Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Томский политехнический университет» Физико-технический институт

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«КИНЕТИКА ФИЗИКО-ХИМИЧЕСКИХ ЯВЛЕНИЙ И ПРОЦЕССОВ, МЕТОДЫ ИХ ИЗУЧЕНИЯ. ЧАСТЬ 2»

НА УЧЕБНЫЙ ГОД

Направление ООП <u>14.03.02 «Ядерные физика и технологии»</u>
Профиль подготовки (специализация) <u>Физика кинетических явлений</u> Квалификация (степень) <u>академический бакалавр</u>
Базовый учебный план приема <u>2015 г.</u> Курс <u>IV</u> семестр <u>7</u> Количество кредитов <u>3</u>
TI DISC A A

Код дисциплины <u>Б1.ВМ5.4.4</u>

Виды учебной	Временной ресурс
деятельности	
Лекции, ч	16
Практические занятия, ч	_
Лабораторные занятия, ч	16
Аудиторные занятия, ч	32
Самостоятельная работа, ч	76
ИТОГО, ч	108

TCKHIII, 1	10
Практические занятия, ч	-
Лабораторные занятия, ч	16
Аудиторные занятия, ч	32
Самостоятельная работа, ч	76
ИТОГО, ч	108
Вид промежуточной аттеста	ции <u>экзамен</u>

Обеспечивающее подразделение кафедра «Техническая физика» И.В. Шаманин Заведующий кафедрой Д.С. Исаченко Руководитель ООП В.Ф. Мышкин

2015 г.

1. Цели освоения модуля (дисциплины)

Цели освоения дисциплины:

Формирование у обучающихся целей - Ц3 - Подготовка выпускника к поиску и получению новой информации, необходимых для решения инженерных задач в области ядерных физики и технологий, интеграции знаний применительно к своей области деятельности, к осознанию ответственности за принятие своих профессиональных решений; Ц5 - Подготовка выпускника к самообучению и постоянному профессиональному самосовершенствованию в условиях автономии и самоуправления.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина (модуль) «Кинетика физико-химических явлений и процессов, методы их изучения. Часть 2» относится к дисциплинам профиля Б1.В.3 - "Физика кинетических явлений" ООП.

Дисциплине (модулю) «Кинетика физико-химических явлений и процессов, методы их изучения. Часть 2» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ):

- *Б1.Б10 химия*,
- *Б1.Б11 физика,*
- *Б1.Б16* электротехника,
- Б1.В5 термодинамика и теплопередача,
- Б1.В11 физика плазмы.
- Б1.Б14 метрология, стандартизация и сертификация
- Б1.В8 введение в ядерную физику,
- Б1.В9 уравнения математической физики.

Содержание разделов дисциплины (модуля) «...» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ):

- Б1.В.З.1 Методы разделения стабильных изотопов
- Б1.В.З.2 Ионообменные технологии
- Б1.В.3.5 Центробежный метод разделения изотопов
- Б1.В.З.6 Теория каскадов для разделения двухкомпонентных изотопных смесей
- Б1.В.З.7 Моделирование и оптимизация разделительных процессов
- Б1.В.З.8 Процессы изотопного обмена
- Б1.В.З.9 Электрохимические технологии разделения изотопов
- Б1.В.З.10 Реакторное производство изотопов.

3. Результаты освоения дисциплины (модуля)

В соответствии с требованиями ООП освоение дисциплины направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Результаты	Составляющие результатов обучения					
обучения (компетенции из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом
P11 (ОК-i,, ПК-j,)	3.11.2	Типовых методов контроля качества выпускаемой продукции	У11.1	Проводить оценку инновационного потенциала новой продукции	B11.1	Использования типовых методов контроля качества выпускаемой продукции

В результате освоения дисциплины (модуля) «Кинетика физико-химических явлений и процессов, методы их изучения. Часть 2» студентом должны быть достигнуты следующие результаты:

Планируемые результаты освоения дисциплины (модуля)

Таблица 2

№ п/п	Результат
РД1	Знания об основных закономерностях излучения и поглощения
	оптического излучения
	Иметь представление об энергетической структуре атомов и
	молекул
	Уметь регистрировать оптические спектры и определять по ним
	состав анализируемой смеси

4. Структура и содержание дисциплины

Раздел 1. Энергетическая структура атома и основы спектроскопии Обзор кинетических явлений с акцентированием общности их основных закономерностей, выявление кинетических явлений в процессах сепарации изотопов.

Раздел 2. Схемы современных спектрометров

Основные сведения о вакууме, параметрах и конструкциях современных вакуумных насосов.

