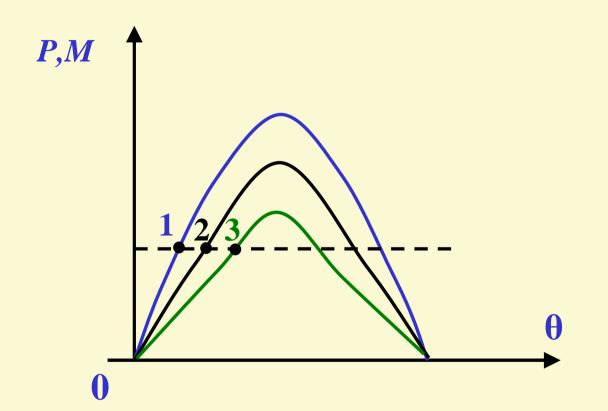

Синхронные машины

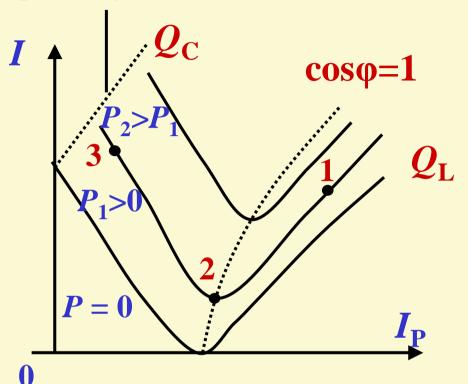
Регулирование реактивной мощности СГ V-образные характеристики


Рассмотрим влияние тока возбуждения на работу включенного в сеть СГ при постоянном M_{BP} . Построим три векторные диаграммы генератора для различных токов возбуждения.

1.
$$E_{0(1)} > U$$
2. $\dot{I} = \dot{I}_a$

Изменение тока возбуждения ротора СГ приводит к изменению характера реактивной мощности: при большом токе ротора (при перевозбуждении) реактивная мощность имеет индуктивный характер, при недовозбуждении – емкостной характер.

Угловые характеристики

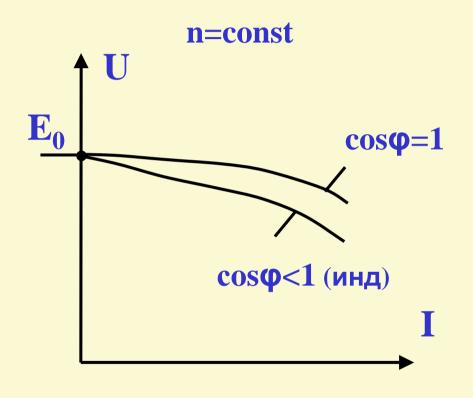


Активная мощность от тока возбуждения не зависит

V-образные характеристики

- зависимость тока статора от тока возбуждения ротора при постоянной активной мощности. Показывают возможность регулирования реактивной мощности.

Граница устойчивости


Минимумы кривых соответствуют чисто активным токам статора.

Левее пунктирной кривой, ток имеет емкостную реактивную составляющую, правее — индуктивную реактивную составляющую.

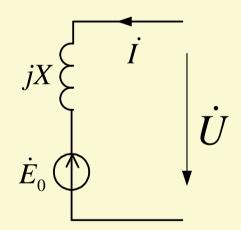
Работа СГ в автономном режиме

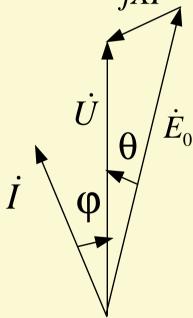
Используется для обеспечения электроэнергией различных потребителей в местах, удаленных от мощной электрической сети (обычно приводится во вращение двигателем внутреннего сгорания).

Внешняя характеристика

При работе генератора в автономном режиме напряжение на его зажимах зависит от тока и характера нагрузки. Изменение напряжения, которое может достигать нескольких десятков процентов, объясняется большим внутренним индуктивным сопротивлением СМ.

Для стабилизации U необходимо регулировать ток возбуждения (автоматические регуляторы возбуждения). Изменение тока возбуждения приводит к изменению U и тока статора, но не соѕф. Следовательно, автономный синхронный генератор не обладает свойством регулирования реактивной мощности. Она целиком определяется характером приемника.


Изменение сопротивления нагрузки влияет не только на U, но и на n.


$$I_a \uparrow \Rightarrow M_T \uparrow \Rightarrow n \downarrow \Rightarrow E_0 \downarrow \Rightarrow I_a \downarrow$$
 пока
$$M_{BP} = M_T$$

Генератор автоматически «сбрасывает» дополнительную активную нагрузку. В новом режиме значение U и п оказываются меньше, что неблагоприятно отражается на условиях работы нагрузочного устройства. Для поддержания частоты вращения ротора и напряжения постоянными, приводной двигатель снабжается автоматическим регулятором момента.

Схема замещения и угловые характеристики синхронного двигателя

СД – это активный приемник, имеющий противо-ЭДС и внутреннее индуктивное синхронное сопротивление *X*.

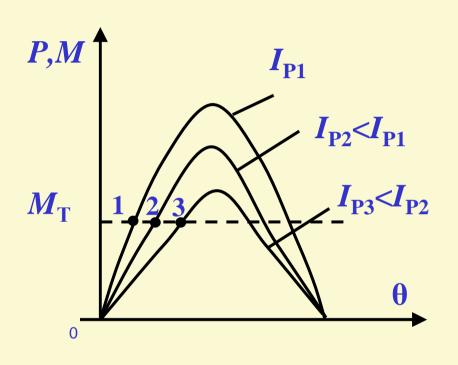
Уравнение электрического состояния фазы СД

$$\dot{\mathbf{U}} = \dot{\mathbf{E}}_0 + \mathbf{j}\mathbf{X}\dot{\mathbf{I}}$$

Угловая характеристика описывается выражениями

$$\mathbf{P} = \frac{3\mathbf{E}_0 \mathbf{U}}{\mathbf{X}} \sin \theta = \mathbf{P}_{\text{max}} \sin \theta$$

$$\mathbf{M}_{\mathbf{9M}} = \frac{3\mathbf{E}_{\mathbf{0}}\mathbf{U}}{\mathbf{X}\Omega_{\mathbf{1}}}\sin\theta = \mathbf{M}_{\mathbf{max}}\sin\theta,$$


Амплитуда угловой характеристики характеризует перегрузочную способность синхронного двигателя или предел его статической устойчивости в синхронизме

$$\lambda = \frac{\mathbf{M}_{\text{max}}}{\mathbf{M}_{\text{HOM}}} = \frac{1}{\sin \theta}$$
.

Перегрузочную способность легко регулировать током возбуждения. Номинальный момент двигателя соответствует углу рассогласования не более 30°. Поэтому перегрузочная способность двигателя всегда больше двух.

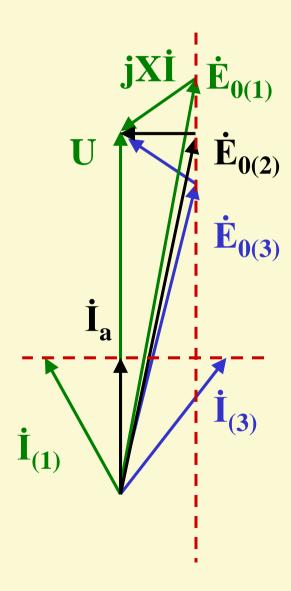
СД обладает свойством саморегулирования: при изменении момента на валу изменяется угол в и $M_{BP} = M_{T}$. При этом изменяются P и ток статора. Но частота вращения остается неизменной: механическая характеристика СД – зависимость n(M)- представляет собой горизонтальный отрезок прямой.

Угловые характеристики

На нисходящих ветвях характеристик устойчивая работа двигателя невозможна. При большом токе ротора его магнитное поле становится сильнее и θ уменьшается. Если уменьшить ток ротора,

остановится. При этом ЭДС

 $E_0 = 0$ и ток статора резко

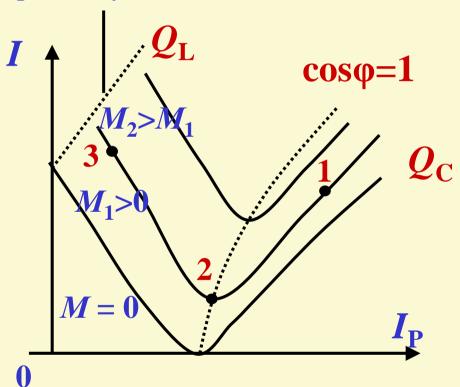

увеличивается, так как

то $M_T > M_{\text{мах}}$ и ротор

$$\dot{\mathbf{I}} = (\dot{\mathbf{U}} - \dot{\mathbf{E}}_0) / \mathbf{j} \mathbf{X}$$

Регулирование коэффициента мощности **С**Д

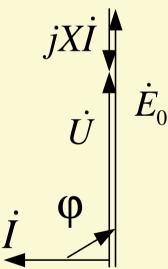
Регулирование тока возбуждения ротора при M=const приводит к изменению значения тока статора двигателя и его фазы, т.е. коэффициент мощности СД можно регулировать, что является его важной особенностью. Изменение тока статора и его фазы при изменении тока возбуждения можно показать, построив векторные диаграммы



1.
$$E_{0(1)} > U$$
2. $\dot{I} = \dot{I}_a$

2.
$$\dot{I} = \dot{I}_a$$

V-образные характеристики



Перевозбужденный двигатель работает с опережающей реактивной составляющей тока недовозбужденный — с отстающей.

Обычно СД работают с перевозбуждением при соѕф=0.8. При этом емкостные составляющие токов статора компенсируют в линии индуктивные составляющие токов асинхронных двигателей, трансформаторов и других индуктивных приемников, уменьшая токи и потери энергии в линиях.

Перевозбужденный СД, работающий без нагрузки на валу, называется синхронным компенсатором — потребителем емкостного тока. Их используют для улучшения коэффициента мощности и стабилизации напряжения промышленных сетей. Мощности синхронных компенсаторов достигают 100-160 Мвар.

Пуск СД

При подключении статора к сети быстровращающееся магнитное поле токов статора действует на неподвижный, возбужденный постоянным током ротор со знакопеременной силой, не создающей среднего момента, и ротор остается неподвижным.

Сначала нужно разогнать ротор п, близкой к синхронной. Для этого роторы СД снабжают пусковой короткозамкнутой обