УТВЕРЖЛАЮ Зам. директора по УР

БАЗОВАЯ РАБОЧАЯ ПРОГРАММА МОДУЛЯ (ДИСЦИПЛИНЫ) ФИЗИКА 2.2

Направление (специальность) ООП

09.03.03 - "ПРИКЛАДНАЯ ИНФОРМАТИКА"

Номер кластера (для унифицированных дисциплин) 2.2.

Профиль(и) подготовки (специализация, программа)

Прикладная информатика (в экономике)

Квалификация (степень) академический бакалавр

Базовый учебный план приема 2015 г.

Курс 2 семестр 3

Количество кредитов 4

Код дисциплины Б1.БМ 2.4

Виды учебной деятельности	Временной ресурс по очной форме обучения
Лекции, ч	32
Практические занятия, ч	16
Лабораторные занятия, ч	16
Аудиторные занятия, ч	64
Самостоятельная работа, ч	80
ИТОГО, ч	144

Вид промежуточной аттестации экзамен в 3-ем семестре

Обеспечивающее подразделение кафедра Естественнонаучного образования

Заведующий кафедрой

д.т.н., доцент Сапожков С.Б.

Руководитель ООП

к.т.н., доцент Чернышева Т.Ю.

Преподаватель

к. пед.н., доцент Полицинский Е.В.

1. Цели освоения модуля (дисциплины)

Цель изучения дисциплины – обеспечение фундаментальной физической подготовки, позволяющей студентам ориентироваться в научно-технической информации, использовать физические принципы и законы, а также результаты физических открытий в своей профессиональной области и в быту.

Изучение дисциплины должно способствовать формированию у студентов основ научного мышления и современного мировоззрения.

практических занятиях студенты должны закрепить И конкретизировать полученные теоретические знания путем решения прикладных качественных и количественных задач, получить навыки моделирования процессов и явлений.

Изучаемые в курсе «Физика» разделы являются базой для изучения: информатики; безопасности жизнедеятельности; вычислительных систем, сетей и телекоммуникаций.

2. Место модуля (дисциплины) в структуре ООП

Физика относится к математическому и естественнонаучному циклу, модуль Б 2.2 (естественнонаучный). На момент начала изучения общего курса физики студент должен:

- знать и понимать основные законы и связи между физическими величинами по курсу школьной физики;
- воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической и т.д.);
- объяснять физические явления и процессы;
- делать качественные выводы на основе экспериментальных данных, представленных таблицей, графиком, диаграммой, схемой и т.п.;
- проводить расчеты, используя сведения, получаемые из графиков, таблиц, диаграмм, схем и т.п.;
- применять законы физики для анализа физических процессов на качественном и расчетном уровнях;
- овладеть основами математики (уметь осуществлять математические преобразования и вычисления, работать с векторами и проекциями векторов, дифференцировать и интегрировать, знать тригонометрию и основы стереометрии);
- уметь пользоваться справочниками, находить необходимую информацию, используя литературу и ИНТЕРНЕТ, иметь навыки работы на ПК.

ПРЕРЕКВИЗИТЫ

Математика.

КОРЕКВИЗИТЫ

Математика, Теория вероятностей и математическая статистика, информатика и программирование, Безопасность жизнедеятельности, Теория систем и системный анализ, Вычислительные системы, сети и телекоммуникации, Программная инженерия.

3. Результаты освоения модуля (дисциплины)

В соответствии с требованиями ООП освоение дисциплины направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС ВО:

Таблица 1 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты			Составля	нощие результатов обуч	ения	
обучения (компетенции из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом
Р1 (ОПК- 3), критерий 5 АИОР (п. 2.1)	3.1.10	Основные явления и законы механики, термодинамики, молекулярной физики; основные явления и законы электродинамики; основные явления и законы оптики, физики атома, ядра; границы применимости физических законов, теорий; приёмы и навыки решения прикладных задач из различных областей физики	У.1.10	Проводить экспериментальные исследования физических явлений и оценивать погрешности измерений; использовать справочную литературу для выполнения расчетов; применять законы физики для решения практических задач в своей профессиональной деятельности	B.1.10	Навыками и приёмами решения конкретных задач из различных областей физики, помогающих в дальнейшем осваивать курсы электротехники, электроники и схемотехники; начальными навыками проведения экспериментальных исследований, различных физических явлений культурой мышления, способами поиска, анализа, обобщения и систематизации, представления информации

В результате освоения дисциплины (модуля) «Физика» студентом должны быть достигнуты следующие результаты:

Таблица 2 Планируемые результаты освоения дисциплины (модуля)

планирустые результаты осысния дисциплины (тодуля)				
№ п/п	Результат			
РД1	Применять базовые и специальные естественно-научные и			
	математические знания в области информатики и вычислительной			
	техники, достаточные для комплексной инженерной			
	деятельности.			

4. Структура и содержание дисциплины

4.1. Структура дисциплины по разделам, формам организации и контроля обучения

Таблица 2

№	Название раздела/темы	Аудит	горная работа (ч	час)	CPC	Итого	Формы
		Лекции	Практ./семинар	Лаб.	(час)		текущего
				зан.			контроля и
							аттестации
1	Магнетизм	6	6	4	6	22	Конспекты лекций и практических занятий, отчёты по лабораторным работам
2	Механические и электромагнитные колебания и волны	8	4	4	8	24	Конспекты лекций и практических занятий, отчёты по лабораторным работам
3	Оптика	8	2	4	8	22	Конспекты лекций и практических занятий, отчёты по лабораторным работам
4	Элементы квантовой, атомной и ядерной физики	10	4	4	10	28	Конспекты лекций и практических занятий, отчёты по лабораторным работам
5	Итоговая аттестация Выполнение ИДЗ, подготовка к контрольным работам, защите лабораторных работ Подготовка к экзамену				40	96	Защита ИДЗ
	Итого	32	16	16	80	144	

4.2 Содержание разделов модуля (дисциплины): III семестр

Лекция №17 (2 часа)

Магнитное поле. Закон Био-Савара-Лапласа и его применение к расчёту полей. Закон Ампера.

Практическое занятие №9 (2 часа)

Законы постоянного тока.

Лекция №18 (2 часа)

Сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитный поток. Явление электромагнитной индукции.

Лабораторная работа №9 (2 часа)

Введение.

Лекция №19 (2 часа)

Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля. Магнитное поле в веществе. Уравнения Максвелла для электромагнитного поля.

Практическое занятие №10 (2 часа)

Магнитное взаимодействие токов. Закон Био-Савара-Лапласа и Ампера.

Лекция №20 (2 часа)

Гармонические колебания. Пружинный, математический и физический маятники.

Лабораторная работа №10 (2 часа)

Выполнение лабораторной работы №5.

Лекция №21 (2 часа)

Сложение колебаний одинакового направления и одинаковой частоты. Сложение взаимно-перпендикулярных колебаний. Затухающие колебания. Вынужденные колебания. Резонанс.

Практическое занятие №11 (2 часа)

Движение заряженных частиц в электрическом и магнитном полях. Явление электромагнитной индукции. Самоиндукция.

Лекция №22 (2 часа)

Колебательный контур. Вынужденные колебания. Переменный ток. Резонанс напряжений. Резонанс токов. Мощность, выделяемая в цепи переменного тока.

Лабораторная работа №11 (2 часа)

Выполнение лабораторной работы №6.

Лекция №23 (2 часа)

Механические и электромагнитные волны.

Практическое занятие №12 (2 часа)

Механические и электромагнитные колебания.

Лекция №24 (2 часа)

Законы геометрической оптики. Зеркала и линзы. Оптические приборы.

Лабораторная работа №12 (2 часа)

Выполнение лабораторной работы №7.

Лекция №25 (2 часа)

Развитие представлений о природе света. Интерференция света и её применение.

Практическое занятие №13 (2 часа)

Переменный ток Механические и электромагнитные волны.

Лекция №26 (2 часа)

Дифракция света. Дифракционная решётка. Разрешающая способность оптических приборов.

Лабораторная работа №13 (2 часа)

Защита лабораторных работ.

Лекция №27 (2 часа)

Дисперсия света. Поглощение света. Поляризация света. Двойное лучепреломление.

