Ф ТПУ 7.1 - 21/01

Рабочая программа учебной дисциплины

			УТВЕРЖДАЮ
		Проректор по	образовательной
		и международ	ной деятельности
			Чучалин А.И.
	«	*	2011г.
РАБОЧАЯ ПРОГРА	ММА ДИСЦИ	<u>ПЛИНЫ</u>	
X	имия		
НАПРАВЛЕНИЯ ООП			
140800 –Ядерная физика и технологии	200100 -Приборо	остроение	
201000 – Биотехнические системы и технологии	200400- Оптотех	ника	

140800 –Ядерная физи 201000 - Биотехническ 022000 – Экология и природопользование

220700 - Автоматизация технологических процессов

210100 – Электроника и наноэлектроника и производств ИΠ

011200- Физика 280100 - Природообустройство и водопользование

141100 – Энергетическое машиностроение 221000- Мехатроника и робототехника

220400 – Управление в технических системах 261400- Технология художественной обработки

150700- Машиностроение материалов

151000- Технологические машины и оборудование 140400- Электроэнергетика и электротехника 151900 — Конструкторско-технологическое обеспе- 140100 — Теплоэнергетика и теплотехника

020700 -Геология чение машиностроительных производств

СПЕЦИАЛЬНОСТЬ 141403 – Атомные станции: проектирование, эксплуатация и инжиниринг 140801- Электроника и автоматика физических установок

КВАЛИФИКАЦИЯ: Бакалавр, инженер

БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА 2011 г.

КУРС – первый СЕМЕСТР – первый/второй

КОЛИЧЕСТВО КРЕДИТОВ 3

ПРЕРЕКВИЗИТЫ КОРЕКВИЗИТЫ отсутствуют

ВИД УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

Осенний/Весенний Семестр

Лекции 18 час 27 час Лабораторные занятия Практические занятия 9 час

АУДИТОРНЫЕ ЗАНЯТИЯ 54 час

САМОСТОЯТЕЛЬНАЯ РАБОТА 54 час

ИТОГО 108 час

ФОРМА ОБУЧЕНИЯ очная

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ Экзамен

СОГЛАСОВАНО:

Проректор- директор ИПР	Мазуров А.К. Лопатин В.В.
Проректор- директор ФТИ	Кривобоков В.П.
Проректор- директор ИК	Сонькин М.А.
Проректор- директор ИНК	Клименов В.А.
Проректор- директор ЭНИН	Боровиков Ю.С.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ "ХИМИЯ"

- 1. Готовность студентов к применению полученных при изучении дисциплины «Химия» знаний, умений навыков и компетенций при изучении общенаучных и специальных дисциплин, а также для решения профессиональных задач;
- 2. Готовность студентов к работе в условиях химической лаборатории, проведению научного исследования, анализу результатов эксперимента.
- 3. Готовность студентов к самообучению и постоянному профессиональному самосовершенствованию;
- 4. Готовность студентов к поиску и получению информации, необходимой для решения учебных и исследовательских задач.
- 5. Готовность студентов обосновывать и отстаивать собственные заключения и выводы, осознавать ответственность за принятие своих решений.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «Химия» относится к разделу общенаучных дисциплин (МЕН) в цикле ООП. Дисциплина основывается на базовых знаниях, полученных студентами при изучении химии в курсе средней школы. Для глубокого усвоения дисциплины студент должен владеть химической терминологией; понимать смысл химических формул и символов, индексов и коэффициентов в химических уравнениях реакций; иметь представления об основных классах неорганических соединений; понимать различие между химическими и физическими явлениями; иметь представление об атомно-молекулярном учении; иметь навыки решения простейших расчетных задач.

Для усвоения теоретических и практических основ химии у студента должны быть сформированы когнитивные компетенции:

- способность к самоорганизации в процессе обучения;
- обладание умениями и навыками к использованию источниками для сбора, обработки и анализа информации;
- способность пользоваться компьютером и иными средствами коммуникативного назначения для поиска данных;

социально-личностные

- способность коммуницировать в группе;
- способность участвовать в экспериментальных работах.

Пререквизиты и кореквизиты отсутствуют

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

По окончании изучения дисциплины «Химия» студент будет способен: применять полученные знания, умения, навыки и компетенции при изучении общенаучных и специальных дисциплин, связанных с химией.

Применять полученные знания, умения, навыки и компетенции в решении производственных и технологических задач.

По окончании изучения дисциплины студент будет:

знать: суть основных законов химии;

- электронное строение атомов и молекул и Периодический закон Д.И. Менделеева,
- -основы теории химической связи в соединениях разных типов,
- -основные закономерности химических превращений;
- 'электрохимические процессы
- -свойства растворов;

уметь: - проводить количественные расчеты в химических реакциях;

- -определять термодинамические и кинетические параметры химических реакции;
- -определять количественные характеристики растворов;

- -применять химические законы для решения практических задач.
- -использовать основные элементарные методы химического исследования веществ и соединений для решения профессиональных задач;

владеть;

- теоретическими методами описания свойств простых и сложных веществ на основе электронного строения их атомов и положения в Периодической системе химических элементов,
- -основными методами исследования физических и химических явлений

В процессе освоения дисциплины у студентов развиваются следующие компетенции:

- 1. Универсальные (общекультурные):
- способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения (ОК-1);
- -умение использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ОК 10)
- умение логически верно, аргументировано и ясно строить устную и письменную речь, способность в письменной и устной речи правильно (логически) оформить результаты мышления (ОК-2);
 - способность и готовностью к кооперации с коллегами, работе в коллективе (ОК-3);
 - -целенаправленное применение базовых знаний в области естественных, математических гуманитарных и экономических наук в профессиональной деятельности (ОК9).
 - 2. Профессиональные:
- способностью и готовностью использовать основные законы химии в профессиональной деятельности, применять методы математического анализа, теоретического и экспериментального исследования (ПК-1). (200400)
- умение применять современные химические методы для разработки малоотходных, энергсберегающих и экологически чистых технологий, обеспечивающих безопасность жизнедеятельности людей и их защиту от возможных последствий аварий, катастроф и стихийных бедствий, умение применять способы рационального использования сырьевых, энергетических и других видов ресурсов (ПК-8 150700).
- -способностью демонстрировать базовые знания в области естественнонаучных дисциплин и готовностью использовать основные законы в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-2); 140400
- -готовностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способностью привлечь для их решения соответствующий физико-математический аппарат (ПК-3); 140400,140100

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1.СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ « ХИМИЯ»

Разлел 1. Основные понятия и законы химии

- 1.1. Основные понятия в химии: атом, химический элемент, молекула, простые и сложные вещества. Химический эквивалент, молярная масса эквивалента.
- 1.2. Фундаментальные и частные законы: закон сохранения массы-энергии; закон эквивалентов, постоянства состава, Авогадро, Дюлонга-Пти, уравнение Менделеева -Клапейрона.
- 1.3. Окислительно-восстановительные реакции. Понятия: окислитель и восстановитель. Классификация OBP. Метод электронного баланса как способ уравнивания OBP.

Раздел 2. Строение вещества

- 2.1. Строение атома. История развития представлений о строении атома. Теоретические основы современной теории строения атома квантовой механики: квантование энергии электрона в атоме, двойственная природа электрона, вероятностный характер законов микромира. Квантовые числа. Атомные орбитали, энергетические уровни и подуровни, основные принципы их заполнения: принцип наименьшей энергии, принцип Паули, правило Гунда. Электронные формулы атомов, валентные электроны. Валентные возможности атомов.
- 2.2. Периодический закон и периодическая система Д. И. Менделеева. Периодический закон Д.И.Менделеева. Связь электронного строения атома с его положением в периодической системе. Свойства атомов, периодически изменяющиеся в зависимости от атомного номера: радиусы атомов и ионов, энергия ионизации, сродство к электрону, электроотрицательность.
- 2.3.**Химическая связь и строение молекул.** Типы связей и влияние характера химической связи на химические свойства веществ. Энергия связи, длина связи, валентный угол, характеристики полярности связи.

