

БАЗОВАЯ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОСНОВЫ МЕХАТРОНИКИ, РОБОТОТЕХНИКИ И ЧПУ

Направление ООП 27.03.05 Инноватика

Профиль подготовки Предпринимательство в инновационной деятельности

Квалификация (степень) бакалавр

Базовый учебный план приема 2015 г.

Курс 3 семестр 6

Количество кредитов 6

Код дисциплины ДИСЦ. В.М15

Виды учебной деятель-	Временной ресурс по очной форме обуче-
ности	ния
Лекции, ч	32
Практические занятия, ч	48
Лабораторные занятия, ч	
Аудиторные занятия, ч	80
Самостоятельная работа,	136
Ч	
ИТОГО, ч	216

Вид промежуточной аттестации: ЭКЗАМЕН

Обеспечивающее подразделение: кафедра интегрированных компьютерных систем управления (ИКСУ)

Заведующий кафедрой ИКСУ

Руководитель ООП

Преподаватель

А. В. Лиепиньш

С.В. Хачин

Т. Е. Мамонова

2015 г.

1. Цели освоения дисциплины

В результате изучения дисциплины "Основы мехатроники, робототехники и ЧПУ" студенты должны обладать знаниями для достижения следующих целей данного направления:

- **Цель 3:** Подготовка выпускников к экономической деятельности по оценке эффективности инвестиций на этапах внедрения и эксплуатации и новых наукоемких разработок, востребованных на мировом рынке
- **Цель 5**: Подготовка выпускников к эффективному использованию и интеграции знаний в области фундаментальных наук для решения исследовательских и прикладных задач применительно к профессиональной деятельности.
- **Цель 6**: Подготовка выпускников к самообучению и освоению новых профессиональных знаний и умений, непрерывному профессиональному самосовершенствованию

2. Место дисциплины в структуре ООП

Дисциплина относится к дисциплинам вариативной части профессионального цикла. Она непосредственно связана с дисциплинами: Информатика»; «Информационные технологии»; «Материаловедение»; «Математика»; «Физика».

Кореквизитом являются дисциплины «Компьютерное моделирование технологий и процессов»; «Экономика»; «Учебно-исследовательская работа студентов».

3. Результаты освоения дисциплины

В процессе освоения дисциплины в соответствии с ФГОС ВПО у студентов развиваются следующие **компетенции**:

1. Универсальные (общекультурные):

способностью использовать законы естественнонаучных дисциплин в профессиональной деятельности (ОК-7);

способностью использовать основные методы, способы и средства получения, хранения, переработки информации, способностью использовать компьютер как средство управления информацией (ОК-12);

2. Профессиональные:

способностью использовать инструментальные средства (в том числе пакеты прикладных программ) для решения прикладных инженерно-технических и технико-экономических задач, планирования и проведения работ по проекту (ПК-1);

способностью систематизировать и обобщать информацию по использованию и формированию ресурсов (ПК-9);

способностью к работе в коллективе; организации работы малых коллективов (команды) исполнителей (ПК-10);

способностью готовить презентации, научно-технические отчеты по результатам выполненной работы, оформлять результаты исследований в виде статей и докладов (ПК-14);

способностью применять методы анализа вариантов проектных, конструкторских и технологических решений для выбора оптимального (ПК-18).

Соответствие результатов освоения дисциплины формируемым компетенциям ООП представлено в таблице 1.

Таблица 1

Результат обучения	Код	Знания	Код	Умения	Код	Владение опытом
P4	3.4.5.	фундаментальные понятия, законы и теории классической и современной физики в области механики, термодинамики, электричества, магнетизма и атомной физики;	y.4.5.	применять знание основных законов естественных наук, методов теоретических и экспериментальных исследований к решению конкретных профессиональных задач,	B.4.5.	основными приемами обра- ботки экспери- ментальных данных
P7			У.7.3.	выявлять физическую сущность явлений и процессов в устройствах различной физической природы и выполнять применительно к ним простые технические расчеты		
	3.7.4.	общие принципы инженерных расчетов, основные понятия и законы механики (кинематика, динамика, статика), принципы и методы расчетов на прочность, жесткость и устойчивость;	У.7.4.	использовать численные методы для решения химикотехнологических задач	B.7.4	создания чертежей и эскизов, конструкторской документации с применением компьютерных пакетов программ

^{*} Расшифровка кодов формируемых компетенций представлена в Основной образовательной программе подготовки бакалавров по направлению 27.03.05 «Инноватика».

Планируемые результаты освоения дисциплины «Основы мехатроники, робототехники и ЧПУ» показаны в таблице 2.

