3.

3.1 Применение кислотно-катализируемого дезацетилирования на примере синтеза дигликозидов сложных эфиров гидроксибензойных кислот и салицилового спирта

Одним из труднодоступных природных соединений растительного происхождения является дигликозид **Virgaureoside A** (рис. 11). Он содержится в лекарственном растении золотарник обыкновенный L. (*Solidago virgaurea* L.) и хорошо известен в китайской народной медицине как мочегонный, желчегонный и антисептический препарат, обладающий также антиоксидантной, противогрибковой и цитотоксической активностью на раковых клетках.

Первое упоминание о Virgaureoside A встречается в исследованиях немецкого ученого Хиллера [201, 202], который сообщил выделение из золотарника обыкновенного (*Solidago virgaurea* L.) с 0.008-0.141 % выходом по весу. В литературне было найдено только несколько исследований, касающихся выделения Virgaureoside A из природных источников, предположительно сложность выделения связана с низким содержанием

дигликозида. Также, Virgaureoside A был обнаружен в таком растении как китайская слива (Prunus grayana) [203] которая содержит только 0,04 % по массе этого соединения.

Рисунок 11. Структуры Virgaureoside A и iso-Virgaureoside A

Поскольку изученная нами система HCl-EtOH-CHCl₃ является селективной для удаления ацетильных групп углеводов, она идеально подходит для финальной стадии удаления ацетильных групп в присутствии других ацильных групп в молекуле олигосахаридов или гликозидов. Поэтому, мы применили ее также для получения природных дигликозидов, содержащих два моносахаридных остатка и сложноэфирную бензоатноую связь.

3.2.1 Ретросинетический анализ дигликозидов на примере Virgaureoside A

При планировании синтеза природного дигликозида **Virgaureoside A** мы провели ретросинтетический анализ данного соединения. Данный дигликозид может быть получен при конденсации двух относительно простых частей **A** и **B** (Схема 42). Однако при этом другие гидроксильные группы, не вступающие в реакцию, должны быть защищены.

Схема 42. Ретросинтетический анализ дигликозидаVirgaureoside A

Для получения гликозида **A** можно использовать гликозид салициловой кислоты **25** (Схема 43), который может быть получен гликозилированием салициловой кислоты, с использованием в качестве гликозидного донора α-D ацетобромглюкозы (АБГ). Но при гликозилировании 2-гидроксибензойной кислоты реакция не пойдет селективно, так как возможно образование смеси продуктов. Прежде всего, будет образовываться продукт гликозилирования по более реакционноспособной карбоксильной группе. В этом случае необходима защита карбоксильной группы.

Схема 43. Ретросинтетический анализ гликозидного фрагмента 25

Наиболее простой в данном случае способ защиты карбоксильной группы - образованием сложного эфира, например, этилового с последующим его гидролизом после введения гликозидного остатка. Таким образом, гликозилирование этилата салициловой кислоты даст единственный продукт гликозилирования по фенольному гидроксилу.

Гликозид **26**, может быть получен из *о*-гидроксибензилбромида (схема 44, путь **a**), при его гликозилировании гликозидным донором – ацетобромглюкозой (АБГ).

Схема 44. Ретросинтетический анализ гликозидного фрагмента 26

Однако о-гидроксибензилбромид может быть получен не бромированием *орто*-крезола из-за его высокой реакционной способности, в этом случае более вероятно протекание реакции по механизму электрофильного бромирования в кольцо.

Тем не менее, в случае гликозида **26**, данную проблему можно решить при использовании бромирования на последней стадии (Схема 44, путь **b**) т.е., бромировать гликозид *о*-крезола, в котором фенольный гидроксил «защищен» углеводным остатком.

При использовании полностью ацетилированных гликозидов, последней стадией в получении дигликозида будет селективное снятие ацетильных групп, с сохранением сложноэфирной группы, полученной при конденсации гликозидов 25 и 26.

Таким образом, для получения дигликозида Virgaureoside A исходным сырьем являются салициловая кислота, *о*-крезол и глюкоза, которая служит углеводным донором. Основными стадиями в рассмотренных синтезах являются: получение гликозидного донора и гликозилирование, ацилирование, радикальное галогенирование и снятие защитных групп, как неселективное (для получения гликозида A), так и селективное (для последней стадии).

3.2.2 Применение кислотно-катализируемого алкоголиза в синтезе Virgaureoside A и *iso*- Virgaureoside A

Наш синтетический подход (схема 45) основанный на применение кислотно-катализируемого алкоголиза позволяет получить природный дигликозид Virgaureoside A и его аналог iso-Virgaureoside A, который не встречается в растениях. Мы предположили, что *iso*-Virgaureoside A может присутствовать в лекарственных растениях и их экстрактах, ввиду того, что агликон данного соединения представляет собой сложный эфир салицилового пара-гидроксибензойной кислоты, который спирта И встречается В растительных экстрактах, а наличие синтетического стандарта и спектральных характеристик может помочь с его идентификацией в будущем.

Схема 45. Синтез Virgaureoside A и *iso*-Virgaureoside A. Реагенты и условия: (a) АБГ, Ag₂O, хинолин, 1ч, RT; (b) aq. NaOH, 100 °C, 1 ч; (c) Ac₂O, Py, RT, 20 ч; (d) АБГ, ТБАБ, NaOH, CHCl₃, кипение, 4 ч; (e) NaHCO₃, CHCl₃, Br₂, hv, 2 ч; (f) NaHCO₃, ДМФА, 3 дня; (g) HCl-CHCl₃-EtOH, RT, 48 ч

Разработанный нами новый синтетический подход для получения природных дигликозидов и их аналогов основан на поэтапном получение двух фрагментов 26 и 25 (для Virgaureoside A), 31 (для *iso*-Virgaureoside A), которые конденсируются с получением целевых продуктов (схема 45).

Синтез строительного блока 26 начали с получения промежуточного гликозида 2 путем гликозилирования орто-крезола с использованием ацетобромглюкозы (АБГ) в условиях межфазного катализа. Затем в полученном гликозиде 2 бромировали метильную группу и получали реакционноспобный строительный блок 26. Для селективного проведения радикального бромирования мы вводили бром в эквивалентных количествах по отношению к исходному гликозиду. Несмотря на это нами было зафиксировано образование в небольшом количестве дибромпроизводного (ВЭЖХ контроль), но данную проблему удалось решить дополнительной перекристаллизацией фильтрованием, И горячем ввиду меньшей растворимости дибромпроизводного в спирте (схема 46).

Схема 46. Радикальное бромирование гликозида о-крезола

Синтез строительных блоков 25 и 31 начали с получения гликозидов 29 и 30, соответственно. В качестве исходных субстратов в их синтезе были использованы эфиры фенольных кислот 27 и 28. Соединения 29 и 30 получены гликозилированием соединений 27, 28 при действии оксида серебра, но с небольшими выходами 37 и 27%, соответственно. Низкие выходы наблюдаются из-за конкурирующего образования триацетата, 1,2-ортоэфира и тетраацетата глюкозы в качестве побочных продуктов, которые были зафиксированы методом ГХ-МС неочищенного продукта реакции. Тем не менее, этот метод превосходит ранее опубликованные синтезы 29 и 30 были затем подвергнуты омылению с целью освобождения карбоксильной группы для

дальнейшей реакции, и повторно ацетилированы с образованием строительных блоков 25 и 31, соответственно.

Следующим этапом являлась конденсация полученных строительных блоков **25** (для **Virgaureoside A) и 31** (для *iso*-**Virgaureoside A)** со строительным блоком **26** с использованием карбоната натрия в ДМФА и получением октоацетататов дигликозидов **32** (57%) и **33** (59%), соответственно.

Заключительной и наиболее важной стадией в синтезе Virgaureoside A (34) и *iso*- Virgaureoside A (35) является селективное удаление ацетильных групп соединений 32 и 33. Эта реакция была успешно проведена с использованием вышеописанного кислотно-катализируемого алкоголиза HCl-EtOH-CHCl₃, который позволил успешно снять ацетильные группы дигликозидов, не затрагивая ни гликозидные, ни сложноэфирные связи в агликоновых фрагментах.

Таким образом, нами была разработана оптимальная схема синтеза природного дигликозида Virgaureoside A и неимеющего природного аналога *изо*-Virgaureoside A. Данная схема была успешно применена и на ее основе получены соединения, ранее не получаемые синтетическим путем. В результате 8-стадийного синтеза были получены дигликозида Virgaureoside A с общим выходом по всем стадиям 3% и *изо*-Virgaureoside A – 6 %, что является приемлемыми выходами, если учесть, что их содержание в природных источниках на порядок меньше полученных нами синтетическим путем.

В целом, применение системы HCl-EtOH-CHCl₃ позволяет успешно удалять ацетатильные группы в *nep*-ацетилированных арилгликозидах, при этом, наблюдается последовантельное снятие ацетильных групп (ВЭЖХ мониторинг) и, в зависимости от агликона в *nep*-ацетиларилгликозидах и условий проведения реакции, приводит преимущественно к образованию полностью дезацетилированного продукта и ценного 2-Омоноацетилированного продукта. Использование данной системы открывает перспективы для ее применения углеводном синтезе, и в частности для получения биологически важных олигосахаридных цепей и природных гликозидов.

4. Экспериментальная часть

Контроль за ходом реакции и чистотой полученных продуктов вели методом ТСХ на пластинках Silufol-UV 254 и Kieselgel 60 F254. Детектирование пятен проводили в фильтрованном УФ-свете. В качестве элюента использовалась система бензол: этанол (10:1), хлороформ: этанол (4:1). ВЭЖХ – анализ проводили на жидкостном хроматографе AgilentCompact LC с колонкой 150*4.6 с неподвижной фазой ExlipsPlus C-18 (5 мкм). Анализ проводили посредством градиентного элюирования смесью ацетонитрил – вода с добавлением 0.1% трифторуксусной кислоты как модификатора подвижной фазы. Условия градиента: 0% ацетонитрила при 0 мин, 20 мин – до 100 % (Б) при скорости потока 1 мл/мин (А). Проба в объеме 20 мкл. Детектирование осуществляли при 220 нм и 276 нм.

Газовую хроматографию с масс-детектированием проводили с использованием квадрупольного масс-детектора Agilent 5975С и газового хроматографа Agilent 7890A. Энергия ионизации 70 эВ, температура ионного источника 230°С, квадруполя 150°С, испарителя – 280°С, интерфейса 290°С. Объем вводимой пробы 1 мкл при делении потока 1:5. Капиллярная колонка HP-1 MS 30м×0.25 мкм (Agilent). Диапазон сканирования масс – 33-600 а.е.м. Программирование температуры: 2 мин при 70°С, 70-315°С (10 °С/мин), 15 мин при 315 °С. Газ носитель-гелий, скорость потока 1 мл/мин. Дериватизацию осуществляли силилированием гексаметилдисилазаном в пиридине в присутствии трифторуксусной кислоты (получение TMC-производных) [206].

Температуру плавления веществ определяли в капилляре с использованием MP50 Melting point system (Mettlertoledo). ¹H, ¹³C ЯМРспектры регистрировали для растворов в CD₃OD или DMSO- d_6 на приборах Bruker AM-300 (300,13 и 75,48 МГц для ¹H и ¹³C соответственно), Buker Avance III HD (400 и 100 МГц для ¹H и ¹³C соответственно) или на спектрометре Bruker DRX-500 (500 и 125 МГц для ¹H и ¹³C соответственно). Интерпретацию сигналов в спектрах ЯМР проводились с использованием 2D-спектроскопии (COZY, HSQC, HMBC). Масс-спектры высокого разрешения (ионизация электрораспылением, HRESIMS) регистрировались в положительном режиме на масс-спектрометре Bruker micrOTOF II для 2×10^{-5} M растворов в MeCN или MeOH.

4.1 Получение доноров для гликозилирования

4.1.1 Получение 2,3,4,6 тетра-О-ацетил-α-Dглюкопиранозилбромида

К уксусному ангидриду (16 мл, 0.17 моль) и добавляли хлорную кислоту (50 мкл, 0.88 ммоль) и при перемешивании небольшими порциями α -Dглюкозу (4 г, 0.011 моль) так, чтобы температура реакционной смеси находилась в интервале 30 – 40 °C. Затем охладили раствор до 20 °C, добавили красный фосфор (0.64 г, 0.005 моль), а затем бром (2.4 мл,0.047моль) с такой скоростью, чтобы температура не превышала 20 °C, далее при таких же условиях прилили воду (1.4 мл 0.077 моль). Реакционную массу выдерживали 2 часа при комнатной температуре, затем выливали в 300 мл воды со льдом и интенсивно перемешивали до выпадения твердого осадка. Экстрагировали CH₂Cl₂ (3×20 мл), промывали насыщенным раствором соды (3×20 мл), водой (3×20 мл), сушили над Na₂SO₄, и отгоняли CH₂Cl₂. Остаток использовали без дополнительной очистки или перекристаллизовывали из этилового эфира или гексана. Выход 65 %, т. пл 88 °C. (Лит. 88°C [207]).

4.1.2 Получение *пер*-ацетилированных гликозидных доноров

К уксусному ангидриду (23 мл, 0.24 моль) прибавляли при перемешивании небольшими порциями *NaOAc* (1.13 г, 0.014 моль) и полученную смесь нагревали до 120 °C с обратным холодильником в течение 30 мин. Затем, удалив обратный холодильник небольшими порциями добавляли α -D-глюкозы (5 г, 0.028 моль). Далее смесь перемешивали в течение 15 минут при нагревании и после охлаждали до комнатной температуры. Затем реакционную массу выливали в 100 мл воды со льдом и интенсивно перемешивали до выпадения твердого осадка. Полученный осадок фильтровали и промывали ледяной водой (125 мл). После сушки продукт перекристаллизовывали из *EtOH* (40 мл).

1,2,3,4,6-пента-О-ацетил- β -**D-глюкопиранозид 37** Выход 85 %, т. пл 125-127 °С. (Лит. 125-128 °С [208]).

1,2,3,4,6-пента-О-ацетил- β**-D-галактопиранозид 38** Выход 88 %, т. пл 135-137 °С. (Лит. 136-138 °С [209]).

4.2 Получение фенолгликозидов

4.2.1 Гликозилирование по Гельферху, катализируемо
е $BF_3\ast Et_3N$

К смеси, состоящей из. гликозилдонора **37** или **38** (1.44 г, 3.7 ммоль) и соответствующего фенола (5.6 ммоль) было добавлено 10 мл *CHCl*₃. Реакционную массу перемешивали при комнатной температуре в инертной атмосфере азота в течении 30 мин. Затем при помощи шприца был добавлен по каплям Et_3N (0.26мл, 1.9 ммоль) при перемешивании в течении 10 мин. При помощи шприца добавили $BF_3 * Et_3N$ (1.10 мл, 9.3 ммоль) и оставляли перемешиваться реакционную массу в течении 24 ч. Размывали CHCl₃ и затем промывали насыщенным раствором $NaHCO_3$ (3× 20 мл), водой (2× 20 мл), сушили над Na_2SO_4 , и концентрировали при пониженном давлении реакционную массу. После сушки на воздухе продукт перекристаллизовывали из *EtOH*.

фенил 2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозид (1) Выход 85%. Т.пл 142-143 °С. (Лит. 145-146 °С [210]). *о*-крезил 2,3,4,6-тетра-О-ацетил-β-D-галактопиранозид (3) Выход 75%. Т.пл 115-116 °С. (Лит. 113-114 °С [211]). *п*-крезил 2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозид (4) Выход 72%. Т.пл 120-121 °С. (Лит. 116-118 °С [212]). *п*-нитрофенил 2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозид (6).
Выход 85%. Т.пл 166-168 °С. (Лит. 165-166 °С [213]).

о-метоксифенил 2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозид (7) Выход 70%. Т.пл 156-158°С. (Лит. 154-155 °С [214]).

п-метоксифенил 2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозид (8) Выход 88%. Т.пл 97-98 °С. (Лит. 100-102 °С [213]).

р-метоксифенил 2,3,4,6-тетра-О-ацетил-β-D-галактопиранозид (11) Выход 80%. Т.пл 102-103 °С. (Лит. 104 °С [215]).

Характеристики всех полученныых тетраацетатов арилгликозидов совпадают с литературными.

4.2.2 Гликозилирование методом сплавления с *n*толуолсульфокислотой

К смеси, состоящей из соединения **37** (0.5 г, 1.3 ммоль) и *о*-крезола (0,42 г, 3.9 ммоль) была добавлена *n*-толуолсульфокислота (7.45 мг, 0.043 ммоль). Реакционную массу перемешивали при 140-150 °C с обратным холодильником в течении 10 ч. Реакционную массу растворили в бензоле (50 мл) и затем промывали водой (2×50 мл). Органический слой промывали 1н раствором NaOH (3×50 мл) и водой (3×50 мл). Реакционную массу сушили над Na₂SO₄, и концертировали. Очистку реакционной массы проводили колоночной хроматографией на силикагеле (бензол: спирт 15:1).

о-крезил 2,3,4,6-тетра-О-ацетил-β-D-глюкопиранозид (2). Выход 71%. Т.пл. 142-143 °C. (Лит. 141 °C [211]).

4.2.3 Гликозилирование с использованием оксида серебра и хинолина

К смеси, состоящей из АБГ (**36**) (0.5 г, 2.4 ммоль) и соединения соответствующего фенола (2.9 ммоль) прибавляли хинолин (1 мл, 8.46 ммоль) и. Ag₂O (0.282 мг, 2.4 ммоль) тщательно перемешивали до тех пор, пока масса не станет густой и затем реакционную массу оставили на 1 ч. при комнатной температуре. Далее в реакционную массу добавиляли CHCl₃ и затем фильтровали от солей серебра, пропуская через силикагель. Маточный раствор промывали 1 н. NaOH (3×10 мл), 0.1 М H₂SO₄ (3×10 мл), водой, сушили над Na₂SO₄, после чего CHCl₃ отгоняли и перекристаллизовывали остаток из этилового спирта.

о-нитрофенил 2,3,4,6-тетра-*О*-ацетил-β-D-глюкопиранозид (5). Выход 73%. Т. пл 145-150 °С. (Лит. 122-150 °С [216]).

2 - (тетра-*O***-ацетил-β-D-глюкопиранозилокси)- этиловый эфир бензойной кислоты (29).** Белые кристаллы, выход 45 %, Т. пл. 170-172 °C. (Лит 170-171 °C [217]).

4.2.4 Гликозилирование с использованием карбоната калия и безводного ацетона

К смеси, состоящей из АБГ (0.5 г, 1.2 ммоль) и эфира 4гидроксибензойной кислоты **28** (0.24 г, 1.45 моль), прокаленного карбоната калия (0.2 г, 1.45 ммоль) добавили сухого ацетона (26 мл, 0.35 моль) и перемешивали реакцию 9 ч при 50 °C. Затем реакционную массу концентрировали и оставшуюся смесь растворяли в CH₂Cl₂, промывали 1 н. *NaOH* (3×10 мл), водой (2×10 мл), сушили над Na₂SO₄, после чего CH₂Cl₂ отгоняли и перекристаллизовывали остаток из этилового спирта.