Практическое занятие №14 (2 часа)

Законы геометрической оптики. Интерференция, дифракция и поляризация света.

Лекция №28 (2 часа)

Законы теплового излучения чёрного тела. Фотоэффект. Давление излучения.

Лабораторная работа №14 (2 часа)

Выполнение лабораторной работы №8.

Лекция №29 (2 часа)

Эффект Комптона. Волновые свойства микрочастиц. Дифракция электронов. Соотношение неопределённостей Гейзенберга. Уравнение Шреденгера.

Практическое занятие №15 (2 часа)

Законы теплового излучения. Фотоэффект. Давление излучения. Эффект Комптона.

Лекция №30 (2 часа)

Ядерная модель атома. Постулаты Бора. Атом водорода. Периодический закон Менделеева. Рентгеновское излучение. Закон Мозли. Лазеры.

Лабораторная работа №15 (2 часа)

Выполнение лабораторной работы №9.

Лекция №31 (2 часа)

Состав атомных ядер. Энергия связи ядер. Радиоактивность. Методы наблюдения радиоактивных излучений и частиц. Радиоактивные излучения и его виды.

Практическое занятие №16 (2 часа)

Атом и атомное ядро. Радиоактивность. Закон радиоактивного распада. Ядерные реакции.

Лекция №32 (2 часа)

Закон радиоактивного распада. Дозы излучение и единицы измерения. Ядерные реакции. Элементарные частицы. Фундаментальные взаимодействия.

Лабораторная работа №16 (2 часа)

Защита лабораторных работ.

4.2.1. ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ РАБОТ

Из приведённого списка лабораторных работ по всем разделам курса физики студент выполняет только те работы, которые определены ему календарным планом.

Лабораторные работы «Электричество и магнетизм»

1. Измерение сопротивления проводников с помощью мостика Уитстона.	2 часа
2. Изучение явления термоэлектронной эмиссии.	2 часа
3. Определение горизонтальной составляющей индукции магнитного поля Земли	2 часа
4. Изучение работы электронного осциллографа	2 часа
5. Изучение явления Зеебека	2 часа
6. Определение напряженности магнитного поля соленоида	2 часа
7. Измерение электроемкости конленсаторов с помощью мостика Соти	2 часа

8. Изучение свойств ферромагнетика	2 часа
9. Определение заряда иона водорода	2 часа
10. Исследование зависимости сопротивления металлов и полупроводников от	
температуры	2 часа
11. Определение удельного заряда q/m электрона с помощью вакуумного диода	2 часа
12. Измерение больших сопротивлений и емкостей методом релаксационных колебаний	2 часа

Лабораторные работы «Оптика, квантовая и атомная физика»

1. Определение главного фокусного расстояния тонких линз	2 часа
2. Измерение длины волны с помощью дифракционной решетки	2 часа
3. Определение показателя преломления стекла с помощью микроскопа	2 часа
4. Наблюдение явлений интерференции, дисперсии и поляризации света	2 часа
5. Изучение законов геометрической оптики	2 часа
6. Изучение фотоэлемента с внешним фотоэффектом	2 часа
7. Изучение работы газового лазера	2 часа
8. Определение постоянной Стефана-Больцмана с помощью оптического пиромет	ра 2 часа
9. Измерение удельного вращения оптически активных веществ	2 часа
10. Изучение спектра водорода	2 часа
11. Изучение интерференции света (МУК-О)	2 часа
12. Дифракция лазерного излучения (МУК-О)	2 часа
13. Поляризация света (МУК-О)	2 часа