Таблица 2 Планируемые результаты освоения дисциплины

№ п.п.	Результаты
РД1	Понимать основные научно-технические проблемы и перспективы
	развития мехатроники и робототехники, их взаимосвязь со смежными областями науки и техники
РД2	Знать принципы и методологические основы построения мехатронных устройств, модулей, систем
РД3	Знать устройство и принцип действия промышленных роботов (ПР), манипуляторов, схватов ПР, отдельных модулей ПР
РД4	Иметь представление о назначении мехатронных систем, промышленных роботов, о робототехнических комплексах, робототехнических системах
РД5	Знать классификацию мехатронных модулей, роботов и манипуляторов, их основные технические характеристики
РД6	Иметь опыт программирования цикловых роботов и простых робототехнических комплексов на их основе.

4. Структура и содержание дисциплины

Раздел 1. Введение – 2 часа.

Предпосылки развития мехатроники и робототехники области применения мехатроннных и робототехнических систем. Преимущества мехатронных устройств и систем.

Раздел 2. Определения и терминология мехатроники – 4 часа.

Определение мехатроники, как новой области науки и техники. Триединая сущность мехатронных систем (МС). Факторы, обусловившие развитие МС. Тенденции изменения и ключевые требования мирового рынка в области мехатроники.

Раздел 3. Принципы мехатроники. Методы построения мехатронных устройств – 6 часа.

Поколения мехатронных модулей. Структура автоматической машины, созданной на основе традиционного и мехатронного подходов в их проектировании. Сущность мехатронного подхода в проектировании и эксплуатации МС. Потенциально возможные точки интеграции функциональных элементов в мехатронные модули. Методы построения мехатронных устройств.

Раздел 4. Промышленные роботы, основные понятия, классификация $\Pi P - 4$ часа.

Робототехника – новое комплексное научно-техническое направление в области автоматизации различных процессов, возникшее на

стыке ряда наук, прежде всего механики и кибернетики, составная часть мехатроники. История развития робототехники

Промышленный робот, определение. Функциональная схема ПР. Структурная схема ПР. Поколения роботов. Роботы с программным управлением, адаптивные роботы, интеллектуальные роботы.

Раздел 5. Принципы построения промышленных роботов, их характеристики — 6 часа.

Роботы, традиционные, перспективные области их применения. Предметная область робототехники. Роботы, определение. Структурная схема робота.

Кинематические схемы ПР. Системы координатных перемещений, рабочее пространство, рабочая зона ПР. Классификация промышленных роботов.

Принципы построения ПР: агрегатный, агрегатно-модульный, модульный принципы построения.

Номенклатура основных технических характеристик ПР, их определение, параметрические ряды этих характеристик.

Раздел 6. Кинематика манипуляторов. Прямая и обратная задачи кинематики манипуляторов – 6 часа.

Матрицы поворота. Матрица поворота вокруг произвольной оси. Представление матриц поворота через углы Эйлера. Геометрический смысл матриц поворота. Однородные координаты и матрицы преобразований. Геометрический смысл однородной матрицы преобразования. Однородная матрица композиции преобразований.

Прямая задача кинематики. Уравнения кинематики манипулятора. Обратная задача кинематики. Метод обратных преобразований. Геометрический подход в решении обратной задачи кинематики

Раздел 7. Станки с ЧПУ – 4 часа.

Общее описание станков, применяемых на предприятии, описание их основных характеристик и возможностей, состав, способы управления, программное обеспечение.

Перечень практических работ:

- 1. Решение задач кинематики. Прямая и обратная задача кинематики. (6 часов)
- 2. Преобразование систем координат рабочего органа робота. Связная и абсолютная системы координат. (10 часов)
 - 3. Пространственное положение манипулятора. (6 часов)
 - 4. Точностной расчет манипулятора. (4 часа)
 - 5. Дискуссии по тематике рефератов (12 часов)

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (ТСР).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работа с лекционным материалом,
- изучении теоретического материала к лабораторным занятиям и подготовке ответов на контрольные вопросы по лабораторным работам,
- переводе материалов из тематических информационных ресурсов с иностранных языков,
 - изучении тем, вынесенных на самостоятельную проработку,
- изучении инструкций к приборам и подготовке к выполнению лабораторных работ,
 - подготовка к экзамену.

Творческая самостоятельная работа направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала студентов включает:

- поиске, анализе, структурировании и презентации информации, анализе научных публикаций по определенной теме исследований;
- исследовательскую работу и участие в научных студенческих конференциях, семинарах;
- анализе теоретических и фактических материалов по заданной теме, проведении расчетов, составлении схем;
- анализ научных публикаций по заранее определенной преподавателем теме.