4 - (тетра-*O*-ацетил-β-D-глюкопиранозилокси)- этиловый эфир **бензойной кислоты (30).** Белые кристаллы, выход 30 %, Т.пл. 104-105 °C (Лит101-102[218]).

4.2.5 Получение α-фенолгликозидов методом сплавления с ZnCl₂

К смеси, состоящей из соединения **37** (17 г, 43 ммоль) и. *о*-крезола (14.5 г, 129 ммоль) было добавлено. ZnCl₂ (244 мг, 1.4 ммоль). Реакционную массу нагревали до 150 °C в течение 12 ч. Затем реакционную массу размывали водой (20 мл) и экстрагировали EtOAc (2×20 мл), органический слой промывали *NaOH* (3×10 мл), далее промывали H₂SO₄ (3×10 мл) и водой (2×10 мл), сушили над Na₂SO₄, после чего EtOAc отгоняли. Потом проводилась очистка реакционной массы колоночной хроматографией на силикагеле с целью разделения α и β изомеров (гексан: этилацетат 11:4 \rightarrow 11:7).

о-крезил 2,3,4,6-тетра-*О*-ацетил-α-D-глюкопиранозид 9 Выход 68%. Т. пл 100-101 °С. (Лит. 101-102 °С [211]).

К гликозиду 2 (0.2 г, 0.45 ммоль) и NaHCO₃ (0.38 г, 4.50 ммоль) прилили 4 мл безводного CHCl₃. Далее при облучении лампой накаливания мощностью 100 Вт добавили Вr₂ (23.5 мкл, 0.45 ммоль) и проводили реакцию в течение 1 ч. при интенсивном перемешивании до исчезновения окраски реакционной Реакционную фильтровали, избавления массы. смесь с целью OT неорганических продуктов. Затем промывали осадок на фильтре 20 мл хлороформа, и отгоняли хлороформ. Остаток перекристаллизовывали из этанола. В случае присутствия дибромпроизводного (ВЭЖХ-контроль), перекристаллизовывали еще раз.

2-(2,3,4,6-тетра-*O***-ацетил-β-D-глюкопиранозилокси)** бензилбромид (**26).** Выход 78 %, т.пл. 150-151 °С. УФ λ max (EtOH)/нм: 277. ИК (KBr), v/см– 1: 2960, 1750, 1603, 1490, 1380, 1240, 1210, 1040, 108, 755. Спектр ¹Н ЯМР (DMSO-*d*6, 300 МГц) δ: 1.98, 2.01, 2.04 (4×3H, c, Ac); 4.09 (1H, д, *J*=12.6 H-5'); 4.21-4.30 (2H, м, H-6'b, H-7b); 4.49-4.58 (2H, м, C-6'a, C-7a); 4.99 (1H, дд~т, *J*=9.6 Гц, H-4'); 5.12 (1H, м, H-3'); 5.41 (1H, м, H- 2'); 5.56 (1H, д, *J*=7.8 Гц, H-1'); 7.06 (2H, м, H-2, H-4); 7. 32 (1H, м, H-3); 7.42 (1H, д, *J*=7.8 Гц, H-5). Спектр ¹³С ЯМР (DMSO-*d*6, 75.5 МГц) δ: 20.4 (4×CH3, Ac); 28.9 (CH2, C-7); 61.8 (CH2, C-6'); 68.0 (CH, C-4'); 70.2 (CH, C-2'); 70.9 (CH, C-3'); 71.8 (CH, C-5'); 97.0 (CH, C- 1'); 114.9 (C, C-2); 122.9 (CH, C-4); 126.5 (CH, C-3); 130.2 (CH, C-6); 131.2 (CH, C-5); 154.1 (C, C-1); 169.1; 169.3; 169.5; 169.9 (4×C=O, Ac).

4.4 Общая процедура снятия защитных групп и ацетилирования гликозидов 29 и 30

К раствору NaOH (245 мг, 6.12 ммоль) в воде (4 мл, 0.22 моль) добавляли гликозид **26** или **27** (0.41 г, 0.82 ммоль) и далее смесь нагревали с обратным холодильником при температуре 70 0 С в течение 1 часа. Затем реакционную смесь обрабатывали кислой катионообменной смолой KU-2-8 до pH 7, фильтровали и концентририровали в вакууме. Затем прилили уксусный ангидрид (5 мл) и пиридин (1 мл) к остатку и перемешивали в течение 20 ч при комнатной температуре. Далее реакционную смесь выливали в 10 мл воды подкисленной серной кислотой. Осажденные кристаллы фильтровали и перекристаллизовывали из *EtOH* с получением гликозидов **25** и **31**.

Реагенты и условия: а. NaOH, 70 C 0 ; b. Ac₂O, Py, RT

2-[(2',3',4',6'-тетра-О-ацетил-β-D-глюкопиранозил)-окси] бензойная кислота (25). Бесцветные кристаллы, выход 50%, Т.пл. 163-164 °С. (Лит 164-165 °С [168]). УФ λ , nm (EtOH): 282. IR (KBr), см⁻¹: 3438, 2975, 2343, 1725, 1604, 1496, 1376, 1232, 1069, 1042. ¹Н ЯМР (CDCl₃, 300 МГц), δ , м.д.: 2. 05, 2.09 (12H, с, 4×CH₃); 3,89 – 3,91 (1H, м, H-5');4,18 (1H, д, *J*=10,8 Гц, H – 6'b); 4.25 (1H, дд, *J*=4.8, 11.7 Гц, H-6'a); 5.21 (1H, д, *J*=9,3 Гц, H – 4'); 5.28 (1H, м, H – 2'); 5.33 (2H, д, *J*=4,8 Гц H – 1',H-3'); 7.17-7.26 (2H, м,H-4, H-2); 7.51 (1H, т, *J*=7,5 Гц, H-3); 8.07 (1H, д, *J*=7,2 Гц, H-5); ЯМР ¹³С (CDCl₃, 75 МГц), δ , м.д.: 20.5 (4×CH₃, Ac); 61.5 (CH2, C-6'); 68.9 (CH, C-4'); 70.8 (CH, C-3'); 76,8(CH, C-2',C-5'); 99.5 (CH, C-1'); 116.5 (CH, C-2); 120.2 (CH, C-4); 123.9 (C, C-6); 133.4 (CH, C-5); 134.8 (CH, C-3); 156.5 (C, C-1); 166.4 (C=O, C-7); 169.6; 169.8; 169.9; 170.3 (4×C=O, Ac).

4-[(2',3',4',6'-тетра-О-ацетил-β-D-глюкопиранозил)-окси] бензойная кислота (31). Бесцветные кристаллы, выход 35%, Т пл 175-178°С. (Лит 178-(EtOH):246. 180°C λ. Ик см⁻¹: [219]). УΦ nm (KBr), 3089. 2366,1753,1714,1609,1512,1371,1229,1070,1046,775; NMR 1H (CDCl₃, 300 МГц), δ, м.д.: 2. 05, 2.06, 2.062, 2.08 (12H, с, 4×СН3); 3.90-3.94 (1H, м, H-5'); 4.15 (1Н, дд, J=2.1, 12.0 Гц, H – 6'b); 4.27-4.32 (1Н, дд, J=5.4, 12.3, Гц, H-6'a); 5.18-5.21 (2H, м, H-3', H-4'); 5.28-5.36 (2H, м, H-1',H-2'); 7.02 (2H, д, *J*=9.0 Гц, Н – 2,Н-4); 8.05 (2Н, д, *J*=9.0 Гц, Н-4, Н-5); ЯМР 13С (CDCl₃, 75 МГц), б, м.д.: 20.7 (4×CH3, Ac); 62.0 (CH2, C-6); 68.2 (CH, C-4'); 71.1 (CH, C-2'); 72.3 (CH, -3'); 72.6 (CH, C-5'); 98.2 (CH, C-1'); 116.3 (CH, C-2,C-4); 124.2 (C, C-6); 132.4 (CH, C-1, C-5); 160.1 (C, C-3); 169.5 (C=O, C-7); 170.3; 170.7 (4×C=O, Ac).

4.5 Конденсация гликозидных частей 25 и 26, 25 и 31

Общая методика. К смеси гликозида 26 или 31 (220 мг, 0.47 ммоль), гликозида 25 (231 мг, 0.45 ммоль) и NaHCO₃ (75.6 мг, 0.9 ммоль) прилили ДМФА (10 мл, 0.13 моль) и выдерживали при комнатной температуре при тщательном перемешивании в течение 72 ч. Затем медленно прилили реакционную массу к 20 мл воды при тщательном перемешивании, в результате чего через 5 – 10 мин выпадают белые кристаллы. При необходимости полученный продукт кристаллизовали из спирта (контроль ВЖХ).

Дигликозид Virgaureoside A, октаацетат (32). Бесцветные кристаллы, выход 57 %, Т.пл. 110-111 °С. УФ λ , nm (EtOH): 252. IR (KBr), см-1: 3094, 2369, 1755, 1604, 1497, 1376, 1069, 1232,1069,1042. NMR ¹H (CDCl₃, 300 МГц), δ , м.д.: 2.06,2.07 (24H, с, 8×CH3); 3.81-3.93 (2H, м, H-5',H-5''); 4,15-4.22 (2H, м, H – 6'b,H-6''b); 4.28-4.32 (2H, м, H-6'a,H-6''a); 5.12-5.22 (4H, м, H-2',H-2'', H-3', H-3''); 5.27-5.33 (6H, м, H-1',H-1'', H-4', H-4'',H-8); 7.10-7.19 (4H, м, H-4, H-6, H-11,H-13); 7.28 (2H, м, H-12,H-14); 7.43 (2H, м, H-5, H-13); 7.76 (1H, д, J=6.9, H-3); ЯМР ¹³С (CDCl₃, 75 МГц), δ , м.д.: 20.11 (8×CH3, Ac); 60.80 (CH₂, C-8); 61.5 (2×CH2, C-6',C-6''); 67.8 (2×CH, C-4',C-4''); 70.3 (2×CH, C-2',C-2''); 71,5(2×CH, C-3',C-3''); 72.1 (2×C,C-5', C-5''); 99.0 (CH, C-1'); 99.5 (CH, C-1''); 115.5 (CH, C-11); 117.5 (CH,C-6);122.5 (C, C-2); 123.0 (CH, C-4); 132.1 (CH, C-13); 125.9 (CH, C-9); 128.7 (CH, C-12,C-14); 130.6 (CH, C-5); 133.8 (C, C-3); 153.8 (C, C-1); 155.1 (C, C-10); 164.5 (C=0, C-7); 168.9; 169.8; 170.0 (8×C=0, Ac).

Дигликозид *изо*-Virgaureoside A, октаацетат (33). Бесцветные кристаллы, выход 59 %, Т.пл. 176-177 °С. УФ λ , nm (EtOH): 248. IR (KBr), см⁻¹: 2356, 2330, 1752, 1609, 1489, 1377, 1271, 1238, 1058,1046. NMR¹H (CDCl₃, 300 МГц), δ , м.д.: ,2.04, 2.05, 2.066, 2.073, 2.08 (24H, с, 8×CH3, Ac); 3.82-3.94 (2H, м, H-5',H-5''); 4,15-4.21 (2H, м, H – 6'b,H-6''b); 4.29 (2H, дд,J=5.1, 11.4, Гц, H-6'a,H-6''a); 5.14-5.24 (4H, м, H-2',H-2'', H-3', H-3''); 5.30-5.37 (6H, м, H-1',H-1'', H-4', H-4'',H-8); 7.01 (2H, д, *J*=8,7, Гц,H-2, H-4); 7.09-7.12 (2H, м, H-11,H-13); 7.30 (1H, м, H-12); 7.40(1H, д, J=6.3, H-14); 8.02 (2H, д, J=8.7, H-1, H-5); ЯМР ¹³С (CDCl3, 75 МГц), δ , м.д.: 20.61 (8×CH3, Ac); 61.8 (CH₂, C-8); 61.9 (2×CH2, C-6',C-6''); 68.1 (2×CH, C-4',C-4''); 68.6 (2×CH, C-2',C-2''); 70,5(2×CH, C-3',C- 3''); 72.6 (2×C,C-5', C-5''); 98.3 (CH, C-1'); 99.5 (CH, C-1"); 113.8 (CH, C-11); 116.1 (2×C, C-2, C-4); 123.5 (CH, C-13); 123.6 (CH, C-6);126.1(CH,C-9); 129.5 (CH, C-12,C-14); 132.0 (2×CH, C-1,C-5); 159.8 (C, C-3); 164.4 (C, C-10); 166.0 (C=O, C-7); 169.5; 169.8; 170.0 (8×C=O, Ac).

4.6 Селективное снятие ацильной защиты

К раствору *пер*-ацетилгликозида **1-9,12** (1 ммоль) в CHCl₃ (1 мл) и 96% EtOH (3 мл) добавили 36% -ный раствор хлористоводородной кислоты (1 мл, 10 ммоль) при этом происходило полное растворение гликозида. Реакционную смесь термостатировали при 30 °C, до тех пор, пока ВЭЖХ-мониторинг не показал максимальный пик 2-*O*-ацетилгликозида (времена удерживания приведены в таблице 1). Реакционную смесь обрабатали анионообменной смолой AB-17 до достижения pH 7, отфильтровали и концентрировали в вакууме. Очистку реакционной массы проводили колоночной хроматографией на силикагеле (CHCl₃: EtOH 15: 1 \rightarrow 4: 1) с получением 2-*O*-ацетилгликозидов **1а-8а, 11а** и полностью дезацетилированных гликозидов **1b-9b, 12b**.

Фенил 2-О-ацемил-β-D-глюкопиранозид 1а. Белые кристаллы, т.пл.= 128-129 °C. ¹H NMR (300 MHz, MeOD-*d*4) δ 2.10 (s, 3H, Ac), 3.55 – 3.44 (m, 2H, H-3, H-4), 3.65 (ddd, *J* = 9.3, 5.3, 3.8 Hz, 1H, H-5), 3.74 (dd, *J* = 12.1, 5.1 Hz, 1H, H-6a), 3.93 (dd, *J* = 12.0, 1.4 Hz, 1H, H-6b), 4.98 (dd, *J* = 9.3, 8.1 Hz, 1H, H-2), 5.08 (d, J = 8.0 Hz, 1H, H-1), 7.08 – 6.97 (m, 3H, Ar*H*), 7.29 (dd, J = 8.5, 7.5 Hz, 2H, H-3, H-5 Ar*H*) ppm. ¹³C NMR (75 MHz, MeOD-*d*4) δ 18.9 (CH3, Ac), 60.4 (C-6), 69.4 (C-4), 73.2 (C-2), 74.0 (C-3), 76.3 (C-5), 98.5 (C-1), 115.7 (2 × C, Ar), 121.7 (C-4, Ar), 128.5 (2 × C, Ar), 156.9 (C-1, Ar), 169.9 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₄H₁₈O₇Na⁺ 321.0950. Found 321.0945.

о-крезил 2-О-ацетил-β-D-глюкопиранозид 2а. Белые кристаллы, т.пл.= 159-161 °С. ¹Н NMR (400 МГц, DMSO-*d6*) δ 2.04 (s, 3H, Ac), 2.06 (s, 3H, Me), 3.28 (ddd~td, *J* = 9.0, 5.3 Гц, 1H, H-4), 3.47 – 3.42 (m, 1H, H-5), 3.55 – 3.47 (m, 2H, H-3, H-6a), 3.74 (dd, *J* = 11.5, 5.0 Гц, 1H, H-6b), 4.69 (t, *J* = 5.5 Гц, 1H, 6-OH), 4.84 (dd~t, *J* = 8.8 Гц, 1H, H-2), 5.04 (d, *J* = 8.1 Гц, 1H, H-1), 5.29 (d, *J* = 5.3 Гц, 1H, 4-OH), 5.40 (d, *J* = 5.3 Гц, 1H, 3-OH), 6.91 (dd~t, *J* = 7.1 Гц, 1H, H-4, Ar*H*), 7.07 (d, *J* = 8.3 Гц, 1H, H-2, Ar*H*), 7.19 – 7.10 (m, 2H, H-3, H-5, Ar) ppm. ¹³C NMR (126 МГц, DMSO-*d6*) δ 14.2 (Me), 19.03 (CH3, Ac), 60.4 (C-6), 69.4 (C-4), 73.1 (C-2), 74.0 (C-3), 76.3 (C-5), 98.6 (C-1), 113.8 (C-2, Ar), 121.5 (C-4, Ar), 126.0 (Ar), 126.3 (Ar), 129.6 (Ar), 155.0 (C-1, Ar), 169.8 (C=O, Ac) ppm (Приложение A - ¹H NMR, ¹³C NMR; Приложение Б- COZY, HSQC, HMBC). HR-ESI-MS [M+Na]⁺ Calcd for C₁₅H₂₀O₇Na⁺ 335.1106 Found 335.1094.

о-крезил 2-*О-ацетил-β-D-галактопиранозид* 3*а*. Белые кристаллы, т.пл.= 161-162 °C. ¹H NMR (300 МГц, MeOD-*d*4) δ 2.11 (s, 3H, Ac), 2.15 (s, 1H, Me), 3.90 – 3.68 (m, 4H, H-3, H-5, H-6a, H-6b), 3.98 (d, *J* = 3.1 Гц, 1H, H-4), 5.00 (d, *J* = 8.0 Hz, 1H, H-1), 5.37 (dd, *J* = 10.0, 8.0 Гц, 1H, H-2), 6.96 – 6.88 (m, 1H, H-4, Ar*H*), 7.18 – 7.07 (m, 3H, Ar*H*) ppm. ¹³C NMR (75 МГц, MeOD-*d*4) δ 14.8 (Me), 19.7 (CH3, Ac), 60.9 (C-6), 69.0 (C-4), 71.7 (C-2), 72.2 (C-3), 75.7 (C-5), 99.7 (C-1), 114.5 (C-2 Ar), 122.0 (C-4 Ar), 126.6 (C-Ar), 126.9 (Ar), 130.2 (Ar), 155.6 (C-1), 170.6 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₅H₂₀O₇Na⁺ 335.1106 Found 335.1101.

