Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Физико-технический институт

УТВЕРЖДАЮ Директор ФТИ О.Ю. Долматов 2015 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «ЦЕНТРОБЕЖНЫЙ МЕТОД РАЗДЕЛЕНИЯ ИЗОТОПОВ» НА УЧЕБНЫЙ ГОД

Направление ООП <u>14.03.02</u> «Ядерные физика и технологии»
Профиль подготовки (специализация) <u>Физика кинетических явлений</u> Квалификация (степень) <u>академический бакалавр</u>
Базовый учебный план приема <u>2015 г.</u> Курс <u>IV</u> семестр <u>7</u> Количество кредитов <u>6</u>
V =

Код дисциплины <u>Б1.ВМ5.4.5</u>

Виды учебной	Временной ресурс
деятельности	
Лекции, ч	32
Практические занятия, ч	_
Лабораторные занятия, ч	64
Аудиторные занятия, ч	96
Самостоятельная работа, ч	120
ИТОГО, ч	216

Tipakinickie sankink, i		
Лабораторные занятия, ч	64	
Аудиторные занятия, ч	96	
Самостоятельная работа, ч	120	
ИТОГО, ч	216	
Вил промежуточной аттестации зачёт		

Обеспечивающее подразделение кафедра «Техническая физика» Заведующий кафедрой Д.С. Исаченко Руководитель ООП С.Н. Тимченко Ст.преподаватель

2015 г.

1. Цели освоения дисциплины

Формирование у студентов знаний: о понятии изотоп и изотопии атомов, о поведении молекул в поле тяжести и в поле центробежных сил, о диффузионном перемещении молекул газов при наличии градиента давлений и концентраций, о конструкционных особенностях центрифуг, о процессах разделения изотопных смесей в роторе газовой бескамерной центрифуги, о рабочих параметрах центрифуг и их оптимизации, о связи рабочих параметров газовых центрифуг с параметрами разделительного каскада, о затратах энергии на процесс разделения изотопов центробежным методом, о преимуществах и недостатках центробежного метода разделения изотопов урана, о других аналогичных методах разделения: метод сопел, метод плазменных центрифуг, а также приобретения навыков использования компьютерно-информационных технологии для проведения математического моделирования разделительных процессов и поиска новой информации, необходимой для самообучения и решения конкретных инженерных задач.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина "Центробежный метод разделения изотопов" относится к циклу основной образовательной программы (ООП) по направлению 14.03.02 "Ядерная физика и технологии".

Дисциплине «Центробежный метод разделения изотопов» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ): Б1.В2, Б1.В4, Б1.В5, Б1.В8.

Содержание разделов дисциплины «Центробежный метод разделения изотопов» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ): Б1.В.3.1, Б1.В.3.2, Б1.В.3.3, Б1.В.3.4, Б1.В.3.7, Б1.В.3.8.

Дисциплина дает полное представление о физических явлениях, определяющих процесс разделения изотопов в газовой центрифуге. В курсе рассматривается классическая теория Коэна разделения бинарных смесей изотопов урана в центробежном аппарате, механика ротора центрифуги, аналитические и численные методы описания движения газа в роторе, определение основных газодинамических и разделительных характеристик центрифуги при больших скоростях вращения, многокомпонентное разделение, введение в теорию каскадов.

Для успешного освоения дисциплины студенты должны иметь знания в области математики, информатики, химии, физики, основ ядерных технологий, основ технологии ядерного топливного цикла, термодинамики и теплопередачи, гидродинамики, уравнений математической физики, физической кинетики.

Параллельно с данной дисциплиной могут изучаться следующие дисциплины вариативной части бакалаврской подготовки: ионообменные технологии; кинетика физико-химических явлений и процессов, методы их изучения; процессы изотопного обмена; электрохимические технологии разделения изотопов.

3. Результаты освоения дисциплины (модуля)

В результате освоения дисциплины бакалавр должен/будет знать:

- Основы понятия и определения теории разделения бинарных смесей изотопов;
- Элементы конструкции газовой центрифуги;
- Физику разделения изотопов в газовой центрифуге;
- Аналитические методы описания движения газа в роторе газовой центрифуги;
- Подходы к математическому моделированию разделительных процессов
- Основные связи рабочих параметров газовых центрифуг с параметрами разделительного каскада;
- Преимуществах и недостатках центробежного метода разделения изотопов урана.

уметь:

- формулировать основные понятия в теории центробежного метода разделения изотопов;
- объяснять физические закономерности, происходящие при разделении изотопов урана в роторе газовой центрифуги;
- объяснять конструкционные особенности центрифуг;
- формулировать преимущества и недостатки центробежного метода разделения;
- формулировать перспективы развития центробежного метода разделения; подбирать способы решения поставленной задачи по заданным условиям работы разделительной установки;
- определять последовательность и проводить расчет основных параметров установки для разделения изотопов урана;
- определять физико-химические характеристики разделительного процесса и критически их оценивать; использовать прикладные программы для моделирования и расчета разделительных установок с использованием ЭВМ.

владеть:

• методиками проведения теоретических расчетов и моделирования процессов изотопного разделения с использованием компьютерной техники.

1. Универсальные (общекультурные) -

способностью совершенствовать и развивать свой интеллектуальный и общекультурный уровень, добиваться нравственного и физического совершенствования своей личности;

способностью свободно пользоваться русским и иностранным языками, как средством делового общения; способностью к активной социальной мобильности;

способностью использовать на практике навыки и умения в организации научно-исследовательских и научно-производственных работ, в управлении коллективом, влиять на формирование целей команды, воздействовать на ее социально-психологический климат в нужном для достижения целей направлении, оценивать качество результатов деятельности;

готовностью к принятию ответственности за свои решения в рамках профессиональной компетенции, способностью принимать нестандартные решения, разрешать проблемные ситуации.

2. Профессиональные -

способностью к самостоятельному обучению новым методам исследования, к изменению научного и научно-производственного профиля своей профессиональной деятельности, к изменению социокультурных и социальных условий деятельности;

способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности, расширять и углублять своё научное мировоззрение;

способностью к профессиональной эксплуатации современного оборудования и приборов, в соответствии с целями магистерской подготовки;

для научно-исследовательской деятельности:

способностью к созданию теоретических и математических моделей, описывающих конденсированное состояние вещества, распространение и взаимодействие излучения с веществом, физику кинетических явлений или процессы в реакторах, ускорителях или воздействие ионизирующего излучения на материалы, человека и объекты окружающей среды;

готовностью к созданию новых методов расчета современных физических установок и устройств, разработке методов регистрации ионизирующих излучений, методов оценки количественных характеристик ядерных материалов;

способностью использовать фундаментальные законы в области физики атомного ядра и частиц, ядерных реакторов, конденсированного состояния вещества, экологии в объеме, достаточном для самостоятельного комбинирования и синтеза реальных идей, творческого самовыражения;

способностью применять экспериментальные, теоретические и компьютерные методы исследований в профессиональной области;

способностью оценить перспективы развития ядерной отрасли, использовать ее современные достижения и передовые технологии в научно-исследовательских работах;

способностью самостоятельно выполнять экспериментальные или теоретические исследования для решения научных и производственных задач с использованием современной техники и методов расчета и исследования;

способностью оценивать риск и определять меры безопасности для новых установок и технологий, составлять и анализировать сценарии потенциально возможных аварий, разрабатывать методы уменьшения риска их возникновения;

для проектной деятельности:

способностью провести расчет, концептуальную и проектную проработку современных физических установок и приборов;

готовностью применять методы оптимизации, анализа вариантов, поиска решения многокритериальных задач, учета неопределенностей при проектировании;

способностью формулировать технические задания, использовать информационные технологии и пакеты прикладных программ при проектировании и расчете физических установок, использовать знания методов анализа эколого-экономической эффективности при проектировании и реализации проектов;

для экспертной деятельности:

способностью к анализу технических и расчетно-теоретических разработок, к учету их соответствия требованиям законов в области промышленности, экологии, технической, радиационной и ядерной безопасности и другим нормативным актам;

способностью объективно оценить предлагаемое решение или проект по отношению к современному мировому уровню, подготовить экспертное заключение;

для производственно-технологической деятельности:

способностью понимать современные профессиональные проблемы, современные ядерные технологии, научно-техническую политику ядерной сферы деятельности;

готовностью решать инженерно-физические и экономические задачи с помощью пакетов прикладных программ;

способностью эксплуатировать, проводить испытания и ремонт современных физических установок;

для организационно-управленческой деятельности:

способностью на практике применять знание основных понятий в области интеллектуальной собственности, прав авторов, предприятияработодателя, патента обладателя, основных положений патентного законодательства и авторского права Российской Федерации;

способностью проводить поиск по источникам патентной информации, определять патентную чистоту разрабатываемых объектов, подготавливать первичные материалы к патентованию изобретений, официальной регистрации компьютерных программ и баз данных;

способностью управлять персоналом с учетом мотивов поведения и способов развития делового поведения персонала, применять методы оценки качества и результативности труда персонала;

способностью к проектированию и экономическому обоснованию инновационного бизнеса, содержания, структуры и порядка разработки бизнес-плана;

способностью разрабатывать планы и программы организации инновационной деятельности на предприятии; осуществлять техникоэкономическое обоснование инновационных проектов, управлять программами освоения новой продукции и технологии;

готовностью разрабатывать эффективную стратегию и формировать активную политику риск-менеджмента на предприятии;

способностью анализировать технологический процесс как объект управления;

готовностью к кооперации с коллегами и работе в коллективе, к организации работы коллективов исполнителей.

4. Структура и содержание дисциплины

Дисциплина содержит следующие разделы:

Часть 1 Основные понятия и определения теории разделения бинарных смесей изотопов

- 1.1. Основные понятия и классификация изотопов, классификация изотопных эффектов
- 1.2. Технологий разделения изотопов урана преимущества центробежного метода
- 1.3. Основные параметры процесса разделения (коэффициенты обогащения, разделения, разделительная способность, работа разделения) Разделительный потенциал.
- 1.4. Разделительный каскад, разделительная ступень.

Часть 2. Механика ротора центрифуги

- 3.1. Конструкция газовой центрифуги. Модельные газовые центрифуги.
- 3.2. Напряжение материала в роторе газовой центрифуги
- 3.3. Динамика вращения ротора
- 3.4. Однородный и неоднородный ротор. Упрочнение ротора.
- 3.4. Крышки и диафрагмы.
- 3.5. Опорные узлы, молекулярный насос, электропривод.

Часть 3. Физика разделения изотопов в газовой центрифуге

- 3.1. Равновесный эффект разделения в поле центробежных сил.
- 3.2. Умножение радиального эффекта в осевом направлении.
- 3.3. Способы возбуждения циркуляции
- 3.4. Максимальная разделительная способность газовой центрифуги
- 3.5. Уравнение конвективной диффузии
- 3.6 Основные закономерности процесса разделения
- 3.7. КПД газовой центрифуги

Часть 4 Методы описания движения газа в роторе.

- 4.1. Уравнения движения газа в цилиндрической системе координат
- 4.2. Квазитвердое вращение газа
- 4.3.Особености конвекции газа в роторе газовой центрифуги. Пограничные слои.
- 4.4. Тепловая конвекция газа в роторе
- 4.4.1. Движения газа а невязком ядре
- 4.4.2. Торцевые пограничные слои
- 4.4.3. Боковой пограничный слой
- 4.5. Численное моделирование течения газа в роторе газовой центрифуги
- 4.6. Разделение многокомпонентных изотопных смесей
- 4.7. Введение в теорию разделительных каскадов

Структура дисциплины по разделам и видам учебной деятельности приведена в табл. 1.:

Таблица 1.