Ковалентная связь. Способы рассмотрения ковалентной связи: метод валентных связей, его основные положения, обменный и донорно-акцепторный механизмы образования ковалентной связи, теория гибридизации и пространственная структура молекул, метод ОЭПВО, метод молекулярных орбиталей (МО), его основные положения. Связывающие и разрыхляющие МО, последовательность их заполнения электронами.

Ионная связь, ее энергия, особенности соединений с ионной связью.

Особенности химической связи в металлах. Зонная теория как распространение метода МО на кристаллы; объяснение электропроводности металлов зонной теорией. Объяснение пластичности металлов.

Водородная связь, ее природа и энергия. Влияние водородных связей на свойства веществ. Межмолекулярные взаимодействия, их проявления, природа (ориентационный, индукционный и дисперсионный эффект) и энергия.

Агрегатные состояния вещества с позиций химических связей между его частицами. Кристаллическая и аморфная структуры твердого состояния. Классификация кристаллов по типу химической связи между частицами.

3.1. **Химическая термодинамика.** Основные термодинамические (ТД) понятия: ТД система, химическая фаза и компонент, гомо- и гетерогенные системы, ТД параметры и функции.

Первый закон термодинамики, тепловой эффект изохорного и изобарного процессов. Внутренняя энергия и энтальпия. Энтальпия образования вещества и химической реакции. Закон Гесса и его следствия, термохимические расчёты. Энтропия: второй закон термодинамики, закономерности изменения энтропии. Энергия Гиббса. Направление протекания химических реакций. Термодинамически устойчивые вещества.

- 3.2 **Химическое равновесие**. Обратимые и необратимые химические реакции. Химическое равновесие с позиций термодинамики и кинетики. Закон действия масс для равновесия. Константа равновесия, ее связь с энергией Гиббса. Принцип Ле Шателье, его практическое значение.
- 3.3. **Химическая кинетика.** Система основных понятий химической кинетики: гомогенные и гетерогенные реакции; простые и сложные реакции; молекулярность: моно-, би- и тримолекулярные реакции; механизм химических реакций; последовательные, параллельные, цепные реакции.

Скорость химической реакции. Закон действия масс для скоростей простых и сложных реакций. Кинетические уравнения, порядок реакции и порядок по веществу, экспериментальный способ установления частных порядков. Константа скорости химической реакции.

Энергия активации. Уравнение Аррениуса, методы расчета энергии активации.

Понятие о катализе. Гомогенный и гетерогенный катализ. Катализаторы, механизм влияния катализатора на скорость химической реакции.

Раздел 4. Электрохимические процессы

- 5.1. Электрохимические процессы. Механизм возникновения электродного потенциала на границе металл раствор. Стандартные электродные потенциалы, их измерение с помощью водородного электрода. Уравнение Нернста. Ряд напряжений металлов.
- 5.2. Гальванические элементы как источники электрической энергии. Электродвижущая сила, ее связь с энергией Гиббса. Концентрационные элементы.
- 5.3. Электролиз растворов и расплавов веществ. Напряжение разложения и перенапряжение. Порядок разрядки ионов на электродах. Электролиз с растворимым анодом. Количественные закономерности электролиза (законы Фарадея). Применение электролиза.
 - 5.4. Коррозия металлов и способы защиты от коррозии.

Раздел 5. Растворы

- 4.1. Концентрация растворов. Способы выражения концентрации растворов: массовая доля растворённого вещества, молярная концентрация, молярная концентрация эквивалента, титр, моляльная концентрация, мольные доли. Перерасчёт одного способа выражения концентрации в другой.
- 4.2. Растворы неэлектролитов. Коллигативные свойства растворов: давление насыщенного пара растворителя над раствором, температуры кипения и замерзания, осмотическое давление.
- 4.3. Теория электролитической диссоциации. Показатели диссоциации: степень, константа, изотонический коэффициент. Особенности растворов сильных электролитов. Произведение растворимости малорастворимых электролитов. Электролитическая диссоциация воды, ионное произведение воды. Водородный показатель. Индикаторы.

4.4. Направление и полнота протекания ионных реакций. Гидролиз солей, его основные показатели: константа и степень гидролиза, водородный показатель.

Раздел 6. Избранные главы

022000. Химические элементы в биосфере.

210100. Получение наноматериалов и изучение их свойств.

011200. Применение химических законов для решения физических задач.

140801. Получение наноматериалов и их свойства (получение проводящих слоев).

140800. Общая характеристика d и f-элементов и их применение в атомной энергетике

141100,140100. Коррозия металлов и защита металлов от коррозии. Химический состав природных вод

220400, 221000, 261400. Строение и свойства металлов, сплавов, полупроводников и полимеров

150700, **151000**. Использование новых технологий в создании защитных покрытий в технологическом оборудовании.

200100. Физико-химические методы анализа. Химическая идентификация.

200400. Химия твердого тела. Люминесценция.

201000. Химия органических соединений (Аминокислоты, нуклеиновые кислоты)

141403. Атомные катастрофы и их последствия.

220700. Дисперсные системы и их разделение.

280100. Химический состав природных вод и методы очистки.

140400. Электропроводящие и электроизоляционные материалы.

020700. Аналитическая химия для идентификации химических элементов.

4.2.СТРУКТУРА ДИСЦИПЛИНЫ

Таблица1.

Структура дисциплины по разделам и видам учебной деятельности в соответствии с учебными планами Вариант 1.

№	Разделы	Лекции	Практ.	Лаб.	CPC	Конф	Итого
		(час)	занятия	работы	(час)	недели	(час)
			(час)	(час)		(час)	
1	Основные законы химии	2		6	10		18
	Основные классы						
	OBP						
2	Строение веще-	4		4	10	2	20
	ства(строение атома,						
	химическая связь)						
3	Концентрации раство-	2		2	2		6
	ров.						
4.	Закономерности химиче-	4	5	5	10		24
	ских реакций (ТМД,						
	равновесие, кинетика						
5	Электрохимия	4	2	2	10	2	20
6	Растворы)	2	2	4	2		10
	1 /						
7	Избранные главы				10		10
	Итого за семестр	18	9	23	54	4	108

Таблица2

Структура дисциплины по разделам и видам учебной деятельности в соответствии с учебными планами Вариант 2.

№	Разделы	Лекции (час)	Практ. занятия	Лаб. работы	СРС (час)	Конф недели	Итого (час)
		(4ac)	(час)	(час)	(qac)	(час)	(qac)
1	Основные законы химии Основные классы OBP	2	2	6	10		20
2	Строение веще- ства(строение атома, химическая связь)	4	3	5	10	2	24
3	Концентрации растворов.	2	2	2	2		8
4.	Закономерности химических реакций (ТМД, равновесие, кинетика	4	2	4	10		20
5	Электрохимия	4		2	10	2	18
6	Растворы)	2		4	2		8
7	Избранные главы				10		10
	Итого за семестр	18	9	23	54	4	108

5.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изучении дисциплины «Химия» используются следующие образовательные технологии. Технология обучения - это способ реализации содержания обучения, предусмотренного учебными программами, представляющий систему форм, методов и средств обучения, обеспечивающую наиболее эффективное достижение поставленных целей.

Для достижения планируемых результатов обучения, в дисциплине «Химия» используются различные образовательные технологии:

1. Информационно-развивающие технологии, направленные на формирование системы знаний, запоминание и свободное оперирование ими.

Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации.

