ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ
Зам. директора ЮТИ ТПУ
В.Л. Бибик
«Г» 96 ___2015 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИСКРЕТНАЯ МАТЕМАТИКА

Направление (специальность) ООП:

09.03.03 - «Прикладная информатика»

Профиль(и) подготовки (специализация, программа): Прикладная информа-

тика (в экономике)

Квалификация (степень) академический бакалавр

Базовый учебный план приема 2015 г.

КУРС 1; CEMECTP 1;

КОЛИЧЕСТВО КРЕДИТОВ: 3

Код дисциплины Б1.БМ2.7

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

Временной ресурс по очной форме обучения
16
32
0
48
60
108

Форма обучения

РЕМЕРО

Вид промежуточной аттестации:	ЭКЗАМЕН В ІСЕМЕСТРЕ
Обеспечивающая Кафедра:	«Естественнонаучного образования»
Заведующий кафедрой ЕНО	д.т.н., профессор Сапожков С.Б.
Руководитель ООП	к.т.н., доцент Чернышева Т.Ю.
Преподаватель Си	доцент Соколова С.В.

1. Цели освоения дисциплины

В результате освоения данной дисциплины бакалавр приобретает знания, умения и владения, обеспечивающие достижение целей основной образовательной программы по направлению «Прикладная информатика».

Целью изучения дисциплины является обучение студентов основным понятиям, положениям и методам курса математики, навыкам построения математических доказательств путем непротиворечивых логических рассуждений, методам решения задач. Этот курс включает в себя линейную алгебру, аналитическую геометрию, математический анализ, дифференциальные уравнения и ряды. Он является базовым курсом, на основе которого студенты должны изучать другие математические курсы, такие как теория вероятностей и математическая статистика, численные методы, исследование операций, и др., а также специальные курсы, требующие фундаментальной математической подготовки.

Целью освоения дисциплины «Дискретная математика» является формирование общекультурных и профессиональных компетенций, определяющих готовность и способность бакалавра к использованию знаний для решения практических задач в рамках производственно-технологической, проектно-изыскательской, организационно-управленческой и научно-исследовательской профессиональной деятельности, а именно:

- воспитание высокой математической культуры, привитие навыков современных видов математического мышления;
- владеть базовыми знаниями разделов дискретной математики в объёме, необходимом для обработки информации и анализа данных;
- способность к обобщению, анализу, восприятию информации, постановки цели и выбору путей её достижения, воспитание культуры мышления;
- способность логически верно, аргументировано и ясно строить устную и письменную речь;
- формирование у студентов основ научного мышления, в том числе: пониманию границ применимости понятий и теорий дискретной математики.

2. Место дисциплины в структуре ООП

Дисциплина относится к базовой части: модуль естественнонаучных и математических дисциплин (Б1.БМ2.7). Кореквизитами для дисциплины «Дискретная математика» являются дисциплины ООП циклов: «Теория вероятностей и математическая статистика», «Численные методы», «Интеллектуальные информационные системы», «Вычислительные системы, сети и телекоммуникации»

3. Результаты освоения дисциплины

После изучения данной дисциплины бакалавры приобретают знания, умения и владения, соответствующие результатам основной образовательной программы*. Соответствие результатов освоения дисциплины «Математика» формируемым компетенциям ООП представлено в таблице.

Таблица 1 Составляющие результаты обучения, которые будет получены при изучении данной дисциплины

Результаты	составляющие результатов обучения					
обучения (компетенции из	Код	Знания	Код	Умения	Код	Владение

ΦΓΟC)						опытом
Р1, ОПК-3	3.1.5	Методов теории множеств, математической логики, алгебры высказываний, теории графов, теории автоматов, теории алгоритмов. Элементы математической лингвистики и теории формальных языков	V.1.5,	Способы задания множеств, булевы функций и графов, а также применять основные методы оперирования с ними	B.1.5	Опытом решения задач теории множеств, математической логики и теории графов

В результате освоения дисциплины студентом должны быть достигнуты следующие результаты:

Таблица 2 Планируемые результаты освоения дисциплины (модуля)

№ п/п	Результат					
РД1	Применять базовые и специальные математические знания в области					
	информатики и вычислительной техники, достаточные для комплекс-					
	ной инженерной деятельности					
РД2	Использовать методы линейной алгебры и аналитической геометрии,					
	методы дифференциального и интегрального исчисления. Уметь иссле-					
	довать ряды на сходимость и решать дифференциальные уравнения.					