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

- 6.1 **Текущая и опережающая СРС**, направленная на углубление и закрепление знаний, развитие практических навыков и умений заключается в следующем.
- 1). Студенты, имея печатные и электронные экземпляры авторских учебнометодических материалов (лекции, пособия), а также учебники и учебных пособия по физике, самостоятельно пишут конспекты. Непосредственно на лекционном занятии идёт обсуждение материала лекции, с использованием заранее подготовленных студентами конспектов с одной стороны и презентацией динамических слайд-лекций с другой.
- 2). Студенты выполняют индивидуальные домашние задания (два индивидуальных домашних задания 12 задач по всем разделам физики).
- 3). Студенты самостоятельно изучают темы, вынесенные на самостоятельную проработку, пишут конспекты.
- 4). Студенты изучают теорию лабораторных работ, выполняют расчёты, оформляют отчёты по лабораторным работам, готовятся к их защите.
- 5). Студенты готовятся к экзамену.
- 6.2. **Творческая проблемно-ориентированная самостоятельная работа** (**TCP**) направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала студентов и заключается в:
 - поиске, анализе, структурировании и представлении (написании конспектов, создании презентаций) учебного материала;

- исследовательской работе и участии в научных студенческих конференциях, семинарах и олимпиадах.

6.3. Содержание самостоятельной работы студентов по модулю (дисциплине)

- 1). Подготовка к лекциям (написание конспектов).
- 2). Самостоятельное изучение тем вынесенных на самостоятельную проработку.
- 3). Подготовка к практическим занятиям. Выполнение индивидуальных домашних заданий.

Из учебно-методического пособия Полицинский Е.В. Задачи по физике. Руководство к выполнению контрольных работ. [текст] / Е.В. Полицинский. – Томск: Изд-во ТПУ, 2014. – 238 с:

ИДЗ №4 – ИДЗ №6 (Всего 15 задач).

- 4). Подготовка к защите индивидуальных домашних заданий и лабораторных работ, подготовка к экзамену.
- 5). Написание рефератов, работ НИРС, подготовка презентаций для участия в студенческих конференциях.

6.4 Учебно-методическое обеспечение самостоятельной работы студентов

1. 1). Литература:

- 1. Детлаф, А.А. Курс физики: Учебное пособие для студентов втузов [текст] / А.А. Детлаф, Б.М. Яворский М.: Академия, 2005. 720с.
- 2. Полицинский Е.В., Градобоев А.В. Физика. Руководство к выполнению контрольных работ т индивидуальных домашних заданий: учебно-методическое пособие. Томск: Изд-во РауШ мбХ, 2010. 194с.
- 3. Полицинский Е.В. ФИЗИКА. Электричество и магнетизм. Механические и электромагнитные колебания и волны: электронное учебное пособие: электронное учебное пособие. Томск: ЮТИ ТПУ 2011. 783 Мб.
- 4. Полицинский Е.В. ФИЗИКА. Оптика. Элементы квантовой, атомной и ядерной физики: электронное учебное пособие: электронное учебное пособие. Томск: ЮТИ ТПУ 2011. 575 Мб.
- 5. Полицинский, Е.В. Методические указания к лабораторным работам по курсу «Физика» для студентов 1, 2 и 3 курсов дневного, вечернего и заочного обучения всех специальностей [текст] / Е.В. Полицинский Юрга: ИПЛ ЮФ ТПУ, 2003г. 51 с.
- 6. Полицинский Е.В., Теслева Е.П., Румбешта Е.А. Задачи и задания по физике. Методы решения задач и организация деятельности по их решению: учебно-методическое пособие. Томск: ТГПУ, 2009-2010. (ТПУ, 2011) 483с.
- 7. Полицинский Е.В. Задачи по физике. Руководство к выполнению контрольных работ: учебно-методическое пособие / Е.В. Полицинский; ЮТИ. Томск: Из-во ТПУ, 2014. 238 с.

- 8. Полицинский Е.В. Электронный учебно-методический комплекс по дисциплинам физика и КСЕ / Е.В. Полицинский, Е.П. Теслева, Э.Г. Соболева. ТПУ, 2014. 202 Мб.
- 9. Соболева Э.Г. Волновая оптика. Лабораторные работы, вопросы и качественные задачи: методические указания по физике для выполнения лабораторных работ студентами всех специальностей и всех форм обучения [текст] / Э.Г. Соболева, Е.В. Полицинский ЮТИ ТПУ, 2009. 52с.
- 10. Соболева Э.Г. Электростатика, электрический ток, электромагнетизм: методические указания к выполнению лабораторных работ по физике для студентов 2 и 3 курсов всех специальностей дневного, вечернего и заочного видов обучения. Юрга: ИПЛ ЮТИ ТПУ, 2006 г. 64 с.
- 11. Теслева Е.П. Оптика. Атомная физика. Сборник методических указаний к выполнению лабораторных работ по физике для студентов 1 и 2 курсов всех специальностей дневного и вечернего видов обучения. Юрга: ИПЛ ЮФ ТПУ, 2003г. 44 с.
- 12. Трофимова, Г.И. Курс физики [текст] / Г.И. Трофимова М.: Высшая школа, 2007 558c.