- 2. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении экспериментальных исследований, обеспечивающих возможность качественно выполнять профессиональную деятельность.
- 3. Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности видеть и формулировать проблемы, выбирать способы и средства для их решения. Используются виды проблемного обучения: освещение основных проблем общей химии на лекциях, учебные дискуссии, коллективная деятельность в группах при выполнении лабораторных работ.
 - 4. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного

процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента при защите лабораторных работ, при выполнении домашних индивидуальных заданий, решении задач повышенной сложности, на еженедельных консультациях.

При изучении дисциплины «Химия» используются следующие образовательные технологии: лекции, лабораторные работы и практические занятия. Для достижения поставленных целей привлекаются различные методы активизации обучения.

 Таблица 3.

 Образовательные технологии, применяемые при освоении дисциплины Химия

Вид ОД	Лекция	Лабораторная	Практическое
Метод акт. ОД		работы	занятие
<i>IT</i> -методы	+		
Работа в команде		+	
Проблемное обучение	+	+	+
Контекстное обучение		+	+
Обучение на основе		+	
опыта			
Индивидуальное обу-		+	+
чение			
Междисциплинарное	+		+
обучение			
Опережающая само-		+	+
стоятельная работа			

6. ОРГАНИЗАЦИЯ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯ-ТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Основная задача высшего образования заключается в формировании творческой личности специалиста, способного к саморазвитию, самообразованию, инновационной деятельности. Решение этой задачи невозможно только путем передачи знаний в готовом виде от преподавателя к студенту. Необходимо перевести студента из пассивного потребителя знаний в активного их творца, умеющего сформулировать проблему, проанализировать пути ее решения, найти оптимальный результат и доказать его правильность. В этом плане следует признать, что самостоятельная работа студентов (СРС) является не просто важной формой образовательного процесса, а должна стать его основой. Это предполагает ориентацию студента на активные методы овладения знаниями, развитие творческих способностей, переход от поточного к индивидуализированному обучению с учетом потребностей и возможностей личности. Усиление роли самостоятельной работы студентов означает принципиальный пересмотр организации учебновоспитательного процесса в вузе, который должен строиться так, чтобы развивать умение учиться, формировать у студента способности к саморазвитию, творческому применению полученных знаний, способам адаптации к профессиональной деятельности в современном мире.

Для реализации самостоятельной работы созданы следующие условия и предпосылки:

1. Студенты обеспечены информационными ресурсами (учебниками, справочникам, учебными пособиями, банком индивидуальных заданий);

- 2. Студенты обеспечены информационными ресурсами (на сайте НТБ в электронном виде выставлено все методическое обеспечение курса «Химия», имеется доступ к порталу лектора).
- 3. Для проведения практических и лабораторных занятий по химии разработаны учебные пособия. Студент имеет возможность заранее (с опережением) подготовиться к занятию, попытаться ответить на контролирующие вопросы, и обратиться за помощью к преподавателю в случае необходимости.
- 4. Разработаны контролирующие материалы в тестовой форме, позволяющие оперативно оценить уровень подготовки студентов.
 - 5. Организованы еженедельные консультации.

6.1 Текущая самостоятельная работа (СРС)

Текущая самостоятельная работа по дисциплине «Химия», направленная на углубление и закрепление знаний студента, на развитие практических умений, включает в себя следующие виды работ:

- работа с лекционным материалом;
- подготовка к практическим занятиям;
- подготовка к лабораторным работам;
- изучение тем, вынесенных на самостоятельную проработку;
- выполнение индивидуальных домашних заданий;
- подготовка к самостоятельным и контрольным работам;
- подготовка к экзамену.

6.2. Творческая проблемно-ориентированная самостоятельная работа (ТСР)

Творческая проблемно-ориентированная самостоятельная работа по дисциплине «Химия», направленная на развитие интеллектуальных умений, общекультурных и профессиональных компетенций, развитие творческого мышления у студентов, включает в себя следующие виды работ по основным проблемам курса:

- выполнение расчетных работ, обработка и анализ данных;
- решение задач повышенной сложности, в том числе комплексных и олимпиадных задач;
- участие в олимпиадах по химии;
- -решение задач по химии применительно к специальности.

6.3. Содержание самостоятельной работы студентов по модулю (дисциплине)

- 6.3.1. Темы индивидуальных домашних заданий
- 1. Расчеты по химическим формулам и уравнениям с использованием стехиометрических законов
- 2. Составление электронных формул атомов, определение валентных электронов, характеристика состояния электронов в атоме при помощи набора квантовых чисел.
 - 3. Описание химических связей в молекулах с использованием методов ВС и МО.
- 4. Расчет тепловых эффектов реакций, расчет изменения энтропии и энергии Гиббса при протекании реакций.
- 5. Описание состояния химического равновесия с использованием принципа Ле- Шателье, расчет константы равновесия.
- 6. Расчет скорости реакции на основе закона действующих масс, характеристика влияния внешних условий на скорость реакции.

- 7. Расчет концентрации растворов (6 способов выражения концентрации), расчет давления пара, температур кипения и затвердевания, осмотического давления растворов электролитов и неэлектролитов.
- 8. Составление уравнений ионообменных реакций, гидролиза солей; расчет констант диссоциации и гидролиза.
- 9. Составление схем гальванических элементов, расчет их ЭДС; расчеты с использованием законов электролиза; объяснение процессов электрохимической коррозии.

6.3.2. Темы, выносимые на самостоятельную проработку

- Стехиометрические законы. Методы определения атомных и молекулярных масс. Понятие валентности.
- Классы неорганических соединений.
- История развития представлений о строении атома. История открытия электрона. Модели строения атома. Состав ядра, изотопы, ядерные реакции, радиоактивность.
- Кристаллическая и аморфная структуры твердого состояния. Классификация кристаллов по типу химической связи и их свойства.
- -Применение электролиза для получения чистых металлов.
- -Топливные элементы. Водородная энергетика. Аккумуляторы.
- Коррозия металлов, способы защиты металлов от коррозии

6.3.3. Темы научных проблем и направлений, выносимых на конференциедели:

022000. Химические элементы в биосфере.

210100. Получение наноматериалов и изучение их свойств.

011200. Применение химических законов для решения физических задач.

140801. Получение наноматериалов и их свойства (получение проводящих слоев).

140800. Общая характеристика d и f-элементов и их применение в атомной энергетике

141100,140100. Коррозия металлов и защита металлов от коррозии. Химический состав природных вод

220400, 221000, 261400. Строение и свойства металлов, сплавов, полупроводников и полимеров

150700, 151000. Использование новых технологий в создании защитных покрытий в технологическом оборудовании.

200100. Физико-химические методы анализа. Химическая идентификация.

200400. Химия твердого тела. Люминесценция.

201000. Химия органических соединений (Аминокислоты, нуклеиновые кислоты)

141403. Атомные катастрофы и их последствия.

220700. Дисперсные системы и их разделение.

280100. Химический состав природных вод и методы очистки.

140400. Электропроводящие и электроизоляционные материалы.

020700. Аналитическая химия для идентификации химических элементов.

6.4. Контроль самостоятельной работы

Организационные мероприятия, обеспечивающие нормальное функционирование самостоятельной работы студента, должны основываться на следующих предпосылках: самостоятельная работа должна быть конкретной по своей предметной направленности; она должна сопровождаться эффективным, непрерывным контролем и оценкой результатов. Контроль СР

студентов и оценка ее результатов организуется как единство двух форм: самоконтроль и самооценка, а также контроль и оценка со стороны преподавателя. Условно самостоятельную работу студентов можно разделить на обязательную и дополнительную. Обязательная самостоятельная работа обеспечивает подготовку студента к текущим аудиторным занятиям. Результаты этой подготовки проявляются в активности студента на занятиях, выполненных контрольных работ, тестовых заданий и других форм текущего контроля. Баллы, полученные студентом по результатам аудиторной работы, формируют рейтинговую оценку текущей успеваемости студента по дисциплине.