п-крезил 2-*О-ацетил-β-D-глюкопиранозид* 4*a*. Белые кристаллы, т.пл. = 144-145 °C. ¹H NMR (500 МГц, DMSO-*d*6) δ 2.02 (s, 3H, Ac), 2.23 (s, 3H, Me), 3.25 (ddd, *J* = 9.2, 9.0, 5.6 Гц, 1H, H-4), 3.39 (ddd, *J* = 9.2, 5.7, 1.6 Гц, 1H, H-5), 3.47 (dd, *J* = 9.3, 5.6 Гц, 1H, H-3), 3.49 (dd, *J* = 11.9, 6.0 Гц, 1H, H-6a), 3.70 (ddd,

J = 11.8, 5.5, 1.6 Γц, 1H, H-6b), 4.63 (d, *J* = 5.8 Γц, 1H, 6-OH), 4.74 (dd, *J* = 9.5, 8.2 Γц, 1H, H-2), 5.03 (d, *J* = 8.1 Γц, 1H, H-1), 5.22 (d, *J* = 5.4 Γц, 1H, 4-OH), 5.32 (d, *J* = 5.5 Γц, 1H, 3-OH), 6.86 (d, *J* = 8.5 Γц, 2H, H- 3,H-5, Ar*H*), 7.08 (d, *J* = 8.2 Γц, 2H, H-2, H-6, Ar*H*) ppm. ¹³C NMR (126 MΓц, DMSO-*d*6) δ 20.1 (CH3, Ac), 20.8 (Me), 60.5 (C-6), 69.8 (C-4), 73.7 (C-2), 73.9 (C-3), 77.1 (C-5), 98.5 (C-1), 116.4 (2 × C, C-3, C-5, Ar), 129.8 (2 × C, C-2, C-6, Ar), 131.2 (C-4, Ar), 155.0 (C-1, Ar), 169.3 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for $C_{15}H_{20}O_7Na^+$ 335.1106 Found 335.1099.

о-нитрофенил 2-О-ацетил-β-D-глюкопиранозид 5а. Белые кристаллы, т.пл. = 164-165 °C. ¹H NMR (500 МГц, DMSO-*d*6) δ: 2.02 (s, 3H, Ac), 3.27 (ddd~td, *J* = 8.8, 5.3 Гц, 1H, H-4), 3.54 – 3.47 (m, 3H, H-3, H-5, H-6a), 3.75 (dd, *J* = 9.6, 5.3 Гц, 1H, H-6b), 4.71 (t, *J* = 5.6 Гц, 1H, OH-6), 4.79 (dd, *J* = 9.5, 8.2 Гц, 1H, H-2), 5.28 (d, *J* = 8.1 Гц, 1H, H-1), 5.31 (d, *J* = 5.5 Гц, 1H, OH-4), 5.38 (d, *J* = 5.5 Гц, 1H, OH-3), 7.22 (ddd~td, *J* = 8.0, 0.9 Гц, 1H, H-3, Ar*H*), 7.46 (dd, *J* = 8.5, 0.8 Гц, 1H, H-5, Ar*H*), 7.64 (ddd, *J* = 8.5, 7.5, 1.6 Гц, 1H, H-4, Ar*H*), 7.82 (dd, *J* = 8.0, 1.5 Hz, 1H, H-2, Ar*H*) ppm. ¹³C NMR (126 МГц, DMSO-*d*6) δ: 20.7 (CH₃, Ac), 60.5 (C-6), 69.6 (C-4), 72.9 (C-3), 73.7 (C-2), 77.5 (C-5), 98.8 (C-1), 117.7 (C-5, Ar), 122.7 (C-3, Ar), 124.3 (C-2, Ar), 133.9 (C-4, Ar), 140.4 (C-6, Ar), 148.8 (C-1, Ar), 168.9 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₄H₁₇O₉Na⁺ 366.0801 Found 366.0796.

п-нитрофенил 2-О-ацетил-β-D-глюкопиранозид ба. Белые кристаллы, т.пл. = 172-173 °C. ¹H NMR (500 МГц, DMSO-*d*6) δ 2.03 (s, 3H, Ac), 3.30 (ddd, J = 9.1, 9.0, 5.5 Гц, 1H, H-4), 3.57 - 3.47 (m, 3H, H-3, H-5, H-6a), 3.72 (dd, J =10.0, 5.3 Гц, 1H, H-6b), 4.66 (t, J = 5.6 Гц, 1H, 6-OH), 4.82 (dd, J = 9.5, 8.2 Гц, 1H, H-2), 5.31 (d, J = 5.5 Гц, 1H, 4-OH), 5.40 (d, J = 8.2 Гц, 1H, H-1), 5.41 (d, J =5.6 Гц, 1H,3- OH), 7.22 – 7.15 (m, 2H, Ar*H*), 8.24 – 8.16 (m, 2H, Ar*H*) ppm. ¹³C NMR (126 МГц, DMSO-*d*6) δ 20.8 (CH3, Ac), 60.3 (C-6), 69.5 (C-4), 73.3 (C-2), 73.7 (C-3), 77.4 (C-5), 97.3 (C-1), 116.7 (2 × C, C-3, C-5, Ar), 125.7 (2 × C, C-2, C-6, Ar), 142.1 (C-1, Ar), 161.7 (C-4, Ar), 169.3 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₄H₁₇O₉Na⁺ 366.0801 Found 366.0790. *о-метоксифенил* 2-О-ацетил-β-D-глюкопиранозид 7а. Белые кристаллы, т.пл. = 149-150 °C. ¹H NMR (500 МГц DMSO-d6) δ : 2.02 (s, 3H, Ac), 3.25 (ddd~td, J = 9.2, 5.5 Гц, 1H, H-4), 3.36 (dd, J = 9.7, 1.5 Гц, 1H, H-5), 3.49 – 3.44 (m, 1H, H-3), 3.50 (ddd~dt, J = 12.2, 6.1 Гц, 1H, H-6a), 3.75 – 3.69 (m, 1H, H-6b), 3.72 (s, 3H, OMe), 4.64 (t, J = 5.8 Гц, 1H, 6-OH), 4.78 (dd, J = 9.4, 8.3 Гц, 1H, H-2), 4.92 (d, J = 8.1 Гц, 1H, H-1), 5.21 (d, J = 5.4 Гц, 1H, 4-OH), 5.31 (d, J =5.4 Гц, 1H, 3-OH), 6.87 (ddd, J = 8.1, 6.7, 2.3 Гц, 1H, H-4, ArH), 7.03 – 6.96 (m, 2H, H-3, H-2, ArH), 7.17 (dd, J = 8.0, 0.8 Гц, 1H, H-5, ArH) ppm. ¹³C NMR (126 MГц, DMSO-d6) δ : 20.8 (CH3, Ac), 55.9 (OMe), 60.6 (C-6), 69.9 (C-4), 73.6 (C-3), 73.9 (C-2), 77.3 (C-5), 99.9 (C-1), 113.1 (Ar), 118.0 (Ar), 120.8 (Ar), 123.3 (Ar), 146.7 (C-1, Ar), 149.8 (C-6, Ar), 169.2 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₅H₂₀O₈Na⁺ 351.1056 Found 351.1049.

о-метоксифенил 3-О-ацетил-β-D-глюкопиранозид 7с Белые кристаллы, т.пл. = 125-126 °C. ¹H NMR (500 МГц, DMSO-*d*6) δ 2.05 (s, 3H, Ac), 3.46 – 3.35 (m, 3H, H-2, H-4, H-5), 3.49 (dd, *J* = 11.8, 5.0 Гц, 1H, H-6a), 3.66 (dd, *J* = 11.9, 1.2 Гц, 1H, H-6b), 3.75 (s, 3H, OMe), 4.89 (dd~t, *J* = 9.2 Гц, 1H, H-3), 5.05 (d, *J* = 7.8 Гц, 1H, H-1), 5.25 (s, 1H, OH), 5.49 (s, 1H, OH), 6.87 (ddd~td, *J* = 8.0, 1.8 Гц, 1H, Ar*H*), 7.01 – 6.92 (m, 2H, Ar*H*), 7.12 (dd, *J* = 8.1, 1.1 Гц, 1H, Ar*H*) ppm. ¹³C NMR (126 МГц, DMSO-*d*6) δ 21.2 (CH3, Ac), 55.6 (OMe), 60.3 (C-6), 67.4 (C-4), 71.2 (C-2), 76.6 (C-5), 78.0 (C-3), 99.7 (C-1), 112.8 (Ar), 115.6 (Ar), 120.7 (Ar), 122.2 (Ar), 146.4 (C-1, Ar), 149.1 (C-6, Ar), 169.8 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₅H₂₀O₈Na⁺ 351.1056 Found 351.1051.

п-метоксифенил 2-О-ацетил-β-D-глюкопиранозид 8а. Белые кристаллы, т.пл. = 184-185 °C. ¹H NMR (500 МГц, DMSO-d6) δ 2.04 (s, 3H, Ac), 3.24 (dd, J = 8.9, 5.5 Гц, 1H, H-4), 3.37 (ddd, J = 8.9, 5.6, 1.6 Гц, 1H, H-5), 3.46 (dd, J = 9.3, 5.5 Гц, 1H, H-3), 3.49 (dd, J = 12.1, 6.2 Гц, 1H, H-6a), 3.70 (s, 3H, OMe), 3.72 (dd, J = 5.5, 1.8 Гц, 1H, H-6b), 4.63 (t, J = 5.8 Гц, 1H, 6-OH), 4.73 (dd, J = 9.5, 8.2 Гц, 1H, H-2), 4.95 (d, J = 8.1 Гц, 1H, H-1), 5.21 (d, J = 5.4 Гц, 1H, 4-OH), 5.32 (d, J = 5.5 Гц, 1H, 3-OH), 6.87 – 6.81 (m, 2H, H-2, H-6, ArH), 6.96 – 6.89 (m, 2H, H-3, H-4, ArH) ppm. ¹³C NMR (126 МГц, DMSO-d6) δ 20.8 (CH3, Ac), 55.4 (OMe), 60.6 (C-6), 69.8 (C-4), 73.7 (C-2), 73.9 (C-3), 77.1 (C-5), 99.3 (C-1), 114.5 (2 × C, C-2, C-6, Ar), 117.8 (2 × C, C-3, C-5, Ar), 151.0 (C-1, Ar), 154.7 (C-4, Ar), 169.3 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for $C_{15}H_{20}O_8Na^+$ 351.1056 Found 351.1058.

п-метоксифенил 3-О-ацетилІ-β-D-глюкопиранозид 8с. Белые кристаллы, т.пл. = 172-174 °С. ¹H NMR (400 MHz, MeOD-*d*4) δ 2.13 (s, 3H, Ac), 3.47 (ddd, *J* = 9.8, 5.0, 2.2 Гц, 1H, H-5), 3.54 (dd, *J* = 7.5, 2.1 Гц, 1H), 3.57 (dd~t, *J* = 4.1 Гц, 1H), 3.72 (dd, *J* = 12.1, 5.1 Гц, 1H, H-6a), 3.88 (dd, *J* = 12.1, 2.1 Гц, 1H, H-6b), 4.87 (d, *J* = 8.5 Гц, 1H, H-1), 4.88 (s, 3H, OMe), 5.02 (dd~t, *J* = 9.4 Гц, 1H, H-3), 6.88 – 6.71 (m, 2H, Ar*H*), 7.11 – 6.98 (m, 2H, Ar*H*) ppm. ¹³C NMR (101 МГц, MeOD-*d*4) δ 19.1 (CH3, Ac), 54.0 (OMe), 60.1 (C-6), 67.5 (C-4), 71.2 (C-2), 75.8 (C-5), 76.9 (C-3), 101.2 (C-1), 113.4 (2 × C, C-2, C-6, Ar), 117.3 (2 × C, C-3, C-5, Ar), 151.0 (C-1, Ar), 154.7 (C-4, Ar), 170.6 (C=O, Ac) ppm. HR-ESI-MS [M+Na]⁺ Calcd for C₁₅H₂₀O₈Na⁺ 351.1056 Found 351.1054.

п-метоксифенил 2-*О-ацетил-β-D-галактопиранозид* 12*а*. Белые кристаллы, mp 124-125 °C; $[a]_D^{24} = +11.8 (c = 1.01, C_2H_5OH)$; $R_f = 0.50 (CHCl_3 - EtOH 5:1)$; ¹H NMR (300 MHz, MeOD, δ , ppm, *J*, Hz): 2.10 (s, 3H, CH₃, Ac), 3.68 (ddd, 1H, *J*_{4,5} 1.0, *J*_{5,6a} 5.1, *J*_{5,6b} 6.8, H-5), 3.74 (s, 3H, CH₃, OMe), 3.75 (dd, 1H, *J*_{3,4} 3.5, *J*_{2,3} 9.9, H-3), 3.77 (dd, 1H, *J*_{5,6a} 5.1, *J*_{6a,6b} 11.3, H-6a), 3.82 (dd, 1H, *J*_{5,6b} 6.8, *J*_{6a,6b} 11.3, H-6b), 3.94 (dd, 1H, *J*_{4,5} 1.0, *J*_{3,4} 3.5, H-4), 4.89 (d, 1H, *J*_{1,2} 8.0, H-1), 5.25 (dd, 1H, *J*_{1,2} 8.0, *J*_{2,3} 9.9, H-2), 6.80–6.88 (m, 2H, OC₆H₄O), 6.92–7.01 (m, 2H, OC₆H₄O). ¹³C NMR (75 MHz, MeOD, δ , ppm): 21.0 (CH₃, Ac), 56.1 (CH₃, OMe), 62.3 (C-6), 70.4 (C-4), 73.1 (C-3), 73.8 (C-2), 77.1 (C-5), 102.1 (C-1), 115.6, 119.2, 153.0, 156.8 (OC₆H₄O), 172.2 (C=O, Ac). HR-ESI-MS [M+K]⁺ Calcd for C₁₅H₂₀O₈K⁺ 367.0790 Found 367.0788.

Фенил -β-D-глюкопиранозид 1b. Бесцветные кристаллы, выход 50 %, Т.пл. 171-173 °С. (Лит 171-172 °С [220]).

о-крезил -β-D-глюкопиранозид 2b. Бесцветные кристаллы, выход 42 %, Т.пл. 169-170 °С. (Лит 169 °С [221]).

о-крезил -β-D-галактопиранозид **3b.** Бесцветные кристаллы, выход 61 %, Т.пл. 180-181 °C. (Лит 179 - 180 °C [222]).

п-крезил -β-D-глюкопиранозид 4b. Бесцветные кристаллы, выход 70 %, Т.пл. 179-181 °C. (Лит 178 - 179 °C [223]).

о-нитро -β-D-глюкопиранозид 5b. Желтые кристаллы, выход 73 %, Т.пл. 197-199 °С. (Лит 198 °С [220]).

р-нитро -β-D-глюкопиранозид 6b. Светло желтые кристаллы, выход 75 %, Т.пл. 163-164 °C. (Лит 163 °C [220]).

о-метоксифенил -β-D-глюкопиранозид 7b. Бесцветные кристаллы, выход 51 %, Т.пл. 147-148 °C. (Лит 148 °C [224]).

п-метоксифенил -β-D-глюкопиранозид 8b. Бесцветные кристаллы, выход 75 %, Т.пл. 174-176 °C. (Лит 174 °C [221]).

о-крезил -α-D-глюкопиранозид 9b. Бесцветные кристаллы, выход 91 %, Т.пл. 169-170 °С. (Лит 170 -172 °С [225]).

о-метоксифенил -β-D-галактопиранозид 12b. Бесцветные кристаллы, выход 45 %, Т.пл. 207-208 °C. (Лит 207 - 209 °C [222]) 207-209 °C.

4.7 Получение 2-*О*-ацил-β-*D*-галактопиранозидов 12а и 16 с использованием стратегии защитных групп

Реагенты и условия: **a)** MeONa, MeOH, RT; **b)** DMP, CSA, RT; **c)** Ac₂O, Py, RT; **d)** C₆H₅COCl, Py, CHCl₃, RT **e)** TFA, CH₂Cl₂, 0 °C;

К соединению **12** (2 г, 4.4 ммоль) растворенного в MeOH абс. (350 мл, 8.65 моль) добавили 1.760 мл MeONa и перемешивали реакционную массу в течение 48 часов при комн. температуре. По завершении реакции прилили CH₃COOH (1.760 мл, 0.03 моль) и реакционную массу концентрировали. Затем

к 1 г. выделенной реакционной массы добавили CSA (17.5 мг, 0.075 ммоль). Далее при общем потоке аргона добавили DMP (105 мл, 850 ммоль) и перемешивали реакционную массу в течение 48 часов. Полная конверсия продукта фиксируется по тсх (система хлороформ– этилацетат 5:1). Далее по завершению реакции добавили Et_3N (7 мл, 0.05 моль) и оставили перемешиваться в течение 30 мин. Затем реакционную массу упарили и остаток соупаривали с толуолом (2 ×10 мл).

Далее для получения соединения **12а** использовали промежуточное соединения **13**. Для этого соединение **13** (1420 мг, 2.83 ммоль) растворили в пиридине (4 мл, 50 ммоль) и добавили уксусного ангидрида (8 мл, 85 ммоль) и перемешивали в течение 24 ч. Полную конверсию продукта фиксировали по TCX (система петролейный эфир – этилацетат 7:3). По завершении реакции добавили 8 мл CH₃OH и перемешивали в течение 15 мин. Затем реакционную массу концентрировали. Остаток растворили в 30 мл CH₂Cl₂ и охладили до 0 °C. После в реакционную массу добавили воду (300 мкл, 19 моль), а затем трифторуксусную кислоту (3 мл, 0.04 моль) и перемешивали в течение 2 ч. Полную конверсию продукта фиксировали по TCX (хлороформ – спирт 5:1). Далее добавили 10 мл воды и перемешивали 5 мин. Затем реакционную массу концентририровали. Очистку реакционной массы проводили колоночной хроматографией на силикагеле (хлороформ: спирт 9:1 →3:1). Выход 63 %.

Далее для получения соединения **16** также использовали промежуточное соединения **13**. Для этого соединение **13** (1449 мг, 3.64 ммоль) растворили в CH₂Cl₂ (8.2 мл) и добавили пиридин (2.7 мл). Затем реакционную масу охладили до 0 °C и добавили C₆H₅COCl (610 мкл, 5.25 ммоль) и перемешивали в течение 2 ч. Полную конверсию продукта фиксировали по TCX (толуол – этилацетат 9:1). Затем добавили CH₃OH (1 мл) и перемешивали в течение 30 мин. Затем реакционную массу экстрагировали CH₂Cl₂ (50 мл). Органический слой промывали холодной водой (1 × 50 мл). Далее промывали насыщенным раствором NaHCO₃ (1 × 50 мл). И на последнем этапе органический слой промывали (1 × 50 мл) водой. Затем органический слой сушили над Na₂SO₄ и

концентрировали. Далее в реакционную массу добавили воду (475 мкл, 17 моль), а затем трифторуксусную кислоту (4.275 мл, 0.04 моль) и перемешивали в течение 10 мин при комнатной температуре. Полную конверсию продукта фиксировали по TCX (хлороформ – этанол 5:1). Далее добавили 10 мл воды и перемешивали 5 мин. Затем реакционную массу концентририровали и соупарили с водой (2 × 10 мл). Очистку реакционной массы проводили колоночной хроматографией на силикагеле (хлороформ: спирт 9:1 \rightarrow 2:1). Выход 51 %

п-метоксифенил 2-*О-бензил-β-D-галактопиранозид* (16). Белые кристаллы, $[a]_D^{24} = +15.7$ (c = 1.01, C_2H_5OH); $R_f = 0.52$ (CHCl₃ – EtOH 5:1); ¹H NMR (300 МГц, MeOD, δ , ppm, J, Hz): 3.71 (s, 3H, CH₃, OMe), 3.68 (ddd, 1H, $J_{4,5}$ 1.0, $J_{5,6a}$ 5.1, $J_{5,6b}$ 6.8, H-5), 3.75 (dd, 1H, $J_{3,4}$ 3.5, $J_{2,3}$ 9.9, H-3), 3.77 (dd, 1H, $J_{5,6a}$ 5.1, $J_{6a,6b}$ 11.3, H-6a), 3.82 (dd, 1H, $J_{5,6b}$ 6.8, $J_{6a,6b}$ 11.3, H-6b), 3.94 (dd, 1H, $J_{4,5}$ 1.0, $J_{3,4}$ 3.5, H-4), 5.06 (d, 1H, $J_{1,2}$ 8.0, H-1), 5.53 (dd, 1H, $J_{1,2}$ 10.1, $J_{2,3}$ 7.9, H-2), 6.72–6.81 (m, 2H, OC₆H₄O), 6.88–6.96 (m, 2H, OC₆H₄O), 7.48 (t, 2H, J=7.9, Bz), 7.61 (t, 1H, J=7.2, Bz), 8.07 (d, 2H, J=7.7, Bz) . ¹³C NMR (75 МГц, MeOD, δ , ppm): 54.5 (CH₃, OMe), 60.9 (C-6), 68.9 (C-4), 71.6 (C-3), 73.0 (C-2), 75.6 (C-5), 100.9 (C-1), 114.1, 117.8, 117.8 (OC₆H₄O), 165.6 (C=O, Bz). HR-ESI-MS [M+Na]⁺ Calcd for C₂₀H₂₂O₈Na⁺ 517.1469 Found 517.1467.