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- сдача двух контрольных работ по текущему материалу;
- защита лабораторных работ;
- сдача рефератов;
- презентации по тематике рефератов;
- результаты выступления на конференции.

При выполнении самостоятельной работы рекомендуется использовать:

материалы, размещенные на персональном сайте преподавателя:

http://portal.tpu.ru/SHARED/s/STEPTE

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам контролирующих мероприятий, представленных в табл. 3.

Таблица 3

Контролирующие мероприятия

Контролирующие мероприятия	Результаты обучения
	по дисциплине
выполнение и защита лабораторных работ	РД3, РД6
презентации по тематике исследований во время проведения конференц-недели	РД1, РД4
результаты участия студентов в научной дискуссии	РД1, РД2, РД4, РД6
выполнение рефератов	РД1, РД4
экзамен	РД1, РД2, РД3, РД4, РД5

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств).

Темы рефератов (примеры)

- 1. Бортовые автомобильные мехатронные системы (автотроника).
- 2. Мехатронные системы в компьютерной технике
- 3. Мехатронные системы в бытовой технике.
- 4. Мехатронные системы для медицины.
- 5. Мехатронные системы для коммунальных служб (роботыпрокладчики).
- 6. Мехатронные системы в газовой и нефтяной промышленности (инспекционные роботы).
- 7. Мехатронные системы для экстремальных ситуаций.
- 8. Мехатронные станочные системы.
- 9. Мехатронные системы в нетрадиционных транспортных средствах
- 10. Синергетическое объединение устройств машиностроения и датчиков (на примере подшипников).
- 11. Нетрадиционные технологические машины с параллельной кинематикой современные мехатронные системы.
- 12. Типовые мехатронные модули движения (линейного перемещения), конструкции, характеристики, производители.
- 13. Промышленные роботы в строительстве, перспективы разви-

ТИЯ

- 14. Роботы в космических исследованиях.
- 15. Робототехника в сельском хозяйстве, перспективы развития.
- 16. Современные транспортные роботы как мехатронные системы.
- 17. Мехатронные модули движения на основе пьезоприводов.
- 18. Мобильные роботы для выполнения работ на вертикальных поверхностях.

Реферат оформляется в соответствии со стандартом ТПУ на отчёты по НИРС студентов.

Пример теоретических вопросов для сдачи экзамена

- 1. Предпосылки развития мехатроники.
- 2. Области применения мехатронных систем.
- 3. Основные определения мехатроники.
- 4. Триединая сущность мехатронных систем.
- 5. Классификация мехатронных модулей.
- 6. Развитие мехатроники. Поколения мехатронных систем.
- 7. Основные принципы мехатроники.
- 8. Структура традиционной машины с компьютерным управлением и машины, построенной на основе мехатронного подхода.
 - 9. Принципы интеграции мехатронной системы.
- 10.В чём заключается отличие традиционного подхода от мехатронного подхода к проектированию и изготовлению модулей и машин?

Обоснуйте.

- 11. Проектирование механизма.
- 12.Особенности проектирования изделий мехатроники.
- 13. Промышленная робототехника. Определения.
- 14. Основные области применения промышленных роботов.
- 15. Основные принципы построения промышленных роботов.
- 16. Робот. Определения, общие признаки.
- 17. Функциональная структура робота.
- 18. Классификация промышленных роботов.
- 19.Особенности проектирования робототехнических систем.
- 20.Предметная область робототехники.
- 21.Системы координатных перемещений.
- 22. Основные показатели промышленных роботов.
- 23. Задачи кинематики манипулятора.
- 24. Матрицы поворота в кинематике манипуляторов.
- 25.Системы координатных перемещений.

- 26. Абсолютная, связанная, вращающаяся системы координат при решении задач кинематики манипулятора.
 - 27. В чём заключается точностной расчёт манипулятора?
 - 28. Основные направления построения промышленных роботов.
- 29. Агрегатно-модульный метод построения промышленных роботов. Преимущества и недостатки.
- 30. Модульный принцип построения промышленных роботов. Преимущества и недостатки.
- 31. Приводы промышленных роботов. Определение, классификация.
- 32.От каких факторов зависит выбор типа привода промышленного робота?
 - 33. Пневматические привода, схема, достоинства и недостатки.
 - 34. Позиционирование пневмопривода.
- 35. Гидравслические привода, его достоинства, недостатки и основные параметры. Схема гидродвигателя.
- 36. Электрические привода. Особенности, достоинства и недостатки.