^{*}Расшифровка кодов результатов обучения и формируемых компетенций представлена в Основной образовательной программе подготовки бакалавров по направлению 09.03.03 «Прикладная информатика».

4. Структура и содержание дисциплины

4.1. Структура дисциплины по разделам, формам организации и контроля обучения

	10111111						
№	Название раздела/темы	Аудиторная работа			CPC	Итого	Формы теку-
		(час)			(час)		щего контроля
		Лек- Практ./ Лаб.					и аттестации
		ции	семинар	зан.			
1	ТЕОРИЯ МНОЖЕСТВ	4	8		16	28	экзамен
1.1	Введение. Виды мно- жеств. Операции над множествами	2	4		4	6	Контрольная работа № 1
1.3	Бинарные отношения. Его свойства.	2	2		8	14	
1.4	Нечеткие множества		2		4	6	

2	МАТЕМАТИЧЕСКАЯ	6	10	16	30	
	ЛОГИКА					
2.1	Логика высказываний.	2	4	4	10	ИД3-1
	Логические рассуждения					
2.3	Логика предикатов	2	4	8	14	
2.4	Булевы функции. Мини-	2	4	8	14	Контрольная
	мизация БФ					работа № 2
3.1	комбинаторика	2	4	8	14	
3.2	Основные правила ком-	2	4	8	14	Контрольная
	бинаторики. Бином Нью-					работа №3
	тона					
3.4	ТЕРИЯ ГРАФОВ	4	8	16	28	
3.5	Основные понятия и оп-	2	4	8	8	
	ределения. Некоторые					
	типы и виды графов					
	Операции над графами	2	4	8	20	ИДЗ-2

4.2. Содержание разделов дисциплины

РАЗДЕЛ 1. ТЕОРИЯ МНОЖЕСТВ

Тема 1.1. Введение. Виды множеств. Операции над множествами

Понятие множества, Способы задания множества. Операции над множества. Законы операций над множествами. Диаграммы Эйлера-Венна.

Тема 1.2. Бинарные отношения. Его свойства

Кортежи и декартово произведение множеств.

Тема 1.3. Нечеткие множества

РАЗДЕЛ 2. МАТЕМАТИЧЕСКАЯ ЛОГИКА

Тема 2.1. Логика высказываний. Логические рассуждения

Составные высказывания. Простейшие связки. Логические отношения.

Логические операции. Основные законы, определяющие свойства введенных логических операций.

Тема 2.2. Логика предикатов

Предикаты и операции квантирования. Равносильные формы логики предикатов.

Тема 2.3. Булевы функции. Минимизация БФ

Свойства элементарных булевых функций. Совершенная дизъюнктивная и совершенная конъюнктивная нормальные формы. Этапы минимизации ДНФ. Многочлены Жегалкина.

РАЗЛЕЛ 3. КОМБИНАТОРИКА

Тема 3.1. Основные правила комбинаторики. Бином Ньютона

Основные правила комбинаторики. Теория перечислений. Комбинации элементов с повторениями. Бином Ньютона.

РАЗДЕЛ 4. ТЕОРИЯ ГРАФОВ

Тема 4.1 Основные понятия и определения

Некоторые основные понятия. Степень вершины.

Тема 4.2 Некоторые типы и виды графов

Маршруты, цепи, циклы. Связность графов. Изоморфизм графов. Плоские графы.

Тема 4.3 Операции над графами

Способы задания графов.

5. Образовательные технологии

При освоении дисциплины используются следующие сочетания видов учебной работы с методами и формами активизации познавательной деятельности бакалавров для достижения запланированных результатов обучения и формирования компетенций.