Дополнительная самостоятельная работа (ДСР) направлена на углубление и закрепление знаний студента, развитие аналитических навыков по проблематике учебной дисциплины. Подведение итогов и оценка результатов таких форм самостоятельной работы осуществляется во время контактных часов с преподавателем. Баллы, полученные по этим видам работы, формируют оценку по ДСР студента и учитываются при итоговой аттестации по курсу.

ДСР включает следующие виды работ:

- 1. Участие в научных студенческих конференциях
- 2. Написание реферата по заданной теме
- 3. Участие в олимпиадах

6.5 Учебно-методическое обеспечение самостоятельной работы студентов

Для организации самостоятельной работы созданы следующие условия и предпосылки:

- 1. Студенты обеспечены информационными ресурсами (учебниками, справочникам, учебными пособиями, банком индивидуальных заданий);
- 2. Студенты обеспечены информационными ресурсами (на сайте НТБ в электронном виде выставлено все методическое обеспечение курса «Химия», имеется доступ к порталу лектора).
- 3. Для проведения практических и лабораторных занятий по общей химии разработаны учебные пособия. Студент имеет возможность заранее (с опережением) подготовиться к занятию, попытаться ответить на контролирующие вопросы, и обратиться за помощью к преподавателю в случае необходимости.
- 4. Разработаны контролирующие материалы в тестовой форме, позволяющие оперативно оценить уровень подготовки студентов.
 - 5. Организованы еженедельные консультации.

Преподавателями кафедры разработаны следующие учебно-методические пособия и указания:

- 1. Савельев Г.Г., Смолова Л.М. Общая и неорганическая химия. Ч. 1 Общая химия. Томск: ТПУ, 2006. 228 с.
- 2. Стась Н.Ф., Плакидкин А.А., Князева Е.М. Лабораторный практикум по общей и неорганической химии. Томск: ТПУ, 2008. 190 с.
- 3. Стась Н.Ф., Лисецкий В.Н. Задачи, вопросы и упражнения по общей химии. Томск: изд. ТПУ, 2006.-104с.
- 4. Стась Н.Ф., Коршунов А.В. Решение задач по общей химии. Томск: ТПУ, 2009. 170 с.
- 5. Стась Н.Ф. Справочник по общей и неорганической химии. Томск: ТПУ, 2010. 72 с.
- 6. Стась Н.Ф., Свинцова Л.Д. Химия растворов. Томск: ТПУ, 2006. 155 с.

7. СРЕДСТВА ТЕКУЩЕЙ И ИТОГОВОЙ ОЦЕНКИ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ.

Качество освоения дисциплины студентами контролируются двумя рубежными контрольными работам; независимым тестированием ЦОКО, которое проводится два раза за семестр и экзаменом по окончании обучения.

Для контроля знаний и умений студентов используется рейтинговая система, т.е. при оценке работы учитываются успехи не только при сдаче экзамена, но и текущей работы. Ниже приведены виды контроля и максимально возможная оценка в баллах (по 100-бальной системе) и по каждому из них в расчете на семестр:

- 1. Входной контроль 1 балл.
- 2. Рейтинг текущего контроля учитывает работу на практических занятиях и оценки за самостоятельную работу в часы занятий -2 балла x5=10 баллов
- 3. Рейтинг лабораторных работ учитывает оценки за подготовку, проведение лабораторных работ и за отчет по каждой работе -1 балл х 12=12 балла.
 - 4. Рейтинг рубежного контроля учитывает оценки за рубежные контроли по разделам программы -15 баллов x2 = 30 балла.
 - 5. Рейтинг ИД3 0.1 балла x 30 = 3 баллов.
 - 6. Рейтинг за 2 конференц. недели 4 баллов
 - 7. Рейтинг экзамена 40

Для оценки знаний и умений студентов используется следующие виды контролей:

- 1. Входной контроль
- 2. Текущий контроль знаний студентов, который осуществляется на практических занятиях;
 - 3. Контроль подготовки и выполнения лабораторных работ;
- 4. Рубежные контрольные работы, на которых оценивается усвоение студентами нескольких разделов общей химии;
 - 5. Проверка правильности решения индивидуальных домашних задач
 - 6. Итоговый контроль (экзамен).

Рубежный и итоговый контроль знаний студентов проводится Центром оценки качества образования с использованием ФОС.

Общий рейтинг (100 баллов) переводится в оценку:

более 85 баллов отлично от 75 до 84 баллов хорошо

от 55 до 74 баллов удовлетворительно

Рейтинг поощряет активных студентов дополнительными баллами за участие в химических олимпиадах, написание рефератов, выполнение заданий повышенной сложности. Ниже приведены примеры билетов для трех рубежных контрольных работ.

КОНТРОЛИРУЮЩИЕ МАТЕРИАЛЫ

В соответствии с рейтинговой системой при изучении курса химии проводится 2 рубежные контрольные работы. Рубежные контроли проводятся в часы лабораторных занятий, в письменной форме.

В рубежный контроль № 1 входят вопросы по следующим темам: основные законы и понятия химии, стехиометрические расчеты, окислительно-восстановительные реакции, строение атома и периодический закон, теория химической связи, способы выражения концентрации. В

рубежный контроль N 2 входят вопросы по темам: основы химической термодинамики, равновесия и химической кинетики , электрохимические процессы, свойства растворов и реакции в растворах,

Ниже даны примеры вариантов двух рубежных работ.

Рубежная контрольная работа по химии № 1 Томский политехнический университет

Фамилия И.О	№ группы _	Факу	льтет			
Билет № 1 Paket 2						
1. При окислении 2 г двухвалентн	ого металла образовалось 2 количество провзаимодей	ствовавшего к				
2. При прокаливании известняка м делите	массой 500 г, содержащего массу примесей в	80 % карбонат	а кальция,	образова	плся газ.	Опре-
3. В перечне формул кислот 1) HNO_3	об	ъём (н.у.) полу				
укажите номера тех, которые	, 2:-3		образуют нтся к слаб			
	ельной реакции $PO_3 + HgCl_2 + H_2O = H_3PO_4$		Tron it com	DIW KIION	, ram	
укажите	степень окисления ф коэффициег	осфора в Н ₃ РС нт перед форму				
5. Укажите квантовое число 1) главное которое в электронной оболочке атома о	, -		пиновое			
6. Для атома с электронной форму	TOY DUOLUNIA STOREMONOD	$4a^24n^1$ Arrangum	подуро	овень		
		атомный	номер элем			
7. Установите последовательность 1) K_2O по увеличению полярности химической	2) MgO 3) CaO	й	остоянии <i>а</i> Al ₂ O ₃	атома		
по увеличению полярности химической	СБЯЗИ	1 2	3	I 4 I	5	
8. Укажите молекулу	1) CH ₄ 2) BF ₃ 3) CO	4) CO ₂	3	4	3	
в которой имеются	вязь, образованная по доно		идные орби пому механ			
19. В растворе серной кислоты об числите			ютность ра	аствора 1		і. Вы-
10. Нейтрализацию раствора, соде ностью 1,07 г/мл. Определите	ержащего 16 г NaOH, пров	массовую дол	ю H ₂ SO ₄ в	растворе	(%)	плот-
		обт	ем раствој титр э	ра H ₂ SO ₄ гого раст	` '	