Структура дисциплины по разделам и формам организации обучения

Название раздела/темы	Аудиторная работа (час)		CPC	Колл,	Итого	
	Лекции Практ./сем. Лаб. зан.		(час)	Контр.Р.		
		Занятия				
1. Основные понятия и	2		12	27	1	42
определения теории						
разделения бинарных						
смесей изотопов						
2. Механика ротора	4	-	12	30	1	47
центрифуги						
3. Физика разделения	10	-	20	30	1	61
изотопов в газовой						
центрифуге						
4. Методы описания	16	-	20	30		66
движения газа в						
роторе						
Итого	32	-	64	117	3	216

Лабораторные работы:

- 1. Изучение закономерности распределения газов во вращающемся роторе центрифуги.
- 2. Основные параметры процесса разделения
- 3. Изучение устойчивости вращения ротора газовой центрифуги
- 4. Определение характеристик материала ротора газовой центрифуги с помощью разрывных машин типа P-5
- 5. Изучения влияния параметров течения газа в роторе газовой центрифуги на процесс разделения

6. Изучение взаимосвязи рабочих параметров газовой центрифуги с параметрами разделительного каскада

5. Образовательные технологии

При изучении дисциплины «Центробежный метод разделения изотопов» используются следующие образовательные технологии:

Методы и формы организации обучения

Таблица 3

Методы и формы организации обучения						
ФОО Методы	Лекц.	Лаб. раб.	Пр. зан./ Сем.,	Тр*., Мк**	СРС	К. пр.
<i>IТ</i> -методы						
Работа в команде		+				
Case-study						
Игра						
Методы						
проблемного			+		+	
обучения.						
Обучение	+		+			
на основе опыта	Т					
Опережающая						
самостоятельная					+	+
работа						
Проектный метод	+					+
Поисковый метод					+	
Исследовательский						+
метод			+			Ť
Другие методы	**	***	*			*

^{* -} Тренинг, ** - мастер-класс, *** - командный проект

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (ТСР).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работа с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- опережающая самостоятельная работа;
- изучение тем, вынесенных на самостоятельную проработку;
- подготовка к лабораторным работам, к практическим занятиям;

• подготовка к контрольной работе, диф. зачету, экзамену.

Творческая самостоятельная работа включает:

- - поиск, анализ, структурирование и презентация информации,
- - исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заранее определенной преподавателем теме;
- - анализ статистических и фактических материалов по заданной теме, проведение расчетов, составление схем и моделей на основе статистических материалов.

Перечень научных проблем и направлений научных исследований:

- 1) моделирование и расчет параметров газовой центрифуги;
- 2) моделирование и расчет параметров разделительных каскадов;
- 3) изыскания в области перспективных систем разделения изотопов урана;
 - 4) моделирование гидравлических и разделительных процессов;
 - 5) области применения стабильных и радиоактивных изотопов

6.2. Содержание самостоятельной работы по дисциплине

Темы индивидуальных заданий:

- 1. Изотопы в ядерной энергетике
- 2. Применение изотопов в медицине
- 3. Изотопы в термоядерной энергетике
- 4. Основные методы анализа изотопов
- 5. Методы получения радиоактивных изотопов
- 6. Изотопы в фундаментальной физики
- 7. Применение изотопов в химии и биологии.
- 8. Оптические методы получения изотопов
- 9. Электромагнитный и плазменный метод получения изотопов.
- 10. Физико-химические методы получения изотопов
- 11. Разделительное сопло

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- самоконтроль
- контроль со стороны преподавателя

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам

следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дисциплине
Выполнение и защита лабораторных работ и практических	Отчеты по
заданий, защита индивидуальных заданий	лабораторным
	работам,
	индивидуальным
	и практическим
	заданиям,
	рефераты,
	рейтинговые
	баллы
Презентации по тематике исследований во время	Выступление с
проведения конференц-недели, участие студентов в	докладами и
научной дискуссии.	презентациями,
	рейтинговые
	баллы
Проведение контрольных работ, устных опросов.	Рейтинговые
	баллы

Итоговый контроль осуществляется принятием курсового проекта с выставлением диф. зачета и экзамена (рейтинговые баллы и оценка).