Методы и формы организации обучения

Таблица 3

ФОО Методы	Лекц.	Лаб. раб.	Пр. зан./	Тр.*, Мк**	СРС	К. пр.***
ІТ-методы	X		X			
Работа в команде			X		X	
Case-study			X		X	
Игра						
Методы проблемного обу-						
чения						
Обучение на основе опыта			X		X	
Опережающая самостоятельная работа	X		X		X	
Проектный метод					X	
Поисковый метод					X	
Исследовательский метод						X
Другие методы				_		

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием *Internet*-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- проблемное обучение, нацеленное на развитие познавательной активности, творческой самостоятельности обучающихся, и предполагающее последовательное и целенаправленное выдвижение перед обучающимися познавательных задач, разрешая которые обучающиеся активно усваивают знания;
- дифференцированное обучение, нацеленное на создание оптимальных условий для выявления задатков, развития интересов и способностей, и предполагающее усвоение программного материала на различных планируемых уровнях, но не ниже обязательного, определенного ФГОС;
- активное (контекстное) обучение, нацеленное на организацию активной учебной деятельности обучающихся, и предполагающее моделирование предметного и социального содержания будущей профессиональной деятельности;
- олимпиадное движение, нацеленное на организацию внутренне мотивированной творческой учебно-профессиональной деятельности, и предполагающее воспроизведение сущности олимпиадных задач;
- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- *самостоятельное изучение* теоретического материала дисциплины с использованием

Internet-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов (СРС)

6.1 Виды и формы самостоятельной работы

Текущая и опережающая СРС, направленная на углубление и закрепление знаний, а также развитие практических умений заключается в:

- работе бакалавров с лекционным материалом;
- выполнении домашних заданий,
- изучении тем, вынесенных на самостоятельную проработку,
- изучении теоретического материала к практическим занятиям,
- подготовке к экзамену.

Творческая проблемно-ориентированная самостоятельная работа

- **(ТСР)** направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала студентов и заключается в:
- поиске, анализе, структурировании и представлении (написании конспектов, создании презентаций) по изучаемому материалу,
- исследовательской работе и участии в научных студенческих конференциях, семинарах и олимпиадах.

6.2 Содержание самостоятельной работы студентов по модулю (дисциплине)

- 1). Самостоятельное изучение тем, вынесенных на самостоятельную проработку (Отмечены в п.4.1 символом *).
- 2). Написание рефератов, работ НИРС, подготовка презентаций для участия в студенческих конференциях и выступления на занятиях

6.3 Контроль самостоятельной работы

7. Средства (ФОС) текущей и промежуточной оценки качества освоения модуля (дисциплины)

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

Оценка успеваемости студентов осуществляется по результатам:

- 1). Полготовки к лекциям (написании конспектов).
- 2). Устного опроса на лекциях и практических занятиях.
- 3). Выполнения и защиты индивидуальных домашних заданий.
- 4). Написания студентами контрольных и самостоятельных аудиторных работ.
- 5). Сдачи экзамена.

7.1. Требования к содержанию экзаменационных вопросов

Экзаменационные билеты включают один тип заданий: практические задания.

7.2. Примеры экзаменационных вопросов ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

по дисциплине: ДИСКРЕТНАЯ МАТЕМАТИКА

1. Пусть орграф задан матрицей смежности. Постройте изображение этого графа, укажите степени вершин графа. По матрице смежности постройте матрицу инцидентности этого графа

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

- 2. С помощью эквивалентных преобразований приведите функцию к СДНФ $(x \lor \overline{y}) \to (\overline{z} \oplus \overline{x})$.
- 3. Решить уравнение $C_{n-1}^2 = 3$.
- 4. Найдите элементы множества P, если $A=\{0,2,3,7,8\}$; $B=\{1,3,6,7,9\}$; $C=\{0,1,4,7,8,9\}$; $I=\{0,1,2,...,9\}$. $P=A\cap B\cup \overline{B}\cap C\cup A\cap \overline{B}$

Составил: Соколова С.В..

Утверждаю:

Заведующий кафедрой: Сапожков С.Б.

8. Рейтинг качества освоения дисциплины (модуля)

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора N = 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение модуля (дисциплины)

Основная литература

- 1. Дискретная математика: Учебное пособие для вузов / В.В. Куликов. М. : РИОР, 2010. 173 с.
- 2. Т. С. Соболева, А. В. Чечкин. Дискретная математика [Электронный ресурс] под ред. А. В. Чечкина. 3-е изд., перераб.. Мультимедиа ресурсы (10 директорий; 100 файлов; 740МВ). Москва: Академия, 2014. 1 Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2015/FN/fn-62.pdf