4.8 Селективное снятия ацильной защиты дигликозидов

К ацетилированному дигликозиду **32** или **33** (0.045 ммоль) добавили 650 мкл смеси HCl: EtOH: CHCl₃(1:3:1). Селективное снятие проводили при комнатной температуре в течение 2 дней (48 часов). Отгоняли смесь растворителей под вакуумом (температура бани не выше 45 °C), остаток подвергали колоночной хроматографии (хлороформ-этанол 8:1 \rightarrow 2:1).

Дигликозид Virgaureoside A (34). Белые кристаллы, выход 58 %, Т.пл. 180-181°C. УФ λ, нм (этанол): 247. ИК (КВг), см-1: 3398, 2401, 2303, 1693, ¹H NMR (DMSO-d6, 300 MFu) δ : 3.19 (1H, m, H-5"); the 3.20-3.60 1605. сигналы глюкозных фрагментов перекрываются с пиком ДМСО; 3.70 (1H, d, J = 11.4 Γμ, H-6'a); 4.87 (1H, d, J = 6.9 Γμ, H-1"); 5.03 (1H, m, H-1'); 5.43 (1H, d, J = 12.9 Γμ, H-8b); 5.48 (1H, d, J = 12.9 Γμ, H-8a); 6.94 (1H, t, J = 7.2 Γμ, H-4); 6.99 (1H, d, J = 8.4 Гц, H-12); 7.05 (1H, t, J = 7.5 Гц, H-14); 7.20 (1H, d, J = 8.4 Гц, H-2) 7.34 (1H, t, J = 7.8 Γμ, H-13); 7.43 (1H, d, J = 7.8 Γμ, H-9); 7.53 (1H, t, J = 7.2 Γμ, H-3); 7.83 (1H, d, J = 7.5 Γμ, H-5); ¹³C NMR (DMSO-d6, 75 MΓμ) δ: 61.0 (CH2, C-8); 62.3 (2 × CH2, C-6', C-6''); 68.1 (CH, C-4''); 69.9 (CH, C-4'); 74.0 (2 × CH, C-2',C-2"); 76.0 (2 × CH, C-3',C-3"); 76.9 (2 × C,C-5', C-5"); 100.9 (2 × CH, C-1', C-1"); 113.1 (CH, C-6); 115.0 (C, C-11); 117.4 (CH, C-2); 119.9 (CH, C-4); 121.6 (C, C-13); 124.5 (C, C-9); 129.0 (CH, C-12); 129.5 (CH, C-14); 130.0 (CH, C-3); 135.2 (CH, C-5); 155.2 (C, C-1); 160.1 (C, C-11); 168.9 (C = O, C-7). The 13 C NMR хорошо согласуется с работой Хилера [202] за исключением С-5 (128.4 ррт) и C-14 (133.5 ррт) углеродов.

Дигликозид *изо*-Virgaureoside A (**35**). Белые кристаллы, выход 53 %, Т.пл. 194-195 °С. УФ λ , нм (этанол) : 251. ИК (КВг), см-1: 3366, 2377, 2346 , 1707, 1607, 1406, 1376, 1286, 1244, 1078 ¹H NMR (CDCl3, 300 МГц), δ , м.д.: . 3.18-3.42 (10H, м, H -5 ', H - 5", H -4', H -4", H -3 ', H - 3", H-2 ', H-2 ", H -6'b, H -6 " 6) ; 3.66-3.72 (2H, м, H- 6'a, H- 6 ") ; 4.99-5.10 (2H, м, H-1 ', H-1 ") ; 7.03-7.06 (2m, H - 2, H -4) ; 7.11-7.20 (2H, м, H -11, H -13) ; 7.29-7.34 (1H, д, J = 7.5, Гц, H- 14), 7.40 (1H, м, H -12), 8.02 (2H, д, J = 8,7, H -1, H-5) ; ¹³C NMR(CDCl₃, 75 МГц), δ , м.д.: 60.6 (CH2, C -6 ") ; 60.7 (CH2, C-6 '); 61.5 (CH2 , C -8) ; 69.6 (CH, C -4 ") ; 69.7 (CH, C-4 '); 73.2 (CH, C-2 '); 73.4 (CH, C-2 "); 76.6 (2 × CH, C-3 ', C -3 ") ; 77.1 (2 × C, C -5', C-5 ") ; 99.8 (CH, C-1 '); 101.0 (CH, C-1 "); 115.1 (CH, C-11) ; 116.1 (2 × C, C - 2, C - 4) ; 121.9 (CH, C -13) ; 123.6 (CH, C -6) ; 125.2 (CH, C -9); 128.6 (CH, C -14); 129.4 (CH, C -12), 131.3 (2 × CH, C -2, C -4) ; 155.2 (C, C -3) ; 161.2 (C, C -10) ; 165.3 (C = O, C -7). HR-ESI-MS [M+H]⁺ Calcd for C₂₆H₃₄O₁₅ 586.1966 Found 586.1898.

4.9 Синтез галактозил-акцептора

К соединению 12а или 16 (3 ммоль) добавили TsOH (25.8 мг, 0.013 ммоль) 100 CH₃CN И растворили ΜЛ прикапали смесь В И бензилдиметилацеталь (900 мкл, 6 ммоль). Затем реакционную массу перемешивали при комн. температуре в течение 24 часов. Полная конверсия продукта фиксируется по ТСХ (система толуол – спирт 9:1). Далее по завершении реакции реакционную массу упаривали. Затем остаток экстрагировали хлороформом (50 мл) и промывали насыщенным раствором NaHCO₃ (3 ×50 мл). Далее органическую фазу промывали водой (2×50 мл).

Сушили над Na₂SO₄ фильтровали и упаривали. Очистку реакционной массы проводили колоночной хроматографией на силикагеле (хлороформ: спирт 9:1 → 3:1).

п-метоксифенил 2-О-ацетил-4,6-бензилиден-β-D-галактопиранозид 11 Белые кристаллы, 84 %: mp 104-106 °C; $[\alpha]_D^{24} = -28.4$ (с 0.97, CHCl₃); R_f = 0.48 (толуол – EtOH 9:1); ¹H NMR (300 МГц, CDCl₃, δ , ppm, *J*, Гц): 2.15 (s, 3H, CH₃, Ac), 2.60 (d, 1H, *J*_{3-OH,3} 11.0, 3-OH), 3.57 (ddd, 1H, *J*_{4,5} 0.6, *J*_{5,6b} 1.3, *J*_{5,6a} 1.6, H-5), 3.78 (s, 3H, CH₃, OMe), 3.81 (ddd, 1H, *J*_{3,4} 3.7, *J*_{2,3} 9.9, *J*_{3-OH,3} 11.0, H-3), 4.10 (dd, 1H, *J*_{5,6a} 1.6, *J*_{6a,6b} 12.4, H-6a), 4.26 (dd, 1H, *J*_{4,5} 0.6, *J*_{3,4} 3.7, H-4), 4.37 (dd, 1H, *J*_{5,6b} 1.3, *J*_{6a,6b} 12.4, H-6b), 4.90 (d, 1H, *J*_{1,2} 8.0, H-1), 5.33 (dd, 1H, *J*_{1,2} 8.0, *J*_{2,3} 9.9, H-2), 5.57 (s, 1H, CH, бензилиден), 6.78–6.88 (m, 2H, OC₆H₄O), 6.97–7.06 (m, 2H, OC₆H₄O), 7.35–7.44 (m, 3H, CH, бензилиден), 7.54 (dd, 2H, *J* 3.1, *J* 6.6, CH, бензилиден). ¹³C NMR (75 МГц, CDCl₃, δ , ppm): 20.9 (CH₃, Ac), 55.6 (CH₃, OMe), 66.7 (C-5), 68.9 (C-6), 71.7 (C-3), 72.0 (C-2), 75.4 (C-4), 100.6 (C-1), 101.5 (CH, бензилиден), 114.5, 119.0 (OC₆H₄O), 126.5, 128.3, 129.3, 137.3 (бензилиден), 151.3, 155.6 (OC₆H₄O), 170.4 (C=O, Ac). HR-ESI-MS [M+Na]⁺ Calcd for C₂₂H₂₄O₈Na⁺ 439,1303 Found 439,1362.

п-метоксифенил 4,6-бензилиден-2-О-бензил- β -D-галактопиранозид 17. Белые кристаллы, 84 %, $R_f = 0.48$ (толуол – EtOH 9:1); ¹H NMR (300 MHz, CDCl₃, δ , ppm, J, Hz): 3.68 (s, 3H, CH₃, OMe), 3.87 (s, 1H, H-5), 4.06 (d, 1H, J = 8.7, H-6a), 4.15 (m, 2H, H-3, H-6b), 4.30 (d, 1H, J = 2.4, H-4), 5.27 (d, 1H, $J_{1,2}$ 8.0, H-1), 5.36 (d, 1H, J = 8.0, H-2), 5.41 (s, 1H, 3-OH), 5.67 (s, 1H, CH, бензилиден), 6.75 – 6.86 (m, 2H, OC₆H₄O), 6.85–6.98 (m, 2H, OC₆H₄O), 7.41–7.43 (m, 3H, CH, бензилиден), 7.58-7.49 (m, 4H, CH, бензилиден, Bz), 7.66 (t, J = 7.2, Bz), 7.99 (d, 2H, J = 7.4, Bz)[226].

NIS, TfOH, MS 3Å TFAHN

COOMe

18a-α–isomer 18b- β–isomer

4.10 Получение дисахаридного блока ганглиозида GM3

OAcr

COOMe

Донор **10** (116.3 мг, 0.15 ммоль) и акцептор **11** (41.6 мг, 0.10 ммоль) сушили в вакууме масл. насоса в течение 2 ч. Затем в токе аргона добавляли 1500 мкл сух. CH₃CN и засыпали 150 мг предварительно прокаленных сит 3 Å и перемешивали 15 ч при комнатной температуре. Затем реакционную массу охладили до -40 °C на бане ацетонитрил-сухой лед и добавили NIS (53.4 мг, 0.3 ммоль). Далее в реакционную массу добавили 1.7 мкл TfOH. Перемешивали при -40 °C 45 мин. Полная конверсия донора была зафиксирована через 45 мин в системе (ТСХ толуол – ацетон 5:1). Затем реакцию прекращали и реакционную массу заливали CH₂Cl₂ (20 мл) и перемешивали 5 мин, фильтровали через целит, промывая CH₂Cl₂ (100 мл). Далее фильтрат промывали насыщенным раствором *NaHCO*₃ (1 × 50 мл). Затем органическую фазу промывали Na₂S₂O₃ (2×50 мл). И на последнем этапе органическую фазу промывали водой (2×50 мл). Далее органическую фазу сушили над Na₂SO₄ фильтровали и упаривали. Остаток соупаривали с толуолом. Остаток делили при помощи гель-хроматографии на геле SX-3 с получением смеси изомеров дисахарида 18. Чистые α и β изомеры разделяли колоночной хроматографией на силикагеле (толуол \rightarrow толуол-ацетон 5: 1).

Метил [4-метоксифенил-(2-*O*-ацетил-4,6-*O*-бензилиден-3)-(3,5дидеокси-4,7,8,9-тетра-*O*-хлорацетил-5-трифторацетамидо-*D*-*глицеро*-α-*D*-*галакто*-нонулопиранозил)-β-D-галактопиранозид]онат (18а). $[\alpha]_D^{24} =$ +4.92 (c 1.02, CHCl₃); R_f = 0.30 (толуол – EtOH 9:1); ¹H NMR (600 МГц, CDCl₃, δ, ppm, *J*, Hz): 1.88 (dd~t, 1H, $J_{3eq,3ax} = J_{3ax,4}$ 12.7, ^{II}H-3ax), 2.21 (s, 3H, CH₃, Ac),

2.84 (dd, 1H, $J_{3eq,4}$ 4.6, $J_{3eq,3ax}$ 12.7, ^{II}H-3eq), 3.67 (ddd~tq, 1H, $J_{4,5}$ 1.0, $J_{5,6a}=J_{5,6b}$ 1.5, ^IH-5), 3.72 (s, 3H, CH₃, COOMe), 3.78 (s, 3H, CH₃, C₆H₄OMe), 3.86 (dd, 1H, J_{4.5} 1.0, J_{3.4} 3.7, ^IH-4), 3.97 (d, 1H, J 14.9, cA), 4.01 (d, 3H, J 14.9, cA), 4.02 (d, 2H, J 1.4, cA), 4.09 (dd, 1H, J_{5.6a} 1.5, J_{6a.6b} 12.4, ^IH-6a), 4.11 (d, 2H, J 14.2, cA), 4.12– 4.15 (m, 2H, ^{II}H-5, ^{II}H-6), 4.14 (dd, 1H, J_{8.9a} 5.8, J_{9a.9b} 12.7, ^{II}H-9a), 4.15 (d, 1H, J 14.1, cA), 4.21 (d, 1H, J 15.7, cA), 4.35 (dd, 1H, J_{5.6b} 1.5, J_{6a.6b} 12.4, ^IH-6b), 4.45 $(d, 2H, J 15.7, cA), 4.46 (dd, 2H, J_{3,4} 3.7, J_{2,3}10.1, {}^{I}H-3), 4.54 (dd, 1H, J_{8.9b} 2.4, J_{9a.9b})$ 12.7, ^{II}H-9b), 5.00 (ddd, 1H, J_{3eq,4} 4.6, J_{4,5} 9.8, J_{3ax,4} 12.7, ^{II}H-4), 5.09 (d, 1H, J_{1,2} 8.0, ^IH-1), 5.39 (s, 1H, CH, Бензилиден), 5.42 (dd, 2H, *J*_{6,7} 2.4, *J*_{7,8} 9.5, ^{II}H-7), 5.42 (dd, 2H, J_{1,2} 8.0, J_{2,3} 10.1, ^IH-2), 5.72 (ddd, 1H, J_{8,9b} 2.4, J_{8,9a} 5.8, J_{7,8} 9.5, ^{II}H-8), 6.64 (d, 1H, J 9.1, NH), 6.81–6.85 (m, 2H, OC₆H₄OMe), 7.01–7.06 (m, 2H, OC₆H₄OMe), 7.33–7.41 (m, 3H, Бензилиден), 7.51 (dd, 2H, J 1.7, J 7.6, Бензилиден); ¹³С NMR (151 MHz, CDCl₃, δ, ppm): 21.1 (CH₃, Ac), 38.0 (IIC-3), 40.2, 40.2, 40.5, 41.6 (cA), 49.8 (^{II}C-5), 53.4 (CH₃, COOMe), 55.7 (CH₃, C₆H₄OMe), 63.4 (^{II}C-9), 66.1 (^IC-5), 68.1 (^IC-2), 68.7 (^{II}C-8), 69.1 (^IC-6), 69.3 (^{II}C-7), 69.8 (^{II}C-4), 71.4 (^{II}C-6), 72.4 (^IC-3), 73.5 (^IC-4), 100.6 (^IC-1), 101.1 (СН, Бензилиден), 113.3 (q, J 287.3, CF₃, TFA), 114.5 (OC₆H₄O), 119.0 (OC₆H₄O), 126.3, 128.2, 130.9, 137.5 (Бензилиден), 151.4 (OC₆H₄O), 155.5 (OC₆H₄O), 158.0 (q, J 39.4, C=O, TFA), 166.5, 167.0, 167.2, 167.4 (C=O, cA), 168.7 (C=O, COOMe), 169.7 (C=O, Ac). HR-ESI-MS [M+Na]+ Calcd for C₃₈H₄₂F₃NO₁₆Na⁺1102.1055 Found 1102.1155.

Метил [4-метоксифенил-(2-*O*-ацетил-4,6-*O*-бензилиден-3)-(3,5дидеокси-4,7,8,9-тетра-*O*-хлорацетил-5-трифторофцетамидо-*D*-*глицеро*-β-*D*-*галакто*-нонулопиранозил)-β-D-галактопиранозид]онат (18b). $R_f = 0.45$ (толуол – EtOH 9:1); ¹H NMR (600 MHz, CDCl₃, δ , ppm, *J*, Hz): 1.90 (dd, 1H, $J_{3ax,4}$ 11.6, $J_{3ax,3eq}$ 13.0, ^{II}H-3ax), 2.14 (s, 3H, CH₃, Ac), 2.64 (dd, 1H, *J* 4.7, $J_{3ax,3eq}$ 13.0, ^{II}H-3eq), 3.72 (ddd~td, 1H, $J_{4,5}$ 0.8, $J_{5,6a}=J_{5,6b}$ 1.4, ^IC-5), 3.78 (s, 3H, CH₃, OC₆H₄OMe), 3.88 (s, 3H, CH₃, COOMe), 3.94 (d, 2H, *J* 4.7, cA), 4.06 (d, 2H, *J* 1.1, cA), 4.09 (dd, 1H, $J_{3,4}$ 3.9, $J_{2,3}$ 9.9, ^IH-3), 4.11 (d, 2H, *J* 11.6, cA), 4.12 (d, 2H, *J* 0.9, cA), 4.13–4.20 (m, 3H, ^{II}H6a, ^{II}H9a, ^{II}H-5), 4.37 (dd, 1H, $J_{5,6b}$ 1.4, $J_{6a,6b}$ 12.7, ^IH-6b), 4.38 (dd, 1H, $J_{6,7}$ 2.7, $J_{5,6}$ 10.5, ^{II}H-6), 4.48 (dd, 1H, $J_{4,5}$ 0.8, $J_{3,4}$ 3.9, ^IH-4), 4.96 (d, 1H, $J_{1,2}$ 8.1, ^IH-1), 5.34 (dd, 1H, $J_{7,8}$ 2.4, $J_{6,7}$ 2.7, ^{II}H-7), 5.39 (ddd, 1H, $J_{3eq,4}$ 4.7, $J_{4,5}$ 10.4, $J_{3ax,4}$ 11.6, ^{II}H-4), 5.45 (dd, 1H, $J_{J_{8,9b}}$ 2.4, $J_{9a,9b}$ 12.4, ^{II}9b), 5.50 (dd, 1H, $J_{1,2}$ 8.1, $J_{2,3}$ 9.9, ^IH-2), 5.58 (dt, 1H, $J_{7,8} = J_{8,9b}$ 2.4, $J_{8,9a}$ 9.6, ^{II}H-8), 5.70 (s, 1H, CH, Бензилиден), 6.78–6.85 (m, 3H, OC₆H₄O, NH), 6.98–7.03 (m, 2H, OC₆H₄O), 7.42–7.49 (m, 3H, Бензалиден), 7.62 (dd, 2H, J 1.4, J 8.3, Бензалиден); ¹³C NMR (151 МГц, CDCl₃, δ , ppm): 20.9 (CH₃, Ac), 37.9 (^{II}C-3), 40.1, 40.4, 40.5, 40.6 (cA), 49.5 (^{II}C-5), 53.2 (CH₃, OC₆H₄OMe), 55.6 (CH₃,COOMe), 63.8 (^{II}C-9), 66.3 (^IC-5), 69.1 (^IC-6), 69.3 (^{II}C-4), 69.4 (^IC-2), 70.8 (^{II}C-7), 72.4 (^{II}C-6), 73.6 (^{II}C-8), 74.9 (^IC-4), 75.5 (^IC-3), 100.5 (^IC-1), 101.1 (CH, Бензалиден), 114.5 (OC₆H₄O), 119.1 (OC₆H₄O), 126.2, 128.), 129.), 137.5 (Бензилиден), 151.2 (OC₆H₄O), 155.7 (OC₆H₄O), 166.0 (C=O, COOMe), 166.4, 167.), 167.0, 167.8 (C=O, cA), 169.4 (C=O, Ac). HR-ESI-MS [M+Na]+ Calcd for C₃₈H₄₂F₃NO₁₆Na⁺ 1102.1055, Found 1102.1121.

4.11 Синтез полностью ацетилированного РМР-дисахарида 22

Реагенты и условия: **a**) CH₃COOH / H₂O, 70 °C; **b**) MeONa / MeOH, RT; **c**) Ac₂O, Py, RT;

 α -изомер **18а** (53.8 мг, 0.05 ммоль) растворили в 80% -ном CH₃COOH (1 мл) и реакционную массу нагрели до 70 °C при перемешивании в течение 8 часов. Полная конверсия продукта фиксируется по TCX (Rf = 0.50 в CHCl₃ - EtOH 9: 1). Реакционную смесь концентрировали и соупаривали с толуолом (2×10 мл), получая 38.7 мг, 78% из **20**, который использовали без дополнительной очистки. Остаток **20** (25 мг, 0.025 ммоль) растворили в сухом MeOH (2 мл) и добавили 1 М MeOH (10 мкл, 0.01 ммоль) и перемешивали в течение 48 ч при комнатной температуре. Затем добавили CH₃COOH (10 мкл),

перемешивали в течение 15 мин, концентрировали и соупаривали с толуолом $(2 \times 10 \text{ мл})$, получая 16.14 мг, 93% из **21** (Rf = 0.47 в CHCl₃ – MeOH 3:1), который использовали без дополнительной очистки. Соединение **21** (15 мг, 0.023 ммоль) растворили в пиридине (200 мкл, 2.49 ммоль) и Ac_2O (100 мкл, 1 ммоль) и перемешивали в течение 15 часов при комнатной температуре. Затем прилили MeOH (100 мкл), перемешивали в течение 15 мин, реакционную смесь концентрировали и соупаривали с толуолом (2 × 10 мл) и очищали колоночной хроматографией на силикагеле (толуол – ацетон 9: 1 \rightarrow 3: 1) с получением 18 мг, 83% ацетилированного продукта **22**.

Метил [4-метоксифенил 2,4,6-три-О-ацетил-3-О-(4,7,8,9-тетра-Оацетил- 3,5-дидезокси-5-трифторацетамидо-D-глицеро-β-D-галактононулопиранозил)-α-D-галактопиранозид]онат (22). R_f = 0.44(толуол – ацетон 5:1), $[\alpha]_D^{24}$ +2.0 (*c* 1.01, CHCl₃);¹H NMR (300 МГц, CDCl₃, δ , ppm, *J*, Hz): 1.75 (dd~t, 1H, $J_{3ax,3eq} = J_{3ax,4}12.7$, H-3ax^{II}), 1.96, 2.01, 2.06, 2.09, 2.13, 2.19, 2.25 (s, 21H, CO<u>CH</u>₃), 2.67 (dd, 1H, J_{3ax,3eq}12.7, J_{3eq,4} 4.6, H-3eq^{II}), 3.78 (s, 3H, C₆H₄O<u>Me</u>), 3.83 (dd, 1H, J_{6,7} 2.4, J_{5,6} 10.7, H-6^{II}), 3.88 (s, 3H, CO₂Me), 3.93–4.05 (m, 3H, H-5^{II}, H-5^I, H-9a^{II}), 4.08–4.16 (m, 2H, H-6^I), 4.38 (dd, 1H, $J_{8.9b}$ 2.0, $J_{9a.9b}$ 12.5, H-9b^{II}), 4.68 (dd, 1H, J_{3.4} 3.1, J_{2.3} 10.0, H-3^I), 4.99 (d, 1H, J_{3.4} 3.1, H-4^I), 5.05 (ddd, 1H, $J_{4,3eq}$ 4.6, $J_{4,5}$ 10.6, $J_{4,3ax}$ 12.7, H-4^{II}), 5.10 (d, 1H, $J_{1,2}$ 8.0, H-1^I), 5.29 (dd, 1H, $J_{1,2}$ 8.0, $J_{2,3}$ 10.0, H-2^I), 5.35 (dd, 1H, $J_{6,7}$ 2.4, $J_{7,8}$ 9.0, H-7^{II}), 5.56 (ddd~td, 1H, $J_{8,9b}$ 2.0, $J_{7,8} = J_{8,9a}$ 9.0, H-8^{II}), 6.43 (d, 1H, $J_{5,NH}$ 9.4, NH), 6.83 (d, 1H, J 9.0, OC₆H₄O), 7.01 (d, 1H, J 9.0, OC₆H₄O).¹³C NMR (75 MΓц, CDCl₃, δ, ppm): 20.4, 20.6, 20.6, 20.7, 20.9, 21.4 (CH₃, Ac), 37.4 (C-3^{II}), 49.9 (C-5^{II}), 53.3 (CO₂Me), 55.7 (C₆H₄OMe), 62.0 (C-9^{II}), 62.3 (C-6^I), 67.0 (C-4^I), 67.5 (C7^{II}), 67.9 (C-8^{II}), 68.6 (C-4^{II}), 69.7 (C-2^I), 70.8 (C-3^I), 71.3 (C-6^{II}), 71.5 (C-3^I), 96.9 (C-2^{II}), 100.2 (C-1^I), 114.5 (OC₆H₄O), 115.3 (q, J 288.3, CF₃), 118.5 (OC₆H₄O), 151.4 (OC₆H₄O), 155.5 (OC₆H₄O), 157.7 (q, J 38.1, COCF₃), 167.7 (CO₂Me), 169.4, 169.6, 170.3, 170.5, 170.6, 170.7 (COCH₃). HR-ESI-MS [M+Na]⁺ Calcd for C₃₉H₄₈F₃NO₂₂Na⁺ 962.2518 Found 962.2502.

4.12 Синтез имидатного донора 24 из 22

Реагенты и условия: **a**) CAN, CH₃CN / H₂O, 0 °C; **b**) ClC(NPh)CF₃, Cs₂CO₃, DCM, 0 °C.

Полностью ацетилированное соединение 22 (67.6 мг, 0.072 ммоль) растворили в смеси MeCN – H₂O (об./об. 4:1, 1.5 мл), охладили до 0 °C и добавили раствор CAN (197 мг, 0.361 ммоль) в MeCN – H₂O (об./об. 4:1, 0.8 мл) и перемешивали в течение 1 часа при 0 °С. Затем реакционную смесь вылили в водный раствор NaHCO₃ (50 мл), экстрагировали CH₂Cl₂ (2×50 мл). CH₂Cl₂ отделили и промыли насыщенным раствором NaCl (50 мл), водой (50 мл), сушили над Na₂SO₄, фильтровали и концентрировали с получением 50.4 мг, 84% смеси 23, которую использовали без дальнейшей очистки. Полуацеталь 23 (36 мг, 0.043 ммоль) предварительно сушили в вакууме в течение 2 ч, затем растворили в CH₂Cl₂ (1.5 мл) в атмосфере аргона и охладили до 0 °С. Реакционную смесь перемешивали в течение 15 мин, и затем добавили ClC(NPh)CF₃ (10.3 мкл, 0.064 ммоль) и Cs₂CO₃ (21 мг, 0.064 ммоль). Реакционную массу перемешивали при охлаждении в течение 1 ч и 15 ч при комнатной температуре до тех пор, пока ТСХ не показало полное превращение исходного (Rf = 0.36 толуол-ацетон 3: 1) и концентрировали. Очистка реакционной массы проводили колоночной хроматографией (толуол: ацетон 9: 1 \rightarrow 3: 1 с добавлением Et₃N (100 мл на каждые 100 мл смеси элюентов)) с получением 1434 мг, 79% в виде белого твердого вещества.

метил [N- фенилтрифторацетилимидоил 2,4,6-три-О-ацетил-3-О-(4,7,8,9-тетра-О-ацетил- 3,5-дидезокси-5-трифторацетамидо-D-глицеро- β -D-галакто-нонулопиранозил)- α -D-галактопиранозид]онат (24). [α]_D²⁵+0.31 (c0.96, CHCl₃);¹H NMR (600 МГц, CDCl₃, δ , ppm, J, Hz): 1.75 (dd~t, 1H, J_{3ax,3eq} $= J_{3ax,4}$ 12.7, H-3ax^{II}), 1.97, 2.02, 2.11, 2.14, 2.18, 2.26 (s, 21H, COCH₃), 2.66 (dd, 1H, $J_{3eq.4}$ 4.7, $J_{3ax,3eq}$ 12.7, H-3eq^{II}), 3.82 (dd, 1H, $J_{6.7}$ 2.7, $J_{5.6}$ 10.7, H-6^{II}), 3.89 (s, 3H, CO₂OMe), 3.97–4.00 (m, 1H, H-5^I, перекрытый), 4.00 (ddd~dd, 1H, J_{4.5} = J_{5.NH} 10.1, J_{5.6} 10.7, H-5^{II}), 4.01 (dd, 1H, J_{8.9a} 6.3, J_{9a,9b} 12.4, H-9a^{II}), 4.06 (dd, 1H, J_{5.6a} 7.6, $J_{6a,6b}$ 11.3, H-6a^I), 4.12 (dd, 1H, $J_{5,6b}$ 5.8, $J_{6a,6b}$ 11.3, H-6b^I), 4.43 (dd, 1H, $J_{8,9b}$ 2.6, $J_{9a,9b}$ 12.4, H-9b^{II}), 4.73 (dd, 1H, $J_{3,4}$ 3.4, $J_{2,3}$ 9.1, H-3^I), 4.99 (d, 1H, $J_{3,4}$ 3.4, H-4^I), 5.03 (ddd, 1H, $J_{3eq,4}$ 4.7, $J_{4,5}$ 10.1, $J_{3ax,4}$ 12.7, H-4^{II}), 5.29 (dd~t, 1H, $J_{1,2} = J_{2,3}$ 9.1, H-2^I), 5.34 (dd, 1H, $J_{6,7}$ 2.7, $J_{7,8}$ 8.5, H-7^{II}), 5.57 (ddd, 1H, $J_{8,9b}$ 2.6, $J_{8,9a}$ 6.3, $J_{7,8}$ 8.5, H-8^{II}), 5.85 (br.s, 1H, H-1^I), 6.41 (d, 1H, J_{5.NH} 10.1, NH), 6.86 (d, 2H, J 7.7, Ph), 7.10–7.14 (m, 1H, Ph), 7.31 (dd, 2H, J 7.5, J 8.4, Ph).¹³C NMR (151 MΓμ, CDCl₃, δ, ppm): 20.4, 20.6, 20.6, 20.7, 21.4 (CH₃, Ac), 37.4 (C-3^{II}), 49.9 (C-5^{II}), 53.4 (CO₂OMe), 61.6 (C-6^I), 62.4 (C-9^{II}), 67.1 (C-4^I), 67.3 (C-7^{II}), 68.1 (C-8^{II}), 68.5 (C-4^{II}), 68.8 (C-2^I), 71.3 (C-3^I), 71.5 (C-6^{II}), 71.6 (C-5^I), 95.1 (C-2^{II}), 96.9 (C-1^I), 119.4, 124.4, 128.7, 143.4 (OC₆H₅O), 157.7 (q, J 30.3, COCF₃), 167.6 (CO₂Me), 169.3, 169.4, 170.2, 170.3, 170.6, 170.6, 170.7 (COCH₃). HR-ESI-MS [M+Na]⁺ Calcd for C₄₀H₄₆F₆N₂O₂₁Na⁺ 1027.2392 Found 1027.2389.

Выводы:

- 1. Впервые для реакций дезацетилирования (алкоголиза) *пер*ацетилированных арилгликозидов определено влияние строения углеводной составяющей и агликона на скорость и селективность образования 2-О-ацетиларилгликозидов.
- 2. На основе ряда кинетических и квантово-химических исследований предложен механизм, рационально объясняющий найденную селективность дезацетилирования. Показано, что селективность дезацетилирования контролируется, как термодинамическими, так и кинетическими факторами.
- **3.** Разработаны эффективные одностадийные методы синтеза 2-Оацетиларилгликозидов путем кислотно-катализируемого алкоголиза доступных *nep*-ацетилированных арилгликозидов.
- Разработан доступный способ получения галактозил-акцептора (параметоксифенил 2-О-ацетил-4,6-О-бензилиден-β-D-галактопиранозид) и показана возможность его применения в синтезе сиалил-(α2-3)галактозного блока ценного ганглиозида GM3.
- 5. Впервые осуществлен синтез дигликозида растения *Solidago virgaurea L* Virgaureoside A и *iso* Virgaureoside A с применением кислотно-катализируемого алкоголиза.

Список литературы

1. Ruuhola, T. In vitro degradation of willow salicylates / T. Ruuhola, Julkunen-Tiitto, P. Vainiotalo // J. Chem. Ecol. –2003. – V.29. – №5. – P. 1083-1097.

2. Liang, P.H. A green and regioselective acetylation of thioglycoside with ethyl acetate / P.H. Liang, Y.J. Lu, T.H. Tang // Tetrahedron Lett. –2010. – №51. – P. 6928-6931.

3. Chen, S. Regioselective Acylation of 2'- or 3'-Hydroxyl Group in Salicin: Hemisynthesis of Acylated Salicins / S. Chen, P. Yuxin, B-K. Anna-Karin, P. Zhichao // Chem. Res. Chin. Univ.-2014. -V.30. -№ 5. -P. 774-777.

4. Lehtila, R. L. Selectively protected galactose derivatives for the synthesis of branched oligosaccharides / R. L. Lehtila, J. O. Lehtila, M. U. Roslund, R. Leino // Tetrahedron. $-2004. - N_{0} 60. -P.3653-3661.$

5. Boeckler, G.A. Phenolic glycosides of the Salicaceae and their role as antiherbivore defenses / G.A. Boeckler, J. Gershenzon, S.B. Unsicker // Phytochemistry. -2011. –V.28. –P.1497-1509.

 Abdel-Mageed, W.M. Antiparasitic antioxidant phenylpropanoids and iridoid glycosides from Tecoma mollis / W.M. Abdel-Mageed, E.Y. Backheet, A.A. Khalifa, Z.Z. Ibraheim, S.A. Ross // Fitoterapia. –2012. –Vol.83. – P. 500-507.

 Zsoldos-Mády, V. Synthesis, Structure, and in-vitro Antitumor Activity of Some Glycoside Derivatives of Ferrocenyl-Chalcones and Ferrocenyl-Pyrazolines / V. Zsoldos-Mády, A. Csámpai, R. Szabó, E. Mészáros-Alapi, J. Pásztor et al. // Chem. Med. Chem. –2006. –Vol.1. –P.1119-1125.

8. Lee, M. Salicortin-Derivatives from Salix pseudo-lasiogyne Twigs Inhibit Adipogenesis in 3T3-L1 Cells via Modulation of C/EBPα and SREBP1c Dependent Pathway / M. Lee, S.H. Lee, J. Kang, H. Yang, E.J. Jeong et al. // Molecules. – 2013. –Vol.18. –P.10484-10496.

9. Kim, C.S. Salicin derivatives from Salix glandulosa and their biological activities
/ C.S. Kim, L. Subedi, K.J. Park, S.Y. Kim, S.U. Choi et al. // Fitoterapia. – 2015.
– Vol.106. – P.147-152.

10. Machida, K. Studies on the Constituents of Viburnum Species. On Phenolic Glycosides from the Leaves of Viburnum wrightii MIQ / K. Machida, M. Kikuchi
// Chem. Pharm. Bull. –1993. –Vol.41. – №2. – P. 248-251.

11. Kolehmainen, J. Importance of phenolic glucosides in host selection of shoot galling sawfly *Euura amerinae*, on *Salix pentandra* / J. Kolehmainen, H. Roininen, R. Julkunen-Tiitto, J. Tahvanainen //. J. Chem. Ecol. –1994. –Vol. 20. –№ 9. –P. 2455 -2465.

12. Reichardt, P.B. Phenolic glycosides from Salix Lasiandra / P.B. Reichardt, H.M. Merken, T.P. Clausen, J. Wu // J. Nat. Prod. –1992. –Vol.55. –№7. –P.970-973.

13. Ruuhola, T. Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra / T. Ruuhola, R. Julkunen-Tiitto // J. Chem. Ecol. –2003. –Vol. 29. –№7 –P.1565-1588.

14. Kim, C.S. Salicin derivatives from Salix glandulosa and their biological activities / C.S. Kim, L. Subedi, K.J. Park, S.Y. Kim, S.U. Choi et al. // Fitoterapia. – 2015. – Vol. 106. – P. 147-152.

15. Keefover-Ring, K., Ahnlund, M., Abreu, I. N., Jansson, S., Moritz, T., Albrectsen, B.R. No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula / K. Keefover-Ring, M. Ahnlund, I. N. Abreu, S. Jansson et al. // Plos one. –2014. –V. 9. –№10. –P.1-10.

16. Abreu, I.N. UHPLC-ESI/TOFMS Determination of Salicylate-like Phenolic Gycosides in Populus tremula Leaves / I.N. Abreu, M. Ahnlund, T. Moritz, B. R. Albrectsen // J. Chem. Ecol. –2011. –Vol.37. –P. 857–870.