Ф ТПУ 7.1 – 21/01

	18CHNICAL		
	ая контрольная ра		
	кий политехничес		
Фамилия И.О	Nº 1 pyiii	ы	Факультет
Билет № 2 Paket 3			
1. Оксид азота (V) можно получить			
	$2NO(\Gamma) + O_3(\Gamma) =$		
Стандартные энтальпии образования соедте (кДж)	инений (кДж/моль)	равны: 90,2	(NO), 142,3 (O ₃) и –42,7 (N ₂ O ₅). Вычисли
			энтальпию реакции
количест	во тепла, выделяю	цегося при п	олучении 1 кг продукта
2. По уравнению реакции и термоди		нтам вещест	В
	$O_2(\Gamma) = 2NO_2(\Gamma)$		
$\Delta_{\mathrm{f}}\mathrm{H}^{\circ}$, кДж/моль 91,3 0			
S°, Дж/(моль·К) 210,6 205,0	240,0		
определите для температуры 300 К			
			энергию Гиббса (кДж)
	ия реакции (1 – впр	оаво, 2 – влев	о, 3 – сост-е равновесия)
3. В обратимой реакции	200 () : 0 ()	- 220 ()	
	$2SO_2(\Gamma) + O_2(\Gamma)$		/) [0] 02 [0] 07 [0] 05
равновесие установилось при следующих Вычислите	концентрациях ве	ществ (моль	(π) : $[O_2] = 0.3$; $[SO_2] = 0.7$; $[SO_3] = 0.5$
			константу равновесия реакции
	1	исходную ког	нцентрацию кислорода (моль/л)
4. Для обратимой реакции			
CaCO ₃ (F	κ) \leftrightarrows CaO(κ) + CO ₂ (1	$\Delta H^{\circ} = 17$	7,5 кДж
укажите направление смещения равновеси	ия (1 – влево, 2 – вп	раво, 3 – не с	емещается)
		при по	овышении температуры
		пр	и увеличении давления
5. Скорость реакции $2A + B = 2D$	зависит от концент	рации реаген	тов следующим образом:
С(А), моль/л	2	2	4
С(В), моль/л	2	4	2
v, моль/(л·мин)	16	32	64

Определите

вид кинетического уравнения реакции $(1. \ v = k \cdot C(A) \cdot C(B); \ 2. \ v = k \cdot C(A) \cdot C^2(B); \ 3. \ v = k \cdot C^2(A) \cdot C(B); \ 4. \ v = k \cdot C^2(A))$ константу скорости реакции

6. Константа скорости реакции $2NO_2(\Gamma) = 2NO(\Gamma) + O_2(\Gamma)$ равна 84 л·моль $^{-1} \cdot c^{-1}$ при 600 К и 336 л·моль $^{-1} \cdot c^{-1}$ при 620 К. Вычислите

энергию активации реакции (кДж/моль) температурный коэффициент скорости реакции

7. Определите ЭДС медно-цинкового ($\phi^{\circ}(Cu) = +0.34 \text{ B}$, $\phi^{\circ}(Zn) = -0.76 \text{ B}$) гальванического элемента при стандартных условиях

при концентрации солей цинка и меди (II) 0,1 М

8. Укажите процессы

1)
$$NO_3^- + 2H^+ - 2e = NO_2^- + H_2O$$
 2) $2H_2O - 4e = 4H^+ + O_2$
3) $K^+ + e = K$ 4) $2H_2O + 2e = H_2 + 2OH^-$

которые протекают при электролизе раствора нитрата калия в электролизере с инертными электродами

на аноде	
на католе	

Ф ТПУ 7.1 – 21/01

9. Плотность 12%-го раствора глюкозы $C_6H_{12}O_6$ при 25 °C равна при данной температуре 3170 Па. Вычислите осмо	а 1046 г/л. Давление насыщенного пара вод
	давление пара над раствором (Па)
10. Укажите номера соединений 1) HNO $_3$ 2) H $_2$ O 3) NaOH 4) KNO $_3$ 5 при добавлении которых к водному раствору Fe(NO $_3$) $_3$ его гидролиз	5) KCl 6) Zn(NO ₃) ₂ усиливается ослабляется
Экзаменационная работа по ку	урсу «Химия»
Томский политехнический унив	верситет
Фамилия И.О № группы	Факультет
Билет № 1 Paket 2	
1. Оксид магния массой 4 г внесли в раствор, содержащий 15 г аз форму	зотной кислоты. Укажите улу вещества, взятого в недостатке массу образовавшейся соли (г)
2. Для хлорной кислоты укажите	
название её солей (1 – хлораты, 2 – хлориты,	формулу её ангидрида , 3 – гипохлориты, 4 – перхлораты)
3. Для окислительно-восстановительной реакции ${\rm Cl_2 + KOH = KClO_3 + KCl + H}$	$ m H_2O$
укажите коэффици тип реакции (1 – внутримолекуля 3 – диспропорционирование, 4	
4. Укажите электронную формулу $1)\ 1s^22s^22p^6 \qquad 2)\ 1s^22s^22p^4 \qquad 3)\ 1s^22s^22p^2$ которая соответствует	
	атому кислорода иону O^{2-}
• •	, <u>, , , , , , , , , , , , , , , , , , </u>
6. По стандартным энтальпиям образования (кДж/моль) этилена (–393,5) и воды (–285,8) вычислите (кДж)	(-52,3), углекислого газа
энтальп количество тепла, выделяющего	пию реакции горения этилена ося при сжигании $200\ \pi\ C_2H_4$
7. Для обратимой реакции	
$2\text{CO}(\Gamma) + \text{O}_2(\Gamma) \leftrightarrows 2\text{CO}_2(\Gamma), \ \Delta H$ укажите направление смещения равновесия (1 — вправо; 2 — влево; 3 — в	

Ф ТПУ 7.1 – 21/01

концентрации кислорода	
8. Для простой реакции $2NO(\Gamma) + Cl_2(\Gamma) = 2NOCl(\Gamma)$ определите	
вид кинетического уравнения реакции $(1. v = k \cdot C(NO) \cdot C(Cl_2), 2. v = k \cdot C^2(NO) \cdot C(Cl_2), 3. v = k \cdot C(2NO) \cdot C(Cl_2), 4. v = k \cdot C^2(NOCl))$	
во сколько раз увеличится её скорость при увеличении концентрации хлора в 2 раза	
9. Масса водного раствора этанола C_2H_5OH равна 5 кг. Моляльность раствора 2,5 моль/кг. Вычислите	
массу спирта в растворе (г)	
мольную долю спирта в растворе	
10. Приготовлен 12,5%-й водный раствор глицерина $C_3H_5(OH)_3$. Криоскопическая константа воды 1,858. Е числите моляльность раствора температуру кристаллизации раствора (°C)	Вы-
11. Укажите номера соединений 1) HNO_3 2) H_2O 3) $NaOH$ 4) KNO_3 5) KCl 6) $Zn(NO_3)_2$ при добавлении которых к водному раствору $Fe(NO_3)_3$ его гидролиз	
усиливается ослабляется	
OCHROTINETEN	
12. При работе электролизера с медным анодом первоначальная масса анода, равная 200 г, уменьшилась 30 %. Определите	, на
прирост массы катода (г)	
количество затраченного электричества (Кл)	

8. РЕЙТИНГ КАЧЕСТВА ОСВОЕНИЯ ДИСЦИПЛИНЫ.

Таблица 4.

Рейтинг-план освоения дисциплины Химия в соответствии с учебными планами
Вариант 1.