Дополнительная литература

- 1. Ахо А, Хопкрофт Дж., Ульман Дж. Структуры данных и алгоритмы: Пер. с англ. М.: Издательский дом «Вильямс», 2011. 224 с.
- 2. Маслов А.В. Дискретная математика :Учебное пособие. Томск.: Издательство ТПУ, 2008. 148с.
- 3. Кручкович Г.И. и др. Сборник задач по курсу высшей математики. Высш. шк, 1999. -576 с
- 4. Нефедов В.Н., Осипова В.А. Курс дискретной математики: Учеб.пособие.-М. Изд-во МАИ, 1992. –264 с
- 5. Макконелл Дж. Основы современных алгоритмов. «-е дополненное издание. М.: Техносфера, 2004. 226 с.
- 6. Задачи и упражнения по математическому анализу для втузов/ под Демидовича Б.П.- М.: Гос. изд-ф-м. лит., 1959,1977. 528 с.

Список сайтов образовательных электронных ресурсов:

<u>exponenta.ru</u> – "Образовательный математический сайт. В частности – Internet-класс для студентов по высшей математике.

<u>reshebnik.ru</u> – высшая математика, эконометрика, задачи, решения – сайт в помощь студентам 1-2 курсов.

<u>mathelp.spb.ru</u> "Высшая математика" (помощь студентам) – лекции, электронные учебники, решение контрольных работ; скачать учебники и др. Лекции по высшей математике: Математический анализ; Дифференциальные уравнения; Аналитическая геометрия, Теория вероятностей и др.

<u>eqworld.ipmnet.ru</u> – "Мир математических уравнений". Описаны точные решения и методы решения уравнений, приведены интересные статьи, даны ссылки на математические сайты, программы, электронные библиотеки и др. Можно скачать громадное количество книг (формат pdf и djvu).

<u>matclub.ru</u> – лекции, курсовые, примеры решения задач, интегралы и производные, дифференцирование, ТФКП, Электронные учебники. Типовой расчет из задачника Кузнецова.

<u>fismat.ru</u> Высшая математика для студентов и абитуриентов – интегралы и производные, ряды, ТФКП, дифференцирование, лекции, курсовые, задачи, учебники.

<u>atomas.ru</u> — Высшая математика — лекции, курсовые, типовые задания, примеры решения задач.

256bit.ru – Высшая математика - лекции, примеры решения задач.

mathem.h1.ru сайт "Высшая математика on-line" – формулы и краткие понятия.

dvoika.net - Учебные пособия для студентов: Начертательная геометрия, Инженерная графика, Высшая математика (в частности примеры решения задач из учебника Кузнецова), Физика, Информатика, Электротехника, Атомная энергетика.

<u>tisbi.ru</u> – Основы Линейного Программирования. Демо-версия обучающей системы. <u>math.ssau.ru</u> – СГАУ – можно скачать более 10 методических и учебных пособий выпуска 2006г. формата pdf или файла справки.

<u>vilenin.narod.ru</u> - Mex-Мат МГУ. Лекции, билеты, учебники и др. (материалы примерно 2001-2004гг.)

<u>portal.kod095.ru</u> и <u>mephist.net.ru</u> – сайт бывшего ученика МИФИ "Санктуарий Мифиста" – лекции, книги, экзаменационные билеты и др. по математике, физике, химии, социологии и пр.

truba.nnov.ru - Сайт о математическом анализе.

Используемое программное обеспечение:

- 1. На лекциях используются презентации для мультимедийной поддержки занятий по теории вероятностей и математической статистике в программе POWER POINT.
- 2. Сборник интерактивных материалов для мультимедийной поддержки занятий по теории вероятностей и математической статистике в программе Notebook для интерактивной доски SmartBoard
- 3. Контролирующее устройство «Символ ВУЗ» для самоконтроля знаний.

10. Материально-техническое обеспечение модуля (дисциплины)

- 1. Компьютерная проекционная техника.
- 2. Интерактивная доска «SMARTBoard».

Программа одобрена на заседании кафедры ЕНО

(протокол №14 от «5» февраля 2015 г.).

3. Контролирующие устройства «СИМВОЛ».

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС ВО по направлению подготовки 09.03.03 «Прикладная информатика», утверждённого приказом № 207 Министерства образования и науки Российской Федерации от 12.03.2015г.

Автор:	доцент Соколова С.В.
Рецензент:	доцент, к.пед.н. Гиль Л.Б.

^{*} приложение – Рейтинг-план освоения модуля (дисциплины) в течение семестра.