17. Entlicher, G. Glycosides IV. Isopyroside: the Native Monoacetylarbutin of Pear Leaves / G. Entlicher, J. Kocourek // Arch. Biochem. Biophys. –1967. –Vol.118. – P. 305-309.

18. Julkunen-Tiitto, R. The enzymatic decomposition of salicin and its derivatives obtained from salicaceae species / R. Julkunen-Tiitto // J. Nat. Prod. -1992. -V.55. $-N_{\odot}$ 9. -P.1204-1212.

19. Yang, H. Neuroprotective Compounds from Salix pseudo-lasiogyne Twigs and Their Anti-Amnesic Effects on Scopolamine - Induced Memory Deficit in Mice / H.

Yang, S. H. Lee, S. H. Sung, J. Kim, Y. C. Kim // Planta Med. –2013. –V.79. –P. 78–82.

20. Förster, N. Salicylatreiche Weiden für die Arzneimittelherstellung / N. Förster,
C. Ulrichs, M. Zander, R. Kätzel, I. Mewis // Gesunde Pflanzen. –2009. –Vol. 61.
–P. 129–134.

21. Nybakkena, L. Gender differences in Salix myrsinifolia at the pre-reproductive stage are little affected by simulated climatic change / L. Nybakkena, R. Julkunen-Tiitto // Physiol. Plant. –2013. –Vol.147. – P. 465-476.

22. Julkunen-Tiitto, R. Further Studies on Drying Willow (Salix) Twigs: The Effect of Low Drying Temperature on Labile Phenolics / R. Julkunen-Tiitto, K. Gebhardt // Planta Med. –1992. –Vol. 58. –P. 385-386.

23. Wu, Q. Regio- and stereo-selective synthesis of vinyl glucose ester catalyzed by an alkaline protease of Bacillus subtilis / Q. Wu, D. Lu, Y. Cai, X. Xue et al. // Biotech Lett. –2001. –V.23. –P.1981-1985.

24. Haines, A. H. Relative reactivities of hydroxyl groups in carbohydrates / A. H. Haines // Adv. Carbohydr. Chem. Biochem. –1976. –V.33. –P.11.

25. Kim, J.-H. A general strategy for stereoselective glycosylations / J.-H. Kim, H. Yang, J. Park, G.-J. Boons //J. Am. Chem. Soc. –2005. –V.127. –P.12090–12097.

26. van Boeckel, C. A. A. Substituent effects on carbohydrate coupling reactions promoted by insoluble silver salts / C. A. A. van Boeckel, T. Beetz, S. F. van Aelst // Tetrahedron. –1984. –V.40. –P.4097–4107.

27. Stick, R. V. Carbohydrates: the sweet molecules of life. New York.: Academic Press, **2001**, 255.

 Nukada, T. Exploring the Mechanism of Neighboring Group Assisted Glycosylation Reactions / T. Nukada, A. Berces, M. Z. Zgierski, D. M. Whitfield // J. Am. Chem. Soc. –1998. –V.120. –P.13291–13295.

29. Eby, R. The use of 1-o-tosyl-d-glucopyranose derivatives in α-d-glucoside synthesis / R. Eby, C. Schuerch // Carbohydr. Res. –1974. –V.34. –P.79–90.

30. Koto, S. α -D-Glucosylation by 6-*O*-Acetyl-2,3,4-tri-*O*-benzyl-D-glucopyranose Using Trimethylsilyl Triflate and Pyridine. Synthesis of α -Maltosyl and α -

Isomaltosyl α-D-Glucosides / S. Koto, K. Yago, S. Zen, F. Tomonaga, S. Shimada // Bull. Chem. Soc. Jpn. –1986. – V.59. –P. 411–414.

31. Dasgupta, F. Use of the methylsulfenyl cation as an activator for glycosylation reactions with alkyl (aryl) 1 -thioglycopyranosides: synthesis of methyl-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1-6)-O- α -D-glucopyranosyl - (1-2)- α -D-glucopyranoside, a derivative of the core trisaccharide of *E. coli* K12 / F. Dasgupta, P. J. Garegg // Carbohydr. Res. –1990. –V.202. –P.225–238.

32. Mukaiyama, T. Highly α-Selective Glycosylation with Glycopyranosyl Fluorides Having Diethylthiocarbamoyl Group / T. Mukaiyama, M. Suenaga, H. Chiba, H. Jona // Chem. Lett. –2002, –P. 56–57.

33. Fukase, K. Mild but Efficient Methods for Stereoselective Glycosylation with Thioglycosides: Activation by [*N*-Phenylselenophthalimide $-Mg(ClO_4)_2$] and [PhIO $-Mg(ClO_4)_2$] / K. Fukase, Y. Kakai, T. Kanoh, S. Kusumoto // Synlett. –1998. –V.01. –P.84–86.

34. Fukase, K. A Novel Oxidatively Removable Linker and Its Application to a-Selective Solid-Phase Oligosaccharide Synthesis on a Macroporous Polystyrene Support / K. Fukase, Y. Nakai, K. Egusa, J. A. Porco, S. Kusumoto // Synlett. –1999. –Vol.07. –P. 1074–1078.

35. Jarowicki, K. Protecting groups / K. Jarowicki, P. Kocienski // J. Chem. Soc. Perkin Trans. –2001, –V.1. –P.2109–2135.

36. Bochkov, A. F. Chemistry of the O-glycosidic bond: formation and cleavage /
A. F. Bochkov, G. E. Zaikov. – Oxford.: Pergamon Press, 1979. – 233p.

37. Zemplen, G. Über die Natriumverbindungen der Glucose und die Verseifung der acylierten Zucker / G. Zemplen, A. Kunz // Ber. –1923. –V.56. –№7. –P.1705-1710. 38. Watanabe, K. A comparison of bis(tributyltin) oxide, potassium cyanide, and potassium hydroxide as reagents for the regioselective 1-O-deacetylation of fully acetylated sugars / K. Watanabe, K. Itoh, Y. Arakai, Y. Ishido // Carbohydr. Res. – 1986. –V.154. –P.165-176.

39. Lemieux, R. U. Halide ion catalyzed glycosidation reactions. Syntheses of .alpha.-linked disaccharides / R. U. Lemieux, K. B. Hendriks, R.V. Stick, K. James // J. Am. Chem. Soc. –1975. –V.97. –№14. –P.4056–4062.

40. Yamamoto, N. Synthesis of Bicyclic Hydroxy Lactone Intermediates toward (-)-Tetrodotoxin / N. Yamamoto, T. Nishikawa, M. Isobe // Synlett. –1995. –P. 505-506.

41. Corey, E. J. Stereospecific total synthesis of a "slow reacting substance" of anaphylaxis, leukotriene C-1 / E. J. Corey, D. A. Clark, G. Goto, A. Marfat, Ch. Mioskowski et al. // J. Am. Chem. Soc. –1980. –Vol.102. –№4. –P.1436–1439.
42. Amanoa, Y. Preparation and functional analysis of gossypols having two carbohydrate appendages with enaminooxy linkages / Y. Amanoa, M. Nakamura, S. Shiraishi, N. Chigira, N. Shiozawa et al. // Carbohydr. Res. –2018. –V.458-459. – P. 67-76.

43. Ying, F., Huaiyuan, Z., Yanhua, L, Xuemei, H., Mingzhu, W., Jiao, L. China Patent CN 101824057, 2010, Process for preparation of O-glycosyl nitrone compounds.

44. Swain, C.G. Concerted Displacement Reactions. VIII. Polyfunctional Catalysis /C.G. Swain, J.F. Brown //Am. Chem.Soc. –1952. –Vol.74. –P. 2538-2543.

45. Kartha, K. P. R. Iodine: A Versatile Reagent in Carbohydrate Chemistry IV. Per-O-Acetylation, Regioselective Acylation and Acetolysis / K. P. R. Kartha, R. A. Fieid // Tetrahedron. –1997. –V.53. –№34. –P.11753-11766.

46. Ellervik, U. Guanidine /guanidinium nitrate; a mild and selective O-deacetylation reagent that leaves the N-Troc group intact / U. Ellervik, G. Magnusson // Tetrahedron Lett. -1997. -V. 38. $-N_{2}9$. -P.1627-1628.

47. Abbotta, A. P. O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid / A. P. Abbotta, T. J. Bella, S. Handa, B. Stoddart // Green Chem. –2005. –V.7. –P.705-707.

48. Josephson, K. Neue Acylderivate der Glucose und des β -Methyl-glucosides aus Laevoglucosan / K. Josephson // Tetrahedron. –1929. –Vol. 62. –No2. –P.317–321.

49. Pozsgay, V. A Convergent Synthesis of a Hexadecasaccharide Fragment of the O-Polysaccharide of Shigella dysenteriae Type 1 / V. Pozsgay // J. Am. Chem. Soc. –1995. –Vol.117. –№25. –P.6673–6681.

50. Byramova, N. E. Selective removal of O-acetyl groups in the presence of Obenzoyl groups by acid-catalysed methanolysis / N. E. Byramova, M. V. Ovchinnikov, L. V. Backinowsky, N.K. Kochetkov // Carbohydr. Res. –1983. –Vol. 124. –№1. –P. C8-C11.

51. Shively, J. E. Formation of anhydrosugars in the chemical depolymerization of heparin / J. E. Shively, H.E. Conrad // Biochem. –1976. –V.15. –№18. –P.3932–3942.

52. Druecrhammer, D. G. Enzyme catalysis in Synthetic Carbohydrate / D. G. Druecrhammer, W.W. Hennen, R.L. Pederson et al. // Synthesis. –1991. –P.499-525.

53. Gridley, J.J. Regioselective lipase-catalysed acylation of 4, 6-O-benzylidene- α and- β -d-pyranoside derivatives displaying a range of anomeric substituents / J.J. Gridley, A.J. Hacking, H.M.I. Osborn, D.G. Spackman // Tetrahedron. –1998. –Vol. 54. –Nº49. –P.14925-14946.

54. Panesar, P. C., Panesar, R., Singh, R. S., Kennedy, J. F., Kumar, H. Microbial production, immobilization and applications of β -D-galactosidase / P. C. Panesar, R. Panesar, R. S. Singh, J. F. Kennedy, H. Kumar // J. Chem.technol. biotechnol. – 2006, –Vol. 81. –No4. –P. 530-543.

55. Horrobin, T. Esterase-catalysed regioselective 6-deacylation of hexopyranose per-acetates, acid-catalysed rearrangement to the 4-deprotected products and conversions of these into hexose 4- and 6-sulfates / T. Horrobin, Ch. Hao, T. Crout, D. Crout // J. Chem. Soc. Perkin Trans. 1 –1998. –P. 1069-1080.

56. Zaks, A. Substrate specificity of enzymes in organic solvents vs. water is reversed / A. Zaks, A.M. Klibanov // J. Am. Chem. Soc. –1986. –Vol.108. –№10. –P. 2767–2768.

57. Klibanov, A.M. Enzymatic catalysis in anhydrous organic solvents / A.M. Klibanov // Trends Biochem. Sci. –1989. –Vol.14. –№4. –P.141-144.

58. Riva, S. Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide / S. Riva, J. Chopineau, A.P.G. Kieboom, A.M. Klibanov // J. Am. Chem. Soc. –1988. –Vol.110. –№2. –P. 584–589.

59. Zaks, A. Enzymatic catalysis in organic media at 100 degrees C / A. Zaks, A.M. Klibanov // Science. –1984. – Vol.224. –P.1249-1251.

60. Wang, H-Y. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions / H-Y. Wang, C. J. Simmons, S.A. Blaszczyk, P. G. Balzer, L. Renshi et al. // Angew. Chem. Int. Ed. – 2017. – Vol. 56. – Nº49. – P.15698-15702.

61. Sail, D. Benzoylated ethyl 1-thioglycosides: direct preparation from per-Obenzoylated sugars / D. Sail, P. Kovac // Carbohydrate Research. – 2012.– V. 357, – P. 47-52.

62. Postema, M.H.D. Recent developments in the synthesis of C-glycosides / M.H.D. Postema // Tetrahedron. – 1992, – V.48. – №40. – P.8545-8599.

63. Zhang, Z. Regioselective benzoylation of sugars mediated by excessive Bu_2SnO : observation of temperature promoted migration / Z. Zhang, C.-H. Wong // Tetrahedron. – 2002. – Vol.58. – N $ilde{2}$ 32. – P. 6513-6519.

64. Carey, F. A. Efficient syntheses of methyl 2-O-benzoyl-4,6-O-benzylidene- α -d-glucopyranoside and methyl 2-O-benzoyl-4,6-O-benzylidene- α -d-ribo-hexopyranosid-3-ulose / F. A. Carey, K.O. Hodgson // Carbohydr. Res. – 1970. – Vol. 12. – N \circ 3. – P.463-465.

65. Pelyvas, I.F. Regioselective Acylation of Carbohydrates with 1-Acyloxy-1Hbenzotriazoles / I.F. Pelyvas, T.K. Lindhorst, H. Streicher, J. Thiem // Synth. – 1991. – P. 1015-1018.

66. Ogawa, T. Regioselective alkylation via trialkylstannylation: Methyl α -d-glucopyranoside / T. Ogawa, Y. Takahashi, M. Matsui // Carbohydr. Res. – 1982. – Vol.102. – No. – P.207 – 216.

67. Holzapfel, C. W. Benzoylation of carbohydrate derivatives containing regioselectively activated secondary hydroxyl groups / C. W. Holzapfel, J. M. Koekemoer, C. F. Marais // S. Afr. J. Chem. – 1984. – V.37. – P.19-26.

68. Zhou, G. Stereoselective synthesis of α-amino acids from O-pivaloyl-D-glucopyranosylaldimine / G. Zhou, P. Zhang, Y. Pan, J. Guo // Org. Prep. Proced. Int. –2005. –V.37. –P.65-73.

69. Volbeda, A. G. The Cyanopivaloyl Ester: A Protecting Group in the Assembly of Oligorhamnans / A. G. Volbeda, N. R. M. Reintjens, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codee // Eur. J. Org. Chem. –2016. –V.31. –P.5282–5293.

70. Jiang, L. Regioselective Acylation of Hexopyranosides with Pivaloyl Chloride / L. Jiang, T.-H. Chain //J. Org. Chem. –1998. –V. 63. –P. 6035-6038.

71. Cui, L. Synthesis of modified Trichinella spiralis disaccharide epitopes and a comparison of their recognition by chemical mapping and saturation transfer difference NMR / L. Cui, Ch-Ch. Ling, J. Sadowska, D. R. Bundle // Carbohydr. Res. –2014. –Vol.383. –P.1-13.

72. Greene, T. W. Protective Groups in Organic Synthesis / T. W. Greene, P.G.M. Wunts. – New Jersey.: John Wiley & Sons, Hoboken, 1991, –p.99.

73. Wuts, P. G. M. Greene's Protective Groups in Organic Synthesis / P. G. M. Wuts,
T. W. Greene. – New Jersey.: John Wiley & Sons, Hoboken, 2007, –p.1082.

74. Guo, J. Protecting Groups in Carbohydrate Chemistry: Influence on Stereoselectivity of Glycosylations / J. Guo, X.-S. Ye // Molecules. –2010. –V.15. – P. 7235-7265.

75. Panova, M. V. Arabinofuranose 1,2,5-orthobenzoate as a single precursor of linear $\alpha(1 \rightarrow 5)$ -linked oligoarabinofuranosides / M. V. Panova, N.M. Podvalnyy, E. L. Okun, P.I. Abronina et al. // Carbohydr. Res. –2018. –Vol.456.–P.35-44.

76. Glaudemans, C.P.J. O-Chloroacetate Derivatives of Sugars as Synthetic Intermediates / C.P.J. Glaudemans, M.J. Bertolini // Methods Carbohydr. Chem. – 1980. –V.8. –p.271.

77. van Boeckel, C.A.A. Hydrazinedithiocarbonate (HDTC) as a new reagent for the improved removal of chloroacetyl and bromoacetyl protective groups / C.A.A. van Boeckel, T. Beetz // Tetrahedron Lett. –1983. –V.24. –P. 3775-3778.

78. Lefeber, D. J. The use of diazabicyclo [2.2.2] octane as a novel highly selective dechloroacetylation reagent / D. J. Lefeber, J.P. Kamerling, J.F.G. Vliegenthart // Org. Lett. –2000. –V.2. –P.701-703.

79. Villedieu, E. A simple and selective method for the O-AcCl removal using sodium borohydride / E. Villedieu, C. Lopin-Bon, S. Berteina-Raboin // Tetrahedron Lett. –2010. –V. 51. –P.2115–2118.

80. Kovác, P. Synthesis of methyl O-(3-deoxy-3-fluoro- β -d-galactopyranosyl)-(1 \rightarrow 6)- β -d-galactopyranoside and methyl O-(3-deoxy-3-fluoro- β -d-galactopyranosyl)-(1 \rightarrow 6)-O- β -d-galactopyranosyl-(1 \rightarrow 6)- β -d-galactopyranoside / P. Kovác, H. J. C. Yeh, C. P. J. Glaudemans //Carbohydr. Res. –1985. –Vol.140. – P.277–288.

81. Gu, G. Efficient and Selective Removal of Chloroacetyl Group Promoted with Tetra-n-butylammonium Fluoride (TBAF) / G. Gu, M. Fang, Y. Du // Carbohydr. Res. –2011. –Vol.346. –P.2801–2804.

82. Iseloh, U. Reducing oligosaccharides via glycal assembly: on the remarkable stability of anomeric hydroxyl groups to global deprotection with sodium in liquid ammonia / U. Iseloh, V. Dudkin, Z.G. Wang, S. Danishefsky // Tetrahedron Lett. – 2002. –Vol. 43. –P. 7027- 7030.

83. Lu, X.-A. Regioselective esterification of various D-glucopyranosides: synthesis of a fully protected disaccharide unit of hyaluronic acid / X.-A. Lu, C.-H. Chou, C.-C. Wang, S.-C. Hung // Synlett. –2003. –Vol.9. –P.1364–1366.

84. Han, X., Wang, J., Wan, Y., Zhao, Y., Zhao, W. Influence of fluorine atoms on glycosylation in different solvents / X. Han, J. Wang, Y. Wan, Y. Zhao, W. Zhao // Huaxue Tongbao. –2015. –V.78. –№7. –P.644-649.

85. Hijfte, L. Van. Intramolecular 1,3-diyl trapping reactions. A formal total synthesis of (.+-.)-coriolin / L. Van. Hijfte, R. D. Little //J. Org. Chem. –1985. – V.50. –P.3940–3942.

86. Thiem, J. Alkylation of Glycosyl Fluorides / J. Thiem, M. Wiesner // Synthesis. –1988. –V.2. –P.125-126.

87. Iversen, T. Benzyl trichloroacetimidate, a versatile reagent for acid-catalysed benzylation of hydroxy-groups / T. Iversen, D. R. Bundle // J. Chem. Soc. Chem. Commun. –1981. –P.1240–1241.

88. White, J. D. Total synthesis of (-)-botryococcene / J. D. White, G. N. Reddy, G.
O. Spessard // J. Am. Chem. Soc. –1988. –V.110. –P.1624–1626.