Всего баллов:100 по дисциплине «Химия»	Число недель - 18
на осенний/весенний семестр 2011/2012 уч. Г	Лекции - 18 час.
Лекторы:	Практика - 10 час.
Курс	Лаб. работы – 28час.
Группы:	

Темы лекций	Темы практических занятий	Балл	Темы лаборатор- ных работ	Балл	Входной и ру- бежн. контроль	ид3
1. Основные законы химии Основные классы OBP			1.Классы 2.Эквивалент Ме 3.ОВР	1 1 1	Î	
Строение вещества (строение атома, химическая связь)			4.Уст. формулы кристаллогидрата 5.Комплексные соединения	1		
Концентрация растворов.			6. Приготовление растворов	1		
1 конференц. неделя				2,0	15	1,5
Закономерности химических реакций (ТМД, равновесие, кинетика)	2.Равновесие	2 2 2	7.Определение теплового эффекта х.р. 8. СХР	1		
Электрохимия	4.Электрохи-мия	2	9. Коррозия	1		
Растворы	5.Свойства растворов	2	10. Обменные реакции. 11. Гидролиз солей 12. Анализ соли.	1 1 1		
2 конференц. недели				2,0	15	1,5
Итого		10		16	31	3
Итого			60			
Экзамен			40			

По данной дисциплине в конце семестра сдается экзамен. До экзамена студент допускается, в том случае если он выполнил все лабораторные работы и ИДЗ и набрал не менее 33 баллов.

Таблица 5.

Рейтинг-план освоения дисциплины Химия в соответствии с учебными планами Вариант 2.

Всего баллов:100 по дисциплине «Химия»	Число недель - 18
на осенний/весенний семестр 2011/2012 уч. Г	Лекции - 18 час.
Лекторы:	Практика - 10 час.
Курс	Лаб. работы – 28час.
Группы:	

Темы лекций	Темы практических занятий	Балл	Темы лаборатор- ных работ		Входной и ру- бежн. контроль	идз
1. Основные законы химии Основные классы OBP	1.Стехиом. расчеты. Атомно- молекулярное учение	2	1.Классы 2.Эквивалент Ме 3.ОВР	1 1 1	1	
Строение вещества (строение атома, химическая связь)	2.Строение атома. 3. Химическая связь	2 2	4.Уст. формулы кристаллогидрата 5.Комплексные соединения	1		
Концентрация растворов.	4.Способы выражения концентраций	2	6. Приготовление растворов	1		
1 конференц. неделя				2,0	15	1,5
Закономерности химических реакций (ТМД, равновесие, кинетика)	5.Термохимия	2	7.Определение теплового эффекта х.р. 8. СХР	1 1		
Электрохимия			9. Коррозия	2		
Растворы			10. Обменные реакции. 11. Гидролиз солей 12. Анализ соли.	1 1 1		
2 конференц. недели				2,0	15	1,5
Итого		10		16	31	3
Итого	60					
Экзамен	40					

По данной дисциплине в конце семестра сдается экзамен. До экзамена студент допускается, в том случае если он выполнил все лабораторные работы и ИДЗ и набрал не менее 33 баллов.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИ-ПЛИНЫ

Дисциплина «Химия» читается студентам в специализированной аудитории с использованием мультимедийных средств. Краткое содержание лекций, а также программа дисциплины, лабораторный практикум, образцы контролирующих материалов выставлены на личном сайте в портале ТПУ. На сайте библиотеки ТПУ представлены все учебно-методические материалы кафедры ОНХ, лекции по общей и неорганической химии, лабораторный практикум по общей и неорганической химии, индивидуальные домашние задачи, вопросы для самоподготовки к лабораторным и практическим занятиям и т.д.

а) основная литература:

- 1.Глинка Н.Л. Общая химия. Ленинград, "Химия". 2007 и последующие годы издания. 728с
- 2.Курс общей химии под ред. Н.В.Коровина, 6-е изд М.: "Высшая. школа", 1998. -559 с.
- 3. Фролов В.В. Химия, 3-е изд. М.: "Высшая. школа", 1986. -542 с..
- 4.Стась Н.Ф., Лисецкий В.Н. Задачи, вопросы и упражнения по общей химии. Томск: изд. ТПУ, 2006.-104с.
- 5.Глинка Н.Л. Задачи и упражнения по общей химии. Учеб. пособ. Л. "Химия", 2009. 322 с.
- 6 Стась Н.Ф. Справочник по общей и неорганической химии. Томск: ТПУ, 2010. 72 с.
- 7.Стась Н.Ф., Плакидкин А.А., Князева Е.М. Лабораторный практикум по общей и неорганической химии. 2007.

б) дополнительная литература

- 1. Ахметов Н.С. Общая и неорганическая химия. М.: Высшая школа, 2005. 679с.
- 2. Некрасов Б.В. Основы общей химии. М.: Химия, 1973.- т. 1,2.
- 3. Савельев Г.Г., Смолова Л.М. Общая и неорганическая химия. Ч. 1 Общая химия. Томск: $T\Pi Y$, 2006. 228 с.
- 4.Стась Н.Ф., Коршунов А.В. Решение задач по общей химии. Томск: ТПУ, 2009. 170 с.
- 5.Смолова Л.М. Руководство к практическим занятиям по общей химии, Томск, изд ТПУ, 2008.-133с.

в) программное обеспечение и Internet-ресурсы:

- 1. http://www.lib.tpu.ru/cgi-bin/zgate
- 2. http://portal.tpu.ru/SHARED/t/TAY

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисциплина «Химия» полностью обеспечена материально-техническими средствами. Лекции читаются в специализированной аудитории, оснащенной компьютерной техникой, и позволяющей демонстрировать химические опыты. Лабораторные занятия проводятся в химических лабораториях, оборудованных вытяжными шкафами, современными средствами проведения химического эксперимента (фотоколориметры, УЛК и т.д.). Имеется компьютерный класс.

Таблица 6.

№	Наименование (компьютерные классы, учебные лаборатории,	Аудитория, количе-
Π/Π	оборудование)	ство установок
1	Учебная лаборатория, оснащенная компьютерами (8 шт.)	2 корпус, 207 ауд.
2	Учебные лаборатории (5)	2 корпус, 201 ауд.
9	Установка для определения эквивалентной массы металла (бю-	2 корпус, 201 ауд,
	ретка, колба Вюрца, уравнительный сосуд, резиновая или сили-	3 шт.
	коновая трубка, термостат или водяная баня, пипетки, штатив)	
4	Установка для определения теплоты растворения (калориметр,	2 корпус, 201 ауд,
	термометр, мешалка, пластиковый стакан, пробирки)	8 шт.
3	Установка для определения теплоёмкости и энтропии твердых	2 корпус, 201 ауд,
	тел	2 шт.
5	Установка для термического разложения кристаллогидратов	2 корпус, 201 ауд,
	(электроплитка, песчаная баня)	4 шт.
6	Установка для титрования (бюретка, стаканы, стандартные рас-	2 корпус, 201 ауд,
	творы кислот и щелочей, индикаторы)	16 шт.
7	Установка для изучения электролиза (выпрямители, стаканы,	2 корпус, 201 ауд,
	наборы электродов, милливольтметр, миллиамперметр)	2 шт.
8	Фотоэлектроколориметры	2 корп., 201 ауд, 4 шт.
10	Сушильные шкафы	2 корп., 201 ауд, 4 шт.
11	Муфельные печи	2 корп., 201 ауд, 3 шт.
12	рН - метры	2 корпус, 201 ауд, 4
		шт.
13	УЛК «Химия», контроллер	2 корп., 201 ауд, 2 шт.
14	УЛК «Химия», термостат-калориметр	2 корп., 201 ауд, 2 шт.
15	УЛК «Химия», установка для электрохимических измерений	2 корп., 201 ауд, 2 шт.
16	УЛК «Химия», установка термического анализа	2 корп., 201 ауд, 2 шт.
17	УЛК «Химия» (термодатчики, электроды для измерения элек-	2 корпус, 201 ауд,
	тропроводности, электроды для измерения ЭДС стеклянные,	2 шт.
	хлорсеребряные, серебряные, инертные)	

Программа составлена на основе Стандарта ООП в соответствии с требованиями ФГОС ВПО по направлению 15070, 221000, 261400, 220700 и профилю подготовки бакалавров.