2). Персональная страница автора программы http://uti.tpu.ru/edu/chairs/eno/teachereno1.php . Здесь размещены:

- 1. Полицинский Е.В. Механика, молекулярная физика и термодинамика. Конспекты лекций: учебное пособие [электронный ресурс] / Е.В. Полицинский. Юргинский технологический институт Национального исследовательского Томского политехнического университета, 2010 206с.
- 2. Полицинский Е.В. Электричество и электромагнетизм: курс лекций [электронный ресурс] / Е.В. Полицинский. ЮТИ ТПУ, 2009. 134с.
- 3. Полицинский Е.В. Механические и электромагнитные колебания и волны: конспекты лекций [электронный ресурс] / Е.В. Полицинский. ЮТИ ТПУ, 2011. 78с.
- 4. Полицинский Е.В. Оптика. Конспекты лекций: учебное пособие [электронный ресурс] / Е.В. Полицинский. ЮТИ ТПУ, 2011. 109с.
- 5. Полицинский Е.В. Элементы квантовой, атомной и ядерной физики. Конспекты лекций: учебное пособие [электронный ресурс] / Е.В. Полицинский. ЮТИ ТПУ, 2011. 151с.
- 6. Полицинский Е.В., Градобоев А.В. Физика. Руководство к выполнению контрольных работ т индивидуальных домашних заданий: учебно-методическое пособие. Томск: Изд-во РауШ мбХ, 2010. 194с.
- 7. Полицинский Е.В., Теслева Е.П., Румбешта Е.А. Задачи и задания по физике. Методы решения задач и организация деятельности по их решению: учебно-методическое пособие. Томск: ТГПУ, 2009-2010. 483с.

Все эти работы размещены в Электронной библиотеке федеральной системы информационных образовательных ресурсов http://window.edu.ru/window/library

- 3). *Internet*-ресурсы:
- 2. Физика и студенты [электронный ресурс] http://www.nsu.ru/icen/grants/psj/russian/index.htm
- 3. Физика студентам и школьникам [электронный ресурс] / vargin.spb.ru
- 4. Энциклопедия физики [электронный ресурс] / http://www.nsu.ru/materials/ssl/text

7. Средства (ФОС) текущей и итоговой оценки качества освоения модуля (дисциплины)

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

Контролирующие мероприятия	Результаты обучения по дисциплине
1. Подготовки к лекциям (написания конспектов)	РД1
2. Устный опрос на лекциях и практических занятиях	РД1
3. Выполнение и защиты лабораторных работ	РД1
4. Выполнение и защита индивидуальных домашних заданий	РД1
5. Написание контрольных и самостоятельных работ	РД1
6. Сдача экзамена	РД1

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств):

- 1. Полицинский Е.В., Теслева Е.П., Румбешта Е.А. Задачи и задания по физике. Методы решения задач и организация деятельности по их решению: учебно-методическое пособие. Томск: ТГПУ, 2009-2010. 483с.
- 2. Полицинский Е.В. Тестовые материалы по физике: электронный учебно-методический комплекс / Е.В. Полицинский. ТПУ, 2013. 465 Мб.
- 3. 100 тестовых заданий с решениями для контроля остаточных знаний по физике: методические указания для студентов 1,2 курса очной, очно-заочной и заочной форм обучения всех специальностей. Сост. В.Н. Беломестных, В.В. Пешев, Э.Г. Соболева, Е.П. Теслева Юрга: Изд-во Юргинского технологического института (филиала) Томского политехнического университета, 2008. 47 с.
- 4. Журавлёв В.А. Входной контроль по математике, физике и химии (сборник тестовых материалов) / В.А. Журавлёв, Е.В. Полицинский, Л.Г. Деменкова. ЮТИ ТПУ, 2013. 4,77Мб.
- 5. Полицинский Е.В. Физика. Руководство к выполнению контрольных работ и индивидуальных домашних заданий: учебно-методическое пособие / Е.В. Полицинский, А.В. Градобоев. Томск: Изд-во РауШ мбХ, 2010. 194с.
- 6. Тестовый контроль по физике, раздел «Механика»: методические указания к проведению тестирования теоретических знаний и