89. Widmer, U. A Convenient Benzylation Procedure for β-Hydroxy Esters / U. A
Widmer // Synthesis. –1987. –Vol.6. –P.568–569.

90. Eckenberg, P. A useful application of benzyl trichloroacetimidate for the benzylation of alcohols / P. Eckenberg, U. Groth, T. Huhn, N. Richter, C. Schmeck // Tetrahedron. –1993. –V.49. –P.1619–1624.

91. Wessel, H. P., Iversen, T., Bundle, D.R. Acid-catalysed benzylation and allylation by alkyl trichloroacetimidates / H. P. Wessel, T. Iversen, D.R. Bundle // J. Chem. SOC. Perkin. Trans. I. –1985. –P.2247-2250.

92. Hatakeyama, S. Efficient reductive etherification of carbonyl compounds with alkoxytrimethylsilanes / S. Hatakeyama, H. Mori, K. Kitano, H. Yamada, M. Nishizawa // Tetrahedron Lett. –1994. –V.35. –P.4367–4370.

93. Iseloh, U. Reducing oligosaccharides via glycal assembly: on the remarkable stability of anomeric hydroxyl groups to global deprotection with sodium in liquid ammonia / U. Iseloh, V. Dudkin, Z. G. Wang, S. Danishefsky // Tetrahedron Lett. – 2002. –V.43. –P.7027 – 7030.

94. Yin, H. Arabinofuranosides from Mycobacteria: Synthesis of a Highly Branched Hexasaccharide and Related Fragments Containing β-Arabinofuranosyl Residues / H. Yin, F. W. D'Souza, T. L. Lowary // J.Org. Chem. –2002. –V.67. –P.892–903.
95. D'Souza, F. W. Arabinofuranosyl Oligosaccharides from Mycobacteria: Synthesis and Effect of Glycosylation on Ring Conformation and Hydroxymethyl Group Rotamer Populations / F. W. D'Souza, T. L. Lowary // Org. Lett. –2000. – V.2. –P.1493–1495.

96. Imamura, A. Synthesis of the 6-O-Methyl-d-glycero-α-l-gluco-heptopyranose Moiety Present in the Capsular Polysaccharide from Campylobacter jejuni NCTC 11168 / A. Imamura, T. Lowary // Trends Glycosci. Glycotecnol. –2011. –P.134– 152.

97. Reddy, K. C. Concise synthesis of an arabinofuranose hexasaccharide present in the cell wall of Mycobacterium tuberculosis / K. C. Reddy, N. Padmaja, V. Pathak // Tetrahedron Lett. –2012. –V.53. –P.2461–2464.

98. Magnusson, G. Neoglycoconjugates: Preparation and Application / G. Magnusson, A.Ya. Chernyak, J. Kihlberg, L.O. Kononov et al. – San Diego, California.: Academic Press, –1994. –p.53-143.

99. Podvalnyy, N. M. Synthesis of Hexasaccharide Fragment of Lipoarabonomannan from Mycobacteria: Advantages of the Benzyl-Free Approach
/ N. M. Podvalnyy, P. I. Abronina, K. G. Fedina, N. N. Kondakov et al. // Russ.
Chem. Bull. –2015. –V.64. –P.1149–1162.

100. Abronina, P. I. The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation / P. I. Abronina, K. G. Fedina, N. M. Podvalnyy, N. N. Kondakov et al. // Carbohydr.Res. –2014, –V.396, –P.25-36.

101. Meng, X.B. Facile synthesis of 1-thio- β -lactoside clusters scaffolded onto pmethoxyphenyl, β -D-galactopyranoside, β -D-glucopyranoside, and lactoside / X.B. Meng, L. D. Yang, H. Li, Q. Li et al. // Carbohydr. Res. –2002. –Vol.337. –Nº11. – P.977-981.

102. Guibe, F. Allylic protecting groups and their use in a complex environment part I: Allylic protection of alcohols / F. Guibe // Tetrahedron. –1997. –V.40. –P.13509–13556.

103. Jacquinet, J. C. Synthesis of blood-group substances. 6. Synthesis of O-alpha-L-fucopyranosyl-(1 fwdarw 2)-O-beta-D-galactopyranosyl-(1 fwdarw 4)-O-[alpha-L-fucopyranosyl-(1 fwdarw 3)]-2-acetamido-2-deoxy-alpha-D-glucopyranose, the postulated Lewis d antigenic determinant / J. C. Jacquinet, P. Sinay // J. Org. Chem. -1977. –Vol.42.–№4. –P.720–724.
104. Hindsgaul, O. Synthesis of type 2 human blood-group antigenic determinants. The H, X, and Y haptens and variations of the H type 2 determinant as probes for the combining site of the lectin I of Ulex europaeus / O. Hindsgaul, T. Norberg, J. L. Pendu, R. U. Lemieux // Carbohydr. Res. –1982. –V.109. –P.109–142.

105. Iversen, T. Acid-catalysed benzylation and allylation by alkyl trichloroacetimidates / T. Iversen, D. R. Bundle // J. Chem. Soc. Perkin Trans. 1. – 1985. –P.2247–2250.

106. Wang, C. C. Synthesis of Biologically Potent $\alpha 1 \rightarrow 2$ -Linked Disaccharide Derivatives via Regioselective One-Pot Protection–Glycosylation / C. C. Wang, J. C. Lee, S. Y. Luo, H. F. Fan // Angew. Chem. Int. Ed. –2002. –Vol.41. –P.2360–2362.

107. Guibe, F. The allyloxycarbonyl group for alcohol protection: quantitative removal or transformation into allyl protecting group via π -allyl complexes of palladium / F. Guibe, Y. S. M'Leux // Tetrahedron Lett. –1981. –V.22. –P.3591.

108. Lakhmiri, R. Allyl ethyl carbonate/palladium (0), a new system for the one step conversion of alcohols into allyl ethers under neutral conditions / R. Lakhmiri, P. Lhoste, D. Sinou // Tetrahedron Lett. –1989. –V.30. –№35. –P.4669-4672.

109. Dahlen, A. SmI2/Water/Amine Mediates Cleavage of Allyl Ether Protected Alcohols: Application in Carbohydrate Synthesis and Mechanistic Considerations / A. Dahlen, A. Sundgren, M. Lahmann, S. Oscarson, G. Hilmersson // Org. Lett. – 2003. –V.5. –P.4085-4088.

110. Gent, P. The allyl ether as a protecting group in carbohydrate chemistry.Isomerisations with tristriphenylphosphinerhodium(I) chloride / P. Gent, R. Gigg //J. Chem. Soc. Chem. Commun. –1974. –P.277-278.

111. Gigg, R. The allyl ether as a protecting group in carbohydrate chemistry. Part
11. The 3-methylbut-2-enyl ('prenyl') group / R. Gigg //J. Chem. Soc. Perkin Trans.
1. –1980. –P.738–740.

112. Nicolaou, K. C. Total synthesis of the tumor-associated Lex family of glycosphingolipids / K. C. Nicolaou, T. J. Caulfield, H. Kataoka, N. A. Stylianides // J. Am. Chem. Soc. –1990. –Vol.112. –№9. –P.3693–3697.

113. Smith, A. B. Phyllanthoside-phyllanthostatin synthetic studies. 8. Total synthesis of (+)-phyllanthoside. Development of the Mitsunobu glycosyl ester protocol / A. B. Smith, R. A. Rivero, K. J. Hale, H. A. Vaccaro // J. Am. Chem. Soc. – 1991. –V.113. –№6. –P. 2092–2112.

114. Yamada, H. Synthesis of An Elicitor-Active Hexaglucoside Analog by a One-Pot, Two-Step Glycosidation Procedure / H. Yamada, T. Harada, T. Takahashi // J. Am. Chem. Soc. –1994. –Vol.116. –№17. –P.7919–7920.

115. Barili, P. L. Meta-chloroperbenzoic acid as a selective reagent for the removal of O-propenyl groups. Its use in the synthesis of some d-galactopyranoside and 4-deoxy-l-threo-4-hexenopyranoside derivatives / P. L. Barili, G. Berti, D. Bertozzi, G. Gatelani, F. Colonna et al. // Tetrahedron Lett. –1990. –V.46. –№15. –P.5365.

116. Chandrasekhar, S. Facile and selective cleavage of allyl ethers, amines and esters using polymethylhydrosiloxane– $ZnCl_2/Pd(PPh_3)_4$ / S. Chandrasekhar, C. R. Reddy, R. J. Rao // Tetrahedron. -2001. -V.57. -No16. -P.3435-3438.

117. Vutukuri, D. R. A Mild Deprotection Strategy for Allyl-Protecting Groups and Its Implications in Sequence Specific Dendrimer Synthesis / D. R. Vutukuri, P. Bharathi, Z. Yu, K. Rajasekaran, M. H. Tran, S. Thayumanavan // J. Org. Chem. – 2003. –V.68. –№3. –P.1146–1149.

Murakami, H. Facile and Selective Deallylation of Allyl Ethers Using Diphosphinidenecyclobutene-Coordinated Palladium Catalysts / H. Murakami, T. Minami, F. Ozawa // J. Org. Chem. –2004. –V. 69. –№13. –P.4482–4486.

119. Lakhmiri, R. Allyl ethyl carbonate/palladium (0), a new system for the one step conversion of alcohols into allyl ethers under neutral conditions / R. Lakhmiri,

P. Lhoste, D. Sinou // Tetrahedron Lett. −1989. −V.30. −№35. −P.4669-4672.

120. Frank, F. t-Butyldimethylsilyl ethers of sucrose / F. Frank, R.D. Guthrie //Aust.
J. Chem. –1977. –V.30. –№3. –P.639-647.

121. Nashed, E. M. Selective Silylation of β -D-Galactosides. A New Approach to the Synthesis of (1-6)- β -D-Galactopyranooligosaccharid / E. M. Nashed, C.P. J. Glaudemans // J. Org. Chem. –1987. –V.52. –P.5255-5260.

122. Nelson, T. D. Selective Deprotection of Silyl Ethers / T. D. Nelson, R. D. Crouch // Synthesis. –1996. –V.9. –P.1031–1069.

123. Crouch, D. R. Selective monodeprotection of bis-silyl ethers / D. R. Crouch // Tetrahedron. –2004. –V.60. –№28. –P.5833–5871.

124. Wuts, B. G. M. Application of allylboronates to the synthesis of carbomycin B / B. G. M. Wuts, S. S. Bigelow // J. Org. Chem.–1988. –Vol.53. –№21. –P.5023.

125. Mulzer, J. Multiple 1,2-O, O-Shift of tert-Butyldiphenylsilyl Groups in Polyols

/ J. Mulzer, B. Schollhorn // Angew. Chem. Int. Ed. Engl. –1990. –V.29. –№4. – P.431–432.

126. Pétursson, S. Protecting Groups in Carbohydrate Chemistry / S. Pétursson // J. Chem. Educ. –1997. –V.74. –№11. –P. 1297-1303.

127. Chittenden, G. J. F. Acetalation studies. Part VI. Concerning the effects of ultrasound on the benzylidenation of some alkyl D-glycopyranosides / G. J. F. Chittenden // Recl. Trav. Chim. Pays-Bas. –1988. –V.107. –№10. –P.607-609.

128. Nui, Y. Efficient Formation and Cleavage of Benzylidene Acetals by Sodium Hydrogen Sulfate Supported on Silica Gel / Y. Nui, N. Wang, X. Cao, X. S. Ye //Synlett. –2007. –V.13. –P.2116-2120.

129. Montesarchio, D. Cyclic phosphate-linked oligosaccharides (CyPLOS): novel carbohydrate-based synthetic ion transporters / D. Montesarchio // Pure Appl. Chem. –2012. –V.84. –P.87-96.

130. Procopio, A. Mild and efficient method for the cleavage of benzylidene acetals by using erbium (III) triflate / A. Procopio, R. Dalpozzo, A. De Nino, L. Maiuolo et al. // Org. Biomol. Chem. –2005. –V.3. –P.4129-4133.

131. Agnihorti, G. Mild and efficient method for the cleavage of benzylidene acetals using HClO4–SiO2 and direct conversion of acetals to acetates / G. Agnihorti, A. K. Misra // Tetrahedron Lett. –2006. –V.47. –№22. –P.3653-3658.

132. Gelas, J. The Reactivity of Cyclic Acetals of Aldoses and Aldosides / J. Gelas,
// Adv. Carbohydr. Chem. Biochem. –1981. –V.39. –P.71-156.

133. Haines, A. H. The Selective Removal of Protecting Groups in Carrohydrate Chemistry / A. H. Haines // Adv. Carbohydr. Chem. Biochem. –1981. – V.39. –P. 13-70.

134. Garegg, P. J. Some aspects of regio-, stereo-, and chemoselective reactions in carbohydrate chemistry / P. J. Garegg // Pure Appl. Chem. –1984. –Vol.56. –№7. – P. 845-858.

135. Kang, S. Effect of Methanol on Formation of Levulinates from Cellulosic Biomass / S. Kang, J. Yu // Ind. Eng. Chem. Res. –2015. –Vol.54. –P. 11552–11559.
136. Douglas, S. P. Polymer-Supported Solution Synthesis of Oligosaccharides Using a Novel Versatile Linker for the Synthesis of D-Mannopentaose, a Structural Unit of D-Mannans of Pathogenic Yeasts / S. P. Douglas, D.M. Whitfield, J. J. Krepinsky // J. Am. Chem. Soc. –1995. –Vol.117. –№7. –P.2116–2117.

137. Jansson, K. 2-(Trimethylsilyl)ethyl glycosides. 3. Synthesis, anomeric deblocking, and transformation into 1,2-trans 1-O-acyl sugars / K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson et al. // J. Org. Chem. –1988. –V.53. – P.5629 – 5647.

138. Zhang, Z. Conversion of p-methoxyphenyl glycosides into the corresponding glycosyl chlorides and bromides, and into thiophenyl glycosides / Z. Zhang, G. Magnusson // Carbohydr. Res. –1996. –V.295. –P.41 – 55.

139. Petermichl, M. Total Synthesis of the Diglycosidic Tetramic Acid Ancorinoside A / M. Petermichl, R. Schobert // Chem. Eur. J. –2017. –V.23. –P. 14743–14746.

140. Podvalnyy, N. M. 4-(2-Chloroethoxy) phenol-terminated oligomerization of 3-O-benzoyl-β-d-arabinofuranose 1,2,5-orthobenzoate / N. M. Podvalnyy, P. I. Abronina, E. L. Zdorovenko, A. O. Chizhov et al. // Russ. Chem. Bull. –2014. –V. 63. –P. 497-500.

141. Abronina, P.I. Application of a Janus aglycon with dual function in benzyl-free synthesis of spacer-armed oligosaccharide fragments of polysaccharides from rhizobacterium Azospirillum brasilense sp7 / P.I. Abronina, A.I. Zinin, D.A. Romashin, V.V. Tereshina et al // Carbohydr. Res. –2018. –V. 464. –P. 28-43.

142. Magnusson, G. Prespacer Glycosides in Glycoconjugate Chemistry.
Dibromoisobutyl Glycosides for the Synthesis of Neoglycolipids, Neoglycoproteins,
Neoglycoparticles, and Soluble Glycosides / G. Magnusson, S. Ahlfors, J. Dahmen,
K. Jansson et al. //J. Org. Chem. –1990. –V.55. –№12. –P.3932-3946.

143. Bertozzi1, C. R. Chemical Glycobiology / C. R. Bertozzi1, L. L. Kiessling //
J. Science. -2001. -Vol. 291. -№551. -P.2357-2364.

144. Winstein, S. Glycosyl Trichloro- and (N-phenyl)trifluoroacetimidates / S. Winstein, R. Grunwald, E. Buckles, C. Hanson // J. Am. Chem. Soc. –1948. –V.70. –P.816–821.

145. Nukada, T. Conformational pathways of saturated six-membered rings. A static and dynamical density functional study / T. Nukada, A. Berces, L. Wang et al. // Carbohydr. Res. –2005. –V.340. –P.841–852.

146. Garcia, B. A. Dehydrative Glycosylation with Activated Diphenyl Sulfonium Reagents. Scope, Mode of C (1)-Hemiacetal Activation, and Detection of Reactive Glycosyl Intermediates / B. A. Garcia, D. Y. Gin // J. Am. Chem. Soc. –2000. – Vol.122. –№6. –P.4269–4279.

147. Demchenko, A. V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic / A. V. Demchenko. –Wiley-VCH.: Weinheim, 2008, – p.497.

148. Boebel, T. A. Probing the Mechanism of Sulfoxide-Catalyzed Hemiacetal Activation in Dehydrative Glycosylation / T. A. Boebel, D. Y. Gin // J. Org. Chem. –2005. –Vol. 70. –P. 5818–5826.

149. Dohi, H. O-Methoxycarbonylphenyl 1-Thio- β -d-Galactopyranoside, A Nonmalodorous Thio Glycosylation Donor for the Synthesis of Globosyl α (1-4)-Linkage / H. Dohi, Y. Nishida, H. Tanaka et al. // Synlett. –2001. –Vol. 26. –№19. –P.1446–1448.

150. Schmidt, R. R. Stereoselective glycosidations of uronic acids / R. R. Schmidt,
E. Rucker // Tetrahedron. –1980. –V.21. –№15. –P.1421–1424.

151. Sasaki, M. Glycosylation reaction under high pressure / M. Sasaki, Y. Gama,
M. Yasumoto, Y. Ishigami // Tetrahedron. –1990. –Vol.31. –№45. –P. 6549–6552.

152. Schmidt, R. R. Oligosaccharide synthesis with trichloroacetimidates. Preparative Carbohydrate Chemistry / R. R. Schmidt, K. H. Jung. –N-Y.: Copyright, 1997, p.283–312.

153. Ishiwata, A. Synergistic solvent effect in 1,2-cis-glycoside formation / A. Ishiwata, Y. Munemura, Y. Ito // Tetrahedron. –2008. –Vol. 64. –№1. –P.92–102.

154. Adinolfi, M. Tunable Activation of Glycosyl Trichloro- and (N-phenyl)trifluoroacetimidates with Ytterbium(III) Triflate: One-Pot Synthesis of -Trisaccharides under Catalytic Conditions / M. Adinolfi, A. Iadonisi, A. Ravida // Synlett. –2006. –Vol.4. –P. 583–586.

155. Mydock, L.K. Mechanism of chemical O-glycosylation: from early studies to recent discoveries / L.K. Mydock, A.V. Demchenko // Org. Biomol. Chem. –2010. –V.8. –P. 497–510.

156. Fischer, E. Ueber die Glucoside der Alkohole / E. Fischer // Ber. Dtsch. Chem. Ges. –1893. –V.26. –P. 2400–2412.

157. Garegg, P. J. Anomerization of Methyl Glycosides by Acid-Catalysed Methanolysis: Trapping of Intermediates / P. J. Garegg, K.J. Johansson, P. Konradssonand et al. // Carbohudr. Chem. –1999. –Vol.18. –№1. –P. 31-40.