Программа одо	брена на зас	едании
Протокол №	OT «» _	2011 г.
Авторы	T.	А. Юрмазова, Л.Н.Шиян
Репензент	E N	Л Князева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисциплина «Химия» полностью обеспечена материально-техническими средствами. Лекции читаются в специализированной аудитории, оснащенной компьютерной техникой, и позволяющей демонстрировать химические опыты. Лабораторные занятия проводятся в химических лабораториях, оборудованных вытяжными шкафами, современными средствами проведения химического эксперимента (фотоколориметры, УЛК и т.д.). Имеется компьютерный класс.

Таблица 6.

$N_{\underline{0}}$	Наименование (компьютерные классы, учебные лаборатории,	Аудитория, количе-
Π/Π	оборудование)	ство установок
1	Учебная лаборатория, оснащенная компьютерами (8 шт.)	2 корпус, 207 ауд.
2	Учебные лаборатории (5)	2 корпус, 201 ауд.
9	Установка для определения эквивалентной массы металла (бю-	2 корпус, 201 ауд,
	ретка, колба Вюрца, уравнительный сосуд, резиновая или сили-	3 шт.
	коновая трубка, термостат или водяная баня, пипетки, штатив)	
4	Установка для определения теплоты растворения (калориметр,	2 корпус, 201 ауд,
	термометр, мешалка, пластиковый стакан, пробирки)	8 шт.
3	Установка для определения теплоёмкости и энтропии твердых	2 корпус, 201 ауд,
	тел	2 шт.
5	Установка для термического разложения кристаллогидратов	2 корпус, 201 ауд,
	(электроплитка, песчаная баня)	4 шт.
6	Установка для титрования (бюретка, стаканы, стандартные рас-	2 корпус, 201 ауд,
	творы кислот и щелочей, индикаторы)	16 шт.
7	Установка для изучения электролиза (выпрямители, стаканы,	2 корпус, 201 ауд,
	наборы электродов, милливольтметр, миллиамперметр)	2 шт.
8	Фотоэлектроколориметры	2 корп., 201 ауд, 4 шт.
10	Сушильные шкафы	2 корп., 201 ауд, 4 шт.
11	Муфельные печи	2 корп., 201 ауд, 3 шт.
12	рН - метры	2 корпус, 201 ауд, 4
		ШТ.
13	УЛК «Химия», контроллер	2 корп., 201 ауд, 2 шт.
14	УЛК «Химия», термостат-калориметр	2 корп., 201 ауд, 2 шт.
15	УЛК «Химия», установка для электрохимических измерений	2 корп., 201 ауд, 2 шт.
16	УЛК «Химия», установка термического анализа	2 корп., 201 ауд, 2 шт.
17	УЛК «Химия» (термодатчики, электроды для измерения элек-	2 корпус, 201 ауд,
	тропроводности, электроды для измерения ЭДС стеклянные,	2 шт.
	хлорсеребряные, серебряные, инертные)	

Программа составлена на основе Стандарта ООП в соответствии с требованиями ФГОС ВПО по направлению 201000, 210100, 150700, 200100 и профилю подготовки бакалавров.

Программа одо	брена на засе	дании
Протокол №	OT «»	2011 г.
Авторы	T.A	Юрмазова, Л.Н.Шиян
Репензент	E M	Князева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисциплина «Химия» полностью обеспечена материально-техническими средствами. Лекции читаются в специализированной аудитории, оснащенной компьютерной техникой, и позволяющей демонстрировать химические опыты. Лабораторные занятия проводятся в химических лабораториях, оборудованных вытяжными шкафами, современными средствами проведения химического эксперимента (фотоколориметры, УЛК и т.д.). Имеется компьютерный класс.

Таблица 6.

Ŋoႍ	Наименование (компьютерные классы, учебные лаборатории,	Аудитория, количе-
Π/Π	оборудование)	ство установок
1	Учебная лаборатория, оснащенная компьютерами (8 шт.)	2 корпус, 207 ауд.
2	Учебные лаборатории (5)	2 корпус, 201 ауд.
9	Установка для определения эквивалентной массы металла (бю-	2 корпус, 201 ауд,
	ретка, колба Вюрца, уравнительный сосуд, резиновая или сили-	3 шт.
	коновая трубка, термостат или водяная баня, пипетки, штатив)	
4	Установка для определения теплоты растворения (калориметр,	2 корпус, 201 ауд,
	термометр, мешалка, пластиковый стакан, пробирки)	8 шт.
3	Установка для определения теплоёмкости и энтропии твердых	2 корпус, 201 ауд,
	тел	2 шт.
5	Установка для термического разложения кристаллогидратов	2 корпус, 201 ауд,
	(электроплитка, песчаная баня)	4 шт.
6	Установка для титрования (бюретка, стаканы, стандартные рас-	2 корпус, 201 ауд,
	творы кислот и щелочей, индикаторы)	16 шт.
7	Установка для изучения электролиза (выпрямители, стаканы,	2 корпус, 201 ауд,
	наборы электродов, милливольтметр, миллиамперметр)	2 шт.
8	Фотоэлектроколориметры	2 корп., 201 ауд, 4 шт.
10	Сушильные шкафы	2 корп., 201 ауд, 4 шт.
11	Муфельные печи	2 корп., 201 ауд, 3 шт.
12	рН - метры	2 корпус, 201 ауд, 4
		шт.
13	УЛК «Химия», контроллер	2 корп., 201 ауд, 2 шт.
14	УЛК «Химия», термостат-калориметр	2 корп., 201 ауд, 2 шт.
15	УЛК «Химия», установка для электрохимических измерений	2 корп., 201 ауд, 2 шт.
16	УЛК «Химия», установка термического анализа	2 корп., 201 ауд, 2 шт.
17	УЛК «Химия» (термодатчики, электроды для измерения элек-	2 корпус, 201 ауд,
	тропроводности, электроды для измерения ЭДС стеклянные,	2 шт.
	хлорсеребряные, серебряные, инертные)	

Программа составлена на основе Стандарта ООП в соответствии с требованиями ФГОС ВПО по направлению 022000, 280100, 020700 и профилю подготовки бакалавров.

Программа одо	брена на зас	едании
Протокол №	OT «» _	2011 г.
Авторы	T.	А. Юрмазова, Л.Н.Шиян
Репензент	E N	Л Князева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисциплина «Химия» полностью обеспечена материально-техническими средствами. Лекции читаются в специализированной аудитории, оснащенной компьютерной техникой, и позволяющей демонстрировать химические опыты. Лабораторные занятия проводятся в химических лабораториях, оборудованных вытяжными шкафами, современными средствами проведения химического эксперимента (фотоколориметры, УЛК и т.д.). Имеется компьютерный класс.

Таблица 6.