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств) (с примерами):

Перечень вопросов текущего и итогового контроля следующий:

Часть 1

Основные вопросы:

- 1. Изотопы основные понятия и классификация.
- 2. Классификация изотопных эффектов. Развитие технологии разделения изотопов урана
- 3. Свойства изотопов и область их применения
- 4. Газовая диффузия
- 5. Термодиффузия
- 6. Электромагнитное разделение
- 7. Разделительное сопло
- 8. Лазерный метод разделения изотопов
- 9. Центробежный метода разделения. Отличия и преимущества центрифужного метода
- 10. Мольно-долевая и массовая концентрация и связь между ними
- 11. Основные характеристики разделительного элемента
- 12. Потенциал разделения
- 13. Функция ценности
- 14. Единица работы разделения

Часть 2

Основные вопросы:

- 1. Конструкция стандартной центрифуги
- 2. Модельные газовые центрифуги
- 3. Центрифуга Бимса.
- 4. Механические свойства различных материалов
- 5. Предельные окружение скорости вращения ротора
- 6. Подкритические и надкритические центрифуги
- 7. Однородный ротор
- 8. Неоднородный надкритический ротор
- 9. Упрочнение ротора
- 10. Крышки, диафрагмы
- 11. Молекулярное уплотнение.

Часть 3

Основные вопросы:

- 1. Изменение состава газовых смесей под действием поля сил тяжести.
- 2. Скорость разделения изотермических газовых смесей в поле сил тяжести при низких давлениях.
- 3. Разделение газовых смесей в поле сил тяжести с учетом перемешивания
- 4. Равновесный эффект разделения в поле центробежных сил
- 5. Диффузия в поле центробежных сил
- 6. Умножения радиального эффекта разделения в осевом направлении
- 7. Механическая циркуляция
- 8. Тепловая циркуляция
- 9. Максимальная разделительная способность центрифуги
- 10. Количество газа и его распределение по объему ротора газовой центрифуги
- 11. Свойства сверхзвукового вращающегося потока
- 12. Устойчивость течения в центрифуги
- 13. Уравнение конвективной диффузии
- 14. Метод усреднения по радиусу
- 15. Разделение в безотборном режиме
- 16. Режим работы с отбором
- 17. Влияние потока питания
- 18. КПД газовой центрифуги
- 19. Двухблочный профиль циркуляции
- 20. Влияния циркуляционного потока на разделение в газовой центрифуги

Часть 4

Основные вопросы:

- 1. Уравнение движение газа в цилиндрической системе координат
- 2. Квазитвердое вращение газа

- 3. Особенности течения конвекции газа внутри ротора
- 4. Физический смысл часла Экмана
- 5. Симметричны и антисимитричные течения и соответствующие им граничные условия
- 6. Метод согласования асимптотических разложений
- 7. Медленные и крупномасштабные течения
- 8. Структура конвекции. Пограничные слои
- 9. Функции осевого тока
- 10. Движение газа в ядре течения
- 11. Торцевые пограничные слои
- 12. Соотношение теплового ветра, скорость накачки(всасывания).
- 13. Боковой пограничный слой
- 14. Движение газа в бесконечно длинной газовой центрифуги
- 15. Pancake-приближение
- 16. Влияние параметров течения газа на разделение изотопов
- 17. Численные методы расчета характеристик течения газа. Какие физические модели используются при описании движения газа в различных облостях течения
- 18. Граничные условия сплошной среды
- 19. Моделирование газоотборника
- 20. Связь рабочих параметров центрифуги с рабочими параметрами каскада.
- 21. Особенности работы центрифуг в ступени
- 15. Эффективность разделения ступени
- 16. Параметры и уравнения каскада
- 17. Критерии эффективности каскадов
- 18. Расчёт каскада заданной формы
- 19. Разделительная способность каскада
- 20. Идеальный каскад с симметричными ступенями
- 21. Идеальный каскад с несимметричными ступенями

8. Рейтинг качества освоения дисциплины (модуля)

текущей качества освоения дисциплины В ходе промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами ПО текущему контролю успеваемости, промежуточной студентов И итоговой аттестации Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);

– промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

В соответствии с «Календарным планом выполнения курсового проекта (работы)»:

- текущая аттестация (оценка качества выполнения разделов и др.) производится в течение семестра (оценивается в баллах (максимально 40 баллов), к моменту завершения семестра студент должен набрать не менее 22 баллов);
- промежуточная аттестация (защита проекта (работы)) производится в конце семестра (оценивается в баллах (максимально 60 баллов), по результатам защиты студент должен набрать не менее 33 баллов).