158. Qin, C. Total Synthesis of a Densely Functionalized Plesiomonas shigelloides
Serotype 51 Aminoglycoside Trisaccharide Antigen / C. Qin, B. Schumann, X. Zou,
C. L. Pereira, G. Tian et al. // J. Am. Chem. Soc. –2018. –Vol.140. –P. 3120-3127.

159. Igarashi, K. Glycosylation of fenol acids / K. Igarashi // Carbohydr. Chem. Biochem. –1977. –Vol.34. –P. 243.

160. Lemieux, R. U. Halide ion catalyzed glycosidation reactions. Syntheses of alpha-linked disaccharides / R. U. Lemieux, K. B. Hendriks, R. V. Stick, K. James // J. Am. Chem. Soc. –1975. –Vol.97. –P.4056–4062.

161. Crich, D. On the Role of Neighboring Group Participation and Ortho Esters in β -Xylosylation: 13C NMR Observation of a Bridging 2-Phenyl-1,3-dioxalenium Ion / D. Crich, Z. Dai, S. Gastaldi // J. Org. Chem. –1999. –Vol.64. –P.5224-5229. 162. Maschauer, S. Utility of 1,3,4,6-tetra-0-acetyl-2-deoxy-2-fluoro-glucopyranoside for no-carrier-added F-glycosylation of amino acids / S.

Maschauer, M. Pischelsrieder, T. Kuwert et al // J. Label. Compd. Radiopharm. – 2005. –Vol.48. –P.701–719.

163. Schroeder, L. R. Koenigs–Knorr syntheses with mercuric salts / L. R. Schroeder, J. W. Green // J. Chem. Soc. –1966. –P. 530-531.

164. Schmidt, R. R. Facile Synthesis of α - and β -O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides / R. R. Schmidt, J. J. Michel // Angew. Chem. Int. Ed. Engl. –1980. –Vol.19. –No9. –P.731–732.

165. Schmidt, R. R. N-Trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors / R. R. Schmidt // J. Carbohudr. Res. –1996. –Vol. 296. –№1-4. – P.135-147.

166. Michael, A. On the synthesis of helicin and phenol glucoside / A. Michael //Am. Chem. J. –1879. –Vol. 1. –P. 305 – 312.

167. Khan, A. T. A simple and convenient synthetic protocol for Oisopropylidenation of sugars using bromodimethylsulfonium bromide (BDMS) as a catalyst / A. T. Khan, Md. M. Khan // Carbohudr. Res. -2010. -Vol.345. -N $_{2}1$. -P.154-159.

168. Chen, C. Y. Synthesis and biological evaluation of glycosylated psoralen derivatives / C. Y. Chen, J. G. Sun // Tetrahedron. –2012. –Vol.68. –№12. – P.2598–2606.

169. Hanessian, S. One-Step Stereocontrolled Synthesis of α-Anomeric Carboxylic Acid Esters from Unprotected Glycosyl Donors: A Water-Soluble Aspirin Pro-Drug Analogue / S. Hanessian, V. Mascitti, P.P. Lu et al. // Synthesis. –2002. –Vol.14. – P.1959-1968.

170. Hu, Y. L. Improved preparation of 3, 3, 4, 4-tetramethyldiphenylethane by self coupling reaciton in aqueous media / Y. L. Hu, M. Lu, Q. F. Liu et al. // J. Chinese Chem. Soc. –2009. –Vol.56. –P.1056–1063.

171. Saito, S. Enol glycosylation at α, β-unsaturated ketone on glycyrrhetic acid derivatives / S. Saito, S. Sumitaa, Y. Kanda, Y. Sasaki // Tetrahedron. -1992. - Vol.33. -N²48. -P.7381-7384.

172. Hanessian, S. Chemistry of the glycosidic linkage. An efficient synthesis of 1,2-trans-di-saccharides / S. Hanessian, J. Banoub // Carbohydr. Res. –1977. – Vol.59. –p.261.

173. Kiso, M. The ferric chloride-catalyzed glycosylation of alcohols by 2-acylamido-2-deoxy- β -d-glucopyranose 1-acetates / M. Kiso, L. Andemn // Carbohydr. Res. –1979. –Vol.72. –P. C12-C14.

174. Dahmen, J. Boron trifluoride etherate-induced glycosidation: formation of alkyl glycosides and thioglycosides of 2-deoxy-2-phthalimidoglycopyranoses / J. Dahmen, T. Frejd, G. Magnusson, G. Noori // Carbohydr. Res. –1983. –Vol.114. – P. 328.

175. Ogawa, T. Trimethylsilyl trifluoromethanesulfonate as an effective catalyst for glycoside synthesis / T. Ogawa, K. Beppu, S. Nakabayashi // Carbohydr. Res. –1981. –Vol. 93. –P. C6-C9.

176. Mukaiyama, T. A facile synthesis of α -glucosides and α -ribosides from the corresponding 1-O-acyl sugars and alcohols in the presence of trityl perchlorate / T. Mukaiyama, S. Kobayashi, S. Shoda //Chem. Lett. –1984. –Vol.13. –No6. –P. 907.

177. Toshima, K. Recent Progress In OGiycosylation Methods and Its Application to Natural Products Synthesis / K. Toshima, K. Tatsuta // Chem. Rev. –1993. –Vol. 93. –P. 1503-1531.

178. Schmidt, R. R. Facile synthesis of α - and β -O-glycosyl imidates; preparation of glycosides and disaccharides / R. R. Schmidt, J. Michel //Angew. Chem. Int. Ed. Engl. –1980. –Vol.19. –P.731 – 732.

179. Stepanova, E.V. The first example of a one-step synthesis of 2'-O-acetyl aryld-glucopyranosides / E.V. Stepanova, M. L. Belyanin, V. D. Filimonov, R. R. Valiev et al. //Carbohydr.Res. –2015. –Vol.409. –P.36-40.

180. Klamt, A. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient / A. Klamt, G. Schüürmann // J. Chem. Soc. Perkin Trans. –1993. –Vol.2. –№0. –P.799-805.

181. Day, J.N.E. Mechanism and kinetics of carboxylic ester hydrolysis and carboxyl esterification / J.N.E. Day, C.K. Ingold // Trans. Faraday Soc. –1941. – Vol.37. –P. 686-705.

182. Reyes, L. Acid-Catalyzed Nucleophilic Additions to Carbonyl Groups: Is the Accepted Mechanism the Rule or an Exception? / L. Reyes, I. Nicolas-Vazquez, N. Mora-Diez, J. R. Alvarez-Idaboy // J. Org. Chem. –2013. –Vol.78. –№6. –P.2327.

183. Dewar, M. J. S. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model / M. J.S. Dewar, E.G. Zoebisch, E.F. Healy // J. Am. Chem. Soc. –1985. –Vol.107. – №13. –P.3902-3909.

184. Jones, R.O. Density functional theory: Its origins, rise to prominence, and future / R.O. Jones // Rev. Mod. Phys. –2015. –Vol.87. –P.897-923.

185. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange / A.D. Becke // J. Chem. Phys. –1993. –Vol.98. –P.5648-5652.

186. Сайкс, П. Механизм реакций в органической химии / П. Сайкс. – М.: Химия, 1991, 320 с.

187. Inagaki, Y. Clinicopathological utility of sialoglycoconjugates in diagnosing and treating colorectal cancer / Y. Inagaki, J. Gao, P. Song, N. Kokudo et al. // World J. Gastroenterol. –2014. –Vol.20. –№20. –P.6123-6132.

188. Xu, H.L. Expression of KL-6 mucin, a human MUC1 mucin, in intrahepatic cholangiocarcinoma and its potential involvement in tumor cell adhesion and invasion / H.L. Xu, Y. Inagaki, Y. Seyama, Y. Sugawara, N. Kokudo et al. // Life Sci. –2009. –Vol.85. –№9-10. –P. 395-400.

189. Pan, Y. Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines / Y. Pan, P. Chefalo, N. Nagy, C. Harding, Z. Guo // J. Med. Chem. –2005. –Vol.48. –P.875–883.

190. Pazynina, G.Divergent strategy for the synthesis of a2- 3-linked sialooligosaccharide libraries using a Neu5TFA- (a2-3)-Gal building block / G. Pazynina, T. Tyrtysh, V. Nasonov, I. Belyanchikov, A. Paramonov et al. // Synlett. –2013. – Vol.24. –P. 226–230. 191. Marra, A. Stereoselective synthesis of 2-thioglycosides of N-acetylneuraminic acid / A. Marra, P. Sinaÿ // Carbohydr. Res. –1989. –Vol.187. –P.35-42.

192. Kononov, L. O. Synthesis of Methyl and Allyl a-Glycosides of N-Acetylneuraminic Acid in the Absence of Added Promoter / L. O. Kononov, G. Magnusson // Acta Chem. Scand. –1998. –Vol.52. –P.141-144.

193. Hanashima, S. Silylene/Oxazolidinone Double-Locked Sialic Acid Building Blocks for Efficient Sialylation Reactions in Dichloromethane / S. Hanashima, K. Sato, Y. Ito, Y. Yamaguchi // Eur. J. Org. Chem. –2009. –Vol. 25. –P.4215-4220.

194. Crich, D. Efficient Glycosidation of a Phenyl Thiosialoside Donor with Diphenyl Sulfoxide and Triflic Anhydride in Dichloromethane / D. Crich, W. Li // Org. Lett. –2006. –Vol8. –P. 959-962.

195. Kononov, L. O. Intermolecular Hydrogen-Bonding Pattern of a Glycosyl Donor: The Key to Understanding the Outcome of Sialylation / L. O. Kononov, N. N. Malysheva, E. G. Kononova, A. V. Orlova // Eur. J. Org. Chem. –2008. –P. 3251. 196. Kononov, L. O. Concentration Dependence of Glycosylation Outcome: A Clue to Reproducibility and Understanding the Reasons / L. O. Kononov, N. N. Malysheva, A. V. Orlova, A. I. Zinin et al. // Behind. Eur. J. Org. Chem. –2012. – Vol.10. –P.1926-1934.

197. Kononov, L. O. The first example of synergism in glycosylation. Possible reasons and consequences / L. O. Kononov, N. N. Malysheva, E. G. Kononova, O. G. Garkusha // Russ. Chem. Bull. –Vol.2006. –№55. –P.1311 -1313.

198. Kononov, L. O. Stereoselectivity of Glycosylation May Change During the Reaction Course: Highly α-Stereoselective Sialylation Achieved by Supramer Approach / L. O. Kononov, N. N. Malysheva, A. V. Orlova // Eur. J. Org. Chem. – 2009. –Vol.5. –P. 611-616.

199. Podvalnyy, N.M. Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved? / N.M. Podvalnyy, N.N. Malysheva, M.V. Panova, A.I. Zinin, A.O. Chizhov et al. // Carbohydr. Res. –2017. –Vol.451. – P.12-28.

200. Pazynina, G. letter Divergent Strategy for the Synthesis of α 2-3-Linked Sialooligosaccharide Libraries Using a Neu5TFA-(α 2-3)-Gal Building Block / G. Pazynina, T. Tyrtysh, V. Nasonov, I. Belyanchikov et al. // Synlett. –2013. –Vol.24. –P.226-230.

201. Hiller, K. Quantitative distribution of the phenolic glycosides virgaureoside A and leiocarposide in Solidago virgaurea L / K. Hiller, G. Fotsch // Pharmazie. -1986. -Vol.41. $-N_{2}6$. -P.415-416.

202. Hiller, K. Virgaureosid A – ein neues, bisdesmosidisches Phenolglycosid aus Solidago virgaurea L / K. Hiller, G. Dube, D. Zeigan // Pharmazie. –1985. –Vol.40. –P.795-796.

203. Shimomura, H. Phenolic glucosides from the heartwood of prunus / H. Shimomura, Y. Sashida, K. Yoshinari // Phytochem. –1989. –Vol.28. –P.1499-1504. 204. Wang, C. Synthesis and antinociceptive and anti-inflammatory effects of gaultherin and its analogs / C. Wang, T. T. Zhang, G. H. Du, D. M. Zhang // J. Asian Nat. Prod. Res. –2011. –Vol.13. –№9. –P. 817-825.

205. Wagner, G. Über die β-d-Glucoside verschiedenerp –Oxybenzoesäure-und Salicylsäureester und ihre Spaltbarkeit mit Mandel Emulsin. 2. Mitteilung: Über Phenolglykoside / G. Wagner, H. Kühmstedt // Arch. Pharm. –1956. –Vol. 289. – №9-10. –P.488-502.

206. Schneider, U. Identification of plant and animal glues in museum objects by GC–MS, after catalytic hydrolysis of the proteins by the use of a cation exchanger, with simultaneous separation from the carbohydrates / U. Schneider, E. Kenndler // J. Anal. Chem. –2001. –Vol. 371. –P.81–87.

207. Goldschmid, H. R. Some Factors Affecting the Königs-Knorr Synthesis of Glycosides / H. R. Goldschmid, A. S. Perlin // Can. J. Chem. –1961. –Vol.39. –P. 2025-2034.

208. Yin, Y. UV spectrophotometric determination of acetylation substitution degree in Konjac glucomannan / Y. Yin, Y. Zhang, F. Peng, J. Liu et al. // Chin. J. Pharm. Anal. –2010. –Vol.30. –№5. –P.919-921.

209. Yan, Y.L. Sequential Dy(OTf)3-Catalyzed Solvent-Free Per-O-Acetylation and Regioselective Anomeric De-O-Acetylation of Carbohydrates / Y.L. Yan, J. R. Guo, C. F. Liang // Chem. Asian J. –2017. –Vol.12. –№18. –P.2471-2479.

210. Li, Y. Revisit of the phenol O-glycosylation with glycosyl imidates, BF3·OEt2 is a better catalyst than TMSOTf / Y. Li, H. Mo, G. Lian, B. Yu // Carbohydr. Res. –2012. –Vol.363. –P.14-22.

211. Novik, E. R. Stereoselectivity of reactions at the glycosite center of carbohydrates. V. Helferich synthesis of 1, 2-trans-arylglycosides catalyzed by orthophosphonic acid / E. R. Novik, E. P. Studentsov, V. I. Zakharov, A. N. Lavrent'ev // Zh. Obshch. Khim. –1986. –Vol.56. –№1. –P.181-187.

212. Pershagen, E. Multiplex Detection of Enzymatic Activity with Responsive Lanthanide-Based Luminescent Probes / E. Pershagen, K. E. Borbas // Angew. Chem. Int. Ed. –2015. –Vol. 54. –№6. –P.1787-1790.

213. Capicciotti, C, J., Mancini, R. S., Turner, T. R., Koyama, T., Alteen, M., et al. O-Aryl-Glycoside Ice Recrystallization Inhibitors as Novel Cryoprotectants: A Structure-Function Study / C, J. Capicciotti, R. S. Mancini, T. R. Turner, T. Koyama, M. Alteen et al. //ACS Omega. –2016. – Vol.1. –№4. –P.656-662.

214. Mayr, C. M. Determination of the Importance of In-Mouth Release of Volatile Phenol Glycoconjugates to the Flavor of Smoke-Tainted Wines / C. M. Mayr, M. Parker, G. A. Baldock, C. A. Black et al. // J. Agric. Food. Chem. –2014. –Vol.62. –№11. –P.2327-2336.

215. Petermichl, M. Total Synthesis of the Diglycosidic Tetramic Acid Ancorinoside A / M. Petermichl, R. Schobert // Chem. Eur. J. –2017. –Vol.23. –P. 59. –P.14743-14746.

216. Lee, Y. S. Practical β -stereoselective O-glycosylation of phenols with penta-O-acetyl- β -D-glucopyranose / Y. S. Lee, E. S. Rho, Y.K. Min et al. // J. Carbohyd. Chem. -2001. -Vol.20. -No6. -P.503-506.

217. Xin, W. Evaluation of the new anti-inflammatory compound ethyl salicylate 2-O- β -D-glucoside and its possible mechanism of action / W. Xin, C. Huang, X. Zhang, G. Zhang et al. // Int. J. Immunopharmacol. –2013. –Vol.15. –No2. –P.303.

218. Wang, T. C. Synthesis of 4-alkoxyaryl β -D-glucopyranosides and their inhibitory effects of histamine release from rat peritoneal mast cells induced by concanavalin / T. C. Wang, H. Furukawa, Y. Nihro, H. Kakegawa et al.// A. Chem. Pharm. Bull. –1994. –Vol.42. –No. –P.570-575.

219. Ferreira, Z.S. Structural clarification of germacranolides from Calea species /
Z.S. Ferreira, N.F. Roque, O.R. Gottlieb, F. Oliveira, H. E. Gottlieb // Phytochem. –
1980. –Vol.19. –№7. –P.1481-1484.

220. Satsumabayashi, K. Taste and structures (1): On the substituent effect of the nitro group and S-atom effect (preliminary report) / K. Satsumabayashi, Y. Nishida, K. Tanemura, N. Kokawa // Bulletin of the Nippon Dental University, General Education. –2003. –V.33. –P.35-38.

221. Brewster, K. Synthesis of aryl β -d-glucopyranosidesa nd aryl β -d glucopyranosiduronic acids / K. Brewster, J.M. Harrison, T. D. Inch //Tetrahedron Lett. –1979. –Vol.52. –P.5051-5054.

222. De Bruyne, C. K. Synthesis of substituted phenyl β -D-galactopyranosides / C. K. De Bruyne, J. Wouters-Leysen // Carbohydr. Res. –1970. –Vol.18. –P.124-126. 223. Semke, L. The Rates of Acid Hydrolysis of the Phenyl β –D-Glucopyranosiduronic Acids and Phenyl β -D-Glucopyranosides of Phenol, p-Cresol, and p-Chlorophenol / L. Semke, N. S. Thompsoan, D. G. Williams // J. Org. Chem. –1964. –Vol. 29. –N \circ 5. –P.1041–1047.

224. Fujimatu, E. Aromatic compound glucosides, alkyl glucoside and glucide from the fruit of anise / E. Fujimatu, T. Ishikawa, J. Kitajima // Phytochemistry. –2003. – Vol.63. –P. 609–616.

225. Zoobi, J.Two new phenolic glycosides from the flowers of Salix caprea L / J. Zoobi, A. Mohd // IRJR. –2011. –Vol. 2. –№5. –P.138-141.

226. Jacquinet, J-C. An expeditious preparation of various sulfoforms of the disaccharide β -D-Galp-(1 \rightarrow 3)-D-Galp, a partial structure of the linkage region of proteoglycans, as their 4-methoxyphenyl β -D-glycosides / J-C. Jacquinet // Carbohydr. Res. –2004. –Vol. 339. –No2. –P.349-359.

Приложение A NMR ¹H (400 MHz, DMSO-*d*₆) o-cresyl 2-O-acetyl-β-D-glucopyranoside **2a**

Приложение Б COSY (DMSO-*d*6) o-cresyl 2-O-acetyl-β-D-glucopyranoside **2a**

HSQC (DMSO-*d*₆) o-cresyl 2-O-acetyl-β-D-glucopyranoside **2a**

HMBC (DMSO-*d*₆) o-cresyl 2-O-acetyl-β-D-glucopyranoside **2a**