Лабораторные работы по разделу 2:

Работа № 1. Изучение конструкции спектрографа ИСП-28

Работа № 2. Калибровка спектрометра MSDD-1000 по длинам волн

Работа № 3. Измерение длины волны интерферометром Фабри-Перо

Раздел 3. Спектральные методы определения элементного и молекулярного состава

Основные сведения о современных масс-спектрометрических приборах, изучение основных правил расшифровки масс-спектров

Лабораторные работы по разделу 3:

Работа № 4. Регистрация спектра с помощью SL-40

Работа № 5. Идентификация соединений по ИК-спектрам диффузного отражения

Работа № 6. Регистрация изотопных смещений линейчатого спектра

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работа с лекционным материалом;
- перевод текстов с иностранных языков;
- изучение тем, вынесенных на самостоятельную проработку;
- самостоятельная подготовка к лабораторным занятиям;
- поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса.

Творческая самостоятельная работа включает:

- поиск, анализ, структурирование и презентация информации;
- исследовательская работа и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заданной преподавателем теме.

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам следующих контролирующих мероприятий:

Контролирующие мероприятия	Результаты обучения по дисциплине
Выполнение и защита лабораторных заданий	+
Защита индивидуальных заданий	
Презентации по тематике исследований во время проведения конференц-недели	+
Участие студентов в научной дискуссии	+
Тестирование и проведения зачета	+

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств):

Примеры вопросов входного контроля Правила заполнения электронных уровней Законы теплового излучения Понятия о плазме Законы идеального газа

Примеры вопросов, задаваемых при проведении лабораторных занятий Основные функциональные узлы спектральных приборов Закон Бугера Форма спектральных линий Связь между концентрацией элемента и интенсивностью линии

Примеры вопросов для самоконтроля

Процессы, обуславливающие излучение (поглощение) оптического излучения в различных участках спектра

Спектральные приборы на основе Фурье преобразования

8. Рейтинг качества освоения дисциплины (модуля)

Оценка качества освоения дисциплины В ходе текущей промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной И итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины Основная литература:

- 1. Лебедева В.В. Экспериментальная оптика / Лебедева В.В. М.: Физический факультет МГУ им. М.В. Ломоносова, 2005. 282 с.
- 2. Загрубский А.А. Спектральные приборы: учебное пособие / Загрубский А.А., Цыганенко Н.М., Чернова А.П. СПб.: Физический факультет СПБГУ, 2007. 76 с.

- 3. Родзевич А.П. Методы контроля и анализа веществ: учебное пособие / А.П. Родзевич — Томск: Изд-во ТПУ, 2008. — 142 с.
- 4. Пентин Ю.А. Физические методы исследования в химии / Ю.А. Пентин, Л.В. Вилков – М.: Мир, ООО "Издательство АСТ", 2003. – 683 с.
- 5. Васильев В.П. Аналитическая химия. Физико-химические методы анализа: учеб. для вузов / В.П. Васильев. — М: Дрофа, 2002. — Т.2. — 384 с.
- 6. Куприянов М.Ф. Современные методы структурного анализа веществ: учебник / М. Ф. Куприянов, А.Г. Рудская, Н.Б. Кофанова и др. – Ростов н/Д.: Изд-во ЮФУ, 2009. – 286 с.

Дополнительная литература:

- 1. Страховский Г.М. Основы квантовой электроники / Г.М. Страховский, А.В. Успенский. — М.: Высшая школа, 1973. — 312 с.
- 2. Физика атомов и атомных явлений. Лабораторный практикум: учебное пособие / Сост. И.В. Водолазская, В.В. Смирнов. - Астрахань: Издательский дом «Астраханский университет», 2009. — 144 с.

Internet-ресурсы (в т.ч. Перечень мировых библиотечных ресурсов):

http://www.lbmvac.ru/

Используемое программное обеспечение:

1. TEPPA

10. Материально-техническое обеспечение дисциплины Указывается материально-техническое

дисциплины: обеспечение

технические средства, лабораторное оборудование и др.

Nº n/n	нческие средства, ласораторное соорудование и др. Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок
1	Компьютерный класс	10 к., ayд.242
2	Учебная аудитория	11 к., ауд.303
3	Спектрометр оптического диапазона	10 к., ауд.316

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС и ООП по направлению 14.03.02 «Ядерные физика и технологии» и профилю подготовки «Физика кинетических явлений»

Программа одобрена на заседании кафедры ТЕХНИЧЕСКАЯ ФИЗИКА ФТИ ТПУ (протокол № 14 от « 8 » июня 2015 г.).

Профессор	кафедры ТФ ФТИ _	fu.	_ В.Ф. Мышкин
	0.		
Рецензент	July	А.П. Вер	огун