Итоговый рейтинг выполнения курсового проекта (работы) определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины

Основная литература:

- 1. Разделение изотопов урана: учебное пособие / А.А. Орлов, А.В. Абрамов. Томск: Изд-во Томского политехнического университета, 2010. 160 с.
- 2. Коэн К. // Разделение изотопов. В кн. Научные и технические основы ядерной энергетики, Т. 2. Под ред. Гудмена К. М.: Пер. с англ. М: Изд. ИЛ, 1950. С. 5.
- 3. Cohen K. II The Theory of Isotope Separation as Applied to the Large Scale Production of U235. New York: McGraw-Hill, 1951, 165 p.
- 4. Виллани С. Обогащение урана. М.: Энергоатомиздат. 1983. 320 с.
- 5. Изотопы: свойства, получение, применение. В 2 т. Т.1/Под ред. В.Ю. Баранова. М., ФИЗМАТЛИТ, 2005. 728 с.
- 6. Изотопы: свойства, получение, применение. В 2 т. Т.2/Под ред. В.Ю. Баранова. М., ФИЗМАТЛИТ, 2005. 728 с.
- 7. Изотопы: свойства, получение, применение. Под ред. В.Ю. Баранова. М., ИздАТ, 2000. 704 с.
- 8. Zippe G. II Die Gaszentrifuge. Atomwirtschaft. 1987. B. 32. S. 197.
- 9. Коробцев СВ., Русанов В.Д. II Плазменная центрифугаплазмохимический реактор нового типа: Обзор. М.: Атоминформ. 1988. 46 с.
- 10. Устинов А.Л. II "Плазменная центрифуга". Итоги науки и техники. Серия: Физика плазмы. Под ред. проф. Карчевского А.И. М. 1991. Т. 12. С. 42.

- 11. Жданов В.М. Тайны разделения изотопов. М.:МИФИ, 2004. 140 с.
- 12.Шемля М., Перье Ж. Разделение изотопов. М.: Атомиздат, 1980. 184 с.

Дополнительная литература:

- 1. Синев Н.М., Батуров Б.Б. Экономика атомной энергетики. М.: Атомиздат. 1980.
- 2. Сборник статей. Разработка и создание газоцентрифужного метода разделения изотопов в СССР (России). С.-Петербург, ЛНПП «Облик», 2002. 496 с.
- 3. Прусаков В.Н. Прогресс в разделении изотопов, материалы юбилейной сессии совета РНЦ «Курчатовский институт». 1993.

Программное обеспечение и *Internet***-ресурсы:** стандартное программное обеспечение компьютерного класса — Microsoft Office (Excel, Word, PowerPoint); редактор для программирования на языке СИ++; Mathcad; Mathlab и т.д.

Интернет-ресурсы:

http://www.rosatom.ru/
http://www.lib.tpu.ru/
http://window.edu.ru/

Используемое программное обеспечение:

- 1. Стандартное программное обеспечение компьютерного класса Microsoft Office (Excel, Word, PowerPoint); редактор для программирования на языке СИ++; Mathcad; Mathlab и т.д.
- 2. Компьютерные тренажеры разделительных производств ОАО ПО «ЭХЗ» и ОАО «АЭХК», ОАО «СХК»
- 3. Программа расчета и оптимизации газовых центрифуг "Поток", "Завод"
- 4. Математические модели расчета основных характеристик газовой центрифуги, нестационарных гидравлических и разделительных процессов, протекающих в каскадах газовых центрифуг.

10. Материально-техническое обеспечение дисциплины

Указывается материально-техническое обеспечение дисциплины: технические средства, лабораторное оборудование и др.

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество
		установок
1	Компьютерный класс	10 к., ауд. 242,12
		компьютеров
2	Учебные лаборатории	10 к.: ауд. 316,
		ауд. 239, ауд.
		244, ауд. 246,

	ауд. 247, ауд.
	019, ауд. 001.
	11 к.: ауд. 302,
	ауд. 303.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС и ООП по направлению 14.03.02 «Ядерные физика и технологии» и профилю подготовки «Физика кинетических явлений»

Программа одобрена на заседании кафедры ТЕХНИЧЕСКАЯ ФИЗИКА ФТИ ТПУ (протокол № 14 от « 8 » июня 2015 г.).