практических навыков в решении задач по физике для студентов 1 курса всех форм обучения / сост.: Л.Н. Шафранова; ЮТИ ТПУ, 2013. — 35с.

7.1. Требования к содержанию экзаменационных билетов

Экзаменационный билет включают два теоретических вопроса и задачу.

7.2. Пример экзаменационного билета

	Contraction in the Contraction i	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №
ЮТИ ТПУ		по дисциплине: ФИЗИКА
	W ROOTECONICAL VINERAL	гр курс I (семестр II)
1 'D TOTAL	TROMODIUM	од интивина Рокон Форолод Прионно осмонитивний

1. Электромагнитная индукция. Закон Фарадея. Явление самоиндукции.

2. Тепловое излучение и его характеристики. Законы теплового излучения чёрного тела. **Задача.** Определить давление света на стенки 150-ваттной лампочки, принимая, что вся потребляемая мощность идёт на излучение и стенки лампочки отражают 15% падающего на них света. Считайте лампочку сферическим сосудом радиуса 4 см.

Составил: к. пед. н., доцент	Полицинский Е.В
(ДАТА)	

8. Рейтинг качества освоения дисциплины (модуля)

Оценка качества освоения дисциплины В текущей ходе промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной студентов И итоговой аттестации Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение модуля (дисциплины)

• основная литература:

1. Полицинский Е.В. Лекции по физике. Часть II: учебное пособие / Е.В. Полицинский, Э.Г. Соболева. – Томск: Изд-во ТПУ, 2013. – 328с.

- 2. Полицинский Е.В. Механика, молекулярная физика и термодинамика. Конспекты лекций: учебное пособие [электронный ресурс] / Е.В. Полицинский. Юргинский технологический институт Национального исследовательского Томского политехнического университета, 2010 206с.
- 3. Полицинский Е.В. Механические и электромагнитные колебания и волны: конспекты лекций [электронный ресурс] / Е.В. Полицинский. ЮТИ ТПУ, 2011 78с.
- 4. Полицинский Е.В. Электричество и электромагнетизм: курс лекций [электронный ресурс] / Е.В. Полицинский. ЮТИ ТПУ, 2009. 134с.
- 5. Полицинский Е.В., Градобоев А.В. Физика. Руководство к выполнению контрольных работ т индивидуальных домашних заданий: учебно-методическое пособие. Томск: Изд-во РауШ мбХ, 2010. 194с.
- 6. Полицинский Е.В. Задачи по физике. Руководство к выполнению контрольных работ: учебно-методическое пособие / Е.В. Полицинский; ЮТИ. Томск: Из-во ТПУ, 2014. 238 с.
- 7. Полицинский Е.В. Электронный учебно-методический комплекс по дисциплинам физика и КСЕ / Е.В. Полицинский, Е.П. Теслева, Э.Г. Соболева. ТПУ, 2014. 202 Мб.
- 8. Полицинский Е.В. Тестовые материалы по физике: электронный учебно-методический комплекс / Е.В. Полицинский. ТПУ, 2013. 465 Мб.
- 9. Полицинский Е.В. ФИЗИКА. Механика, молекулярная физика и термодинамика: электронное учебное пособие. Томск: ЮТИ ТПУ 2011. 482 Мб.
- 10. Полицинский Е.В. ФИЗИКА. Электричество и магнетизм. Механические и электромагнитные колебания и волны: электронное учебное пособие: электронное учебное пособие. Томск: ЮТИ ТПУ 2011. 783 Мб.
- 11. Полицинский Е.В. ФИЗИКА. Оптика. Элементы квантовой, атомной и ядерной физики: электронное учебное пособие: электронное учебное пособие. Томск: ЮТИ ТПУ 2011. 575 Мб.
- 12. Полицинский Е.В. Физика. Основные формулы, связи между физическими величинами: электронное учебное пособие / Е.В. Полицинский. ЮТИ ТПУ, 2014. 7,67 Мб