Пример экзаменационного билета

Экзаменационные билеты по курсу «Основы мехатроники, робототехники и ЧПУ»

ЭБ ТПУ 15.10/УД.17/2014

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Утверждаю: Зав. каф. ИКСУ _____ Лиепиньш А.В.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4

- 1. Триединая сущность мехатронных систем. (10 баллов)
- 2. Классификация станков с ЧПУ по технологичному назначению. (10 баллов)
- 3. Решить прямую (а) и обратную (б) задачи кинематики для манипулятора, кинематическая схема которого представлена на рис. 4.1. (20 баллов)

Данные: a)
$$L_1 = 0.9$$
 м., $L_2 = 1.3$ м., $x = 1$ м., $y = 1.5$ м. б) $L_1 = 0.9$ м., $L_2 = 1.3$ м., $\theta_1 = 30^{\circ}$, $\theta_2 = 60^{\circ}$.

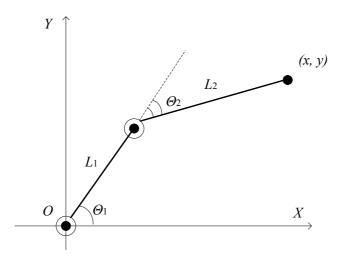


Рис. 4.1. Кинематическая схема манипулятора

Составил: доцент каф. ИКСУ, к.т.н.

Мамонова Т. Е.

8. Рейтинг качества освоения дисциплины

Оценка качества освоения дисциплины «Основы мехатроники и робототехники» в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (выполнение контрольных работ) и результаты практической деятельности (решение задач лабораторных работ, выполнение рефератов, презентаций, участие в дискуссиях) производится в течение семестра (оценивается в баллах (максимально бо баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на зачете студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1. Подураев Ю.В. Мехатроника: основы, методы, применение: учеб. Пособие для студентов вузов. 2-е изд., стер. М.: Машиностроение, 2007. 256 с.
- 2. Интеллектуальные роботы: учебное пособие для вузов / И. А. Каляев [и др.]; под ред. Е. И. Юревича. Москва: Машиностроение, 2007.-360 с.
- 3. Карнаухов Н.Ф. Электромеханические и мехатронные системы. Ростов н/Д: Феникс, 2006. 320 с.
- 4. Келим, Юрий МихайловичТиповые элементы систем автоматического управления: учебное пособие / Ю. М. Келим. Москва: Форум Инфра-М, 2007. 384 с.

Дополнительная литература

- 1. В.А. Лопота, Е.И. Юревич. Миниатюризация и интеллектуализация техники — глобальная тенденция XXI века. Микросистемная техника, №1, 2008.
- 2. Подураев Ю.В., Кулешов В.С. Принципы построения и современные тенденции развития мехатронных систем // Мехатроника. 2011. №1. С.5-15.
- 3. Смирнов А.Б. Мехатронные системы микроперемещений. Мехатроника, Автоматизация, Управление, № 6, 2007.
- 4. Юревич Е. И., Игнатова Е. И. Основные принципы мехатроники. Мехатроника, Автоматизация, Управление, №3, 2006.
- Іпternet-ресурсы
 1. Подураев Ю. В. Мехатроника: основы, методы, применение: учеб. пособие / Ю. В. Подураев. Москва: Машиностроение, 2007. 256 с.: ил.: 21 см. Для вузов. Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности «Мехатроника» направления подготовки «Мехатроника и робототехника». Библиогр.: с. 250-255 (117 назв.). ISBN 5-217-03355-X. URL:

http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=806

10. Материально-техническое обеспечение дисциплины

Практические навыки студенты получают при выполнении лабораторных работ в «Лаборатории гибких автоматизированных и робототехнических систем», содержащей 11 промышленных роботов различных поколений и технологическое оборудование с ЧПУ. Материально-техническое обеспечение дисциплины «Основы мехатроники, робототехники и ЧПУ» представлено в табл. 4.

Таблица 4

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., ко- личество уста-
		новок
1	лаборатория гибких автоматизированных и робото-	к. 10, 027 ауд., 11
	технических систем», содержащая промышленные ро-	
	боты различных поколений и технологическое обору-	
	дование с ЧПУ.	
3	Компьютерный класс с мультимедиа	к. 10, 415 ауд., 1
4	Компьютерный класс с мультимедиа	к. 10, 418 ауд., 1

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС ВО по направлению 27.03.05 Инноватика и профилю подготовки «Предпринимательство в инновационной деятельности».

Программа одобрена на заседании кафедры ИП (протокол № 24 от «11» июня 2015г.).

Автор: ст. преп., к.т.н. Т.Е. Мамонова Рецензент: доцент, к.т.н. Е.И. Громаков