		Г.
N <u>o</u>	Наименование (компьютерные классы, учебные лаборатории,	Аудитория, количе-
п/п	оборудование)	ство установок
1	Учебная лаборатория, оснащенная компьютерами (8 шт.)	2 корпус, 207 ауд.
2	Учебные лаборатории (5)	2 корпус, 201 ауд.
9	Установка для определения эквивалентной массы металла (бю-	2 корпус, 201 ауд,
	ретка, колба Вюрца, уравнительный сосуд, резиновая или сили-	3 шт.
	коновая трубка, термостат или водяная баня, пипетки, штатив)	
4	Установка для определения теплоты растворения (калориметр,	2 корпус, 201 ауд,
	термометр, мешалка, пластиковый стакан, пробирки)	8 шт.
3	Установка для определения теплоёмкости и энтропии твердых	2 корпус, 201 ауд,
	тел	2 шт.
5	Установка для термического разложения кристаллогидратов	2 корпус, 201 ауд,
	(электроплитка, песчаная баня)	4 шт.
6	Установка для титрования (бюретка, стаканы, стандартные рас-	2 корпус, 201 ауд,
	творы кислот и щелочей, индикаторы)	16 шт.
7	Установка для изучения электролиза (выпрямители, стаканы,	2 корпус, 201 ауд,
	наборы электродов, милливольтметр, миллиамперметр)	2 шт.
8	Фотоэлектроколориметры	2 корп., 201 ауд, 4 шт.
10	Сушильные шкафы	2 корп., 201 ауд, 4 шт.
11	Муфельные печи	2 корп., 201 ауд, 3 шт.
12	рН - метры	2 корпус, 201 ауд, 4
		шт.
13	УЛК «Химия», контроллер	2 корп., 201 ауд, 2 шт.
14	УЛК «Химия», термостат-калориметр	2 корп., 201 ауд, 2 шт.
15	УЛК «Химия», установка для электрохимических измерений	2 корп., 201 ауд, 2 шт.
16	УЛК «Химия», установка термического анализа	2 корп., 201 ауд, 2 шт.
17	УЛК «Химия» (термодатчики, электроды для измерения элек-	2 корпус, 201 ауд,
	тропроводности, электроды для измерения ЭДС стеклянные,	2 шт.
	хлорсеребряные, серебряные, инертные)	

Программа составлена на основе Стандарта ООП в соответствии с требованиями ФГОС ВПО по направлению 011200, 200400, 150700 и профилю подготовки бакалавров.

Программа одо	брена на засе	гдании
Протокол №	OT «»	2011 г.
Авторы	T.A	
Репензент	E N	1 Князева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисциплина «Химия» полностью обеспечена материально-техническими средствами. Лекции читаются в специализированной аудитории, оснащенной компьютерной техникой, и позволяющей демонстрировать химические опыты. Лабораторные занятия проводятся в химических лабораториях, оборудованных вытяжными шкафами, современными средствами проведения химического эксперимента (фотоколориметры, УЛК и т.д.). Имеется компьютерный класс.

Таблица 6.

$N_{\underline{0}}$	Наименование (компьютерные классы, учебные лаборатории,	Аудитория, количе-
Π/Π	оборудование)	ство установок
1	Учебная лаборатория, оснащенная компьютерами (8 шт.)	2 корпус, 207 ауд.
2	Учебные лаборатории (5)	2 корпус, 201 ауд.
9	Установка для определения эквивалентной массы металла (бю-	2 корпус, 201 ауд,
	ретка, колба Вюрца, уравнительный сосуд, резиновая или сили-	3 шт.
	коновая трубка, термостат или водяная баня, пипетки, штатив)	
4	Установка для определения теплоты растворения (калориметр,	2 корпус, 201 ауд,
	термометр, мешалка, пластиковый стакан, пробирки)	8 шт.
3	Установка для определения теплоёмкости и энтропии твердых	2 корпус, 201 ауд,
	тел	2 шт.
5	Установка для термического разложения кристаллогидратов	2 корпус, 201 ауд,
	(электроплитка, песчаная баня)	4 шт.
6	Установка для титрования (бюретка, стаканы, стандартные рас-	2 корпус, 201 ауд,
	творы кислот и щелочей, индикаторы)	16 шт.
7	Установка для изучения электролиза (выпрямители, стаканы,	2 корпус, 201 ауд,
	наборы электродов, милливольтметр, миллиамперметр)	2 шт.
8	Фотоэлектроколориметры	2 корп., 201 ауд, 4 шт.
10	Сушильные шкафы	2 корп., 201 ауд, 4 шт.
11	Муфельные печи	2 корп., 201 ауд, 3 шт.
12	рН - метры	2 корпус, 201 ауд, 4
		ШТ.
13	УЛК «Химия», контроллер	2 корп., 201 ауд, 2 шт.
14	УЛК «Химия», термостат-калориметр	2 корп., 201 ауд, 2 шт.
15	УЛК «Химия», установка для электрохимических измерений	2 корп., 201 ауд, 2 шт.
16	УЛК «Химия», установка термического анализа	2 корп., 201 ауд, 2 шт.
17	УЛК «Химия» (термодатчики, электроды для измерения элек-	2 корпус, 201 ауд,
	тропроводности, электроды для измерения ЭДС стеклянные,	2 шт.
	хлорсеребряные, серебряные, инертные)	

Программа составлена на основе Стандарта ООП в соответствии с требованиями ФГОС ВПО по направлению 140800, 011200 - бакалавр и специальности 141801 - инженер.

Программа одобр	ена на	заседании	<u> </u>
Протокол №	от «	_>>	_2011 г.
Авторы		_ Т.А. Юрг	мазова, Л.Н.Шиян
Рецензент		Е.М.Княз	ева

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Дисциплина «Химия» полностью обеспечена материально-техническими средствами. Лекции читаются в специализированной аудитории, оснащенной компьютерной техникой, и позволяющей демонстрировать химические опыты. Лабораторные занятия проводятся в химических лабораториях, оборудованных вытяжными шкафами, современными средствами проведения химического эксперимента (фотоколориметры, УЛК и т.д.). Имеется компьютерный класс.

Таблица 6.

$N_{\underline{0}}$	Наименование (компьютерные классы, учебные лаборатории,	Аудитория, количе-
Π/Π	оборудование)	ство установок
1	Учебная лаборатория, оснащенная компьютерами (8 шт.)	2 корпус, 207 ауд.
2	Учебные лаборатории (5)	2 корпус, 201 ауд.
9	Установка для определения эквивалентной массы металла (бю-	2 корпус, 201 ауд,
	ретка, колба Вюрца, уравнительный сосуд, резиновая или сили-	3 шт.
	коновая трубка, термостат или водяная баня, пипетки, штатив)	
4	Установка для определения теплоты растворения (калориметр,	2 корпус, 201 ауд,
	термометр, мешалка, пластиковый стакан, пробирки)	8 шт.
3	Установка для определения теплоёмкости и энтропии твердых	2 корпус, 201 ауд,
	тел	2 шт.
5	Установка для термического разложения кристаллогидратов	2 корпус, 201 ауд,
	(электроплитка, песчаная баня)	4 шт.
6	Установка для титрования (бюретка, стаканы, стандартные рас-	2 корпус, 201 ауд,
	творы кислот и щелочей, индикаторы)	16 шт.
7	Установка для изучения электролиза (выпрямители, стаканы,	2 корпус, 201 ауд,
	наборы электродов, милливольтметр, миллиамперметр)	2 шт.
8	Фотоэлектроколориметры	2 корп., 201 ауд, 4 шт.
10	Сушильные шкафы	2 корп., 201 ауд, 4 шт.
11	Муфельные печи	2 корп., 201 ауд, 3 шт.
12	рН - метры	2 корпус, 201 ауд, 4
		шт.
13	УЛК «Химия», контроллер	2 корп., 201 ауд, 2 шт.
14	УЛК «Химия», термостат-калориметр	2 корп., 201 ауд, 2 шт.
15	УЛК «Химия», установка для электрохимических измерений	2 корп., 201 ауд, 2 шт.
16	УЛК «Химия», установка термического анализа	2 корп., 201 ауд, 2 шт.
17	УЛК «Химия» (термодатчики, электроды для измерения элек-	2 корпус, 201 ауд,
	тропроводности, электроды для измерения ЭДС стеклянные,	2 шт.
	хлорсеребряные, серебряные, инертные)	

Программа составлена на основе Стандарта ООП в соответствии с требованиями ФГОС ВПО по направлению 140100, 140400, 141100 - бакалавр и специальности 141403- инженер.

Программа одоб	брена на	засед	дании	
Протокол №	OT «	>>	2011 г.	
Авторы		Т.А. Юрмазова, Л.Н.Шиян		
Рецензент		_ E.M	.Князева	