• дополнительная литература:

- 1. Детлаф, А.А. Курс физики: Учебное пособие для студентов втузов [текст] / А.А. Детлаф, Б.М. Яворский М.: Академия, 2005. 720с.
- 2. Полицинский Е.В., Теслева Е.П., Румбешта Е.А. Задачи и задания по физике. Методы решения задач и организация деятельности по их решению: учебно-методическое пособие. Томск: ТГПУ, 2009-2010. 483с.
- 3. 100 тестовых заданий с решениями для контроля остаточных знаний по физике: методические указания для студентов 1,2 курса очной,

- очно-заочной и заочной форм обучения всех специальностей. Сост. В.Н. Беломестных, В.В. Пешев, Э.Г. Соболева, Е.П. Теслева Юрга: Изд-во Юргинского технологического института (филиала) Томского политехнического университета, 2008. 47 с.
- 4. Трофимова, Г.И. Курс физики [текст] / Г.И. Трофимова М.: Высшая школа, 2007 558с.
- 5. Соболева Э.Г. Волновая оптика. Лабораторные работы, вопросы и качественные задачи: методические указания по физике для выполнения лабораторных работ студентами всех специальностей и всех форм обучения [текст] / Э.Г. Соболева, Е.В. Полицинский ЮТИ ТПУ, 2009. 52с.
- 6. Соболева Э.Г. Электростатика, электрический ток, электромагнетизм: методические указания к выполнению лабораторных работ по физике для студентов 2 и 3 курсов всех специальностей дневного, вечернего и заочного видов обучения. Юрга: ИПЛ ЮТИ ТПУ, 2006 г. 64 с.
- 7. Теслева Е.П. Оптика. Атомная физика. Сборник методических указаний к выполнению лабораторных работ по физике для студентов 1 и 2 курсов всех специальностей дневного и вечернего видов обучения. Юрга: ИПЛ ЮФ ТПУ, 2003г. 44 с.

На лекциях используются презентации, которые содержат учебные видеоролики, интерактивные модели физических явлений и процессов (Полицинский Е.В. Курс физики: электронный учебно-методический комплекс для мультимедийной поддержки занятий по физике. ЮТИ ТПУ, 2012. — 1,49 Гб.; Полицинский Е.В. Сборник интерактивных материалов для мультимедийной поддержки занятий по физике ЮТИ ТПУ, 2013. — 2,92 Гб.).

10. Материально-техническое обеспечение модуля (дисциплины)

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок
1.	Лабораторные установки ко всем лабораторным работам (п.4.2.1).	2-15
2.	Следующее оборудование: 1. Модульный учебный комплекс МУК-ОВ1 для проведения учебных лабораторных работ по курсу "Физика" раздел "Оптика". 2. Дозиметр ДКГ-03Д "Грач" 3. Генератор VC2002 (VECTOR, Китай) 4. Осциллограф ОСУ-10 (Россия) 5. ТМ-211С Термометр от -100С до +199С (S-Line, Китай) 6. ЕТР-104 Измерительная панель "t, с датчиком" (S-Line, Китай) 7. Измеритель уровня электромагнитного фона АТТ-2592 8. Измеритель освещенности "ТКА Люкс" (Россия) 9. Мультиметр MS8221С (Mastech, Тайвань)	2-15
3	Компьютерная проекционная техника.	2-1, 2-2
4.	Демонстрационные плакаты.	2-1, 2-15

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС ВО по направлению подготовки 09.03.03 «Прикладная информатика», № 207, утвержденному 12 марта 2015 года..

Программа одобрена на заседании кафедры ЕНО ЮТИ ФГАБОУ ВО НИ ТПУ

(протокол № 14 от «5» 02 2015 г.).

Автор(ы)

Рецензент(ы)

к. физ-мат.н., доцент Теслева Е.П. к. пед.н. Гиль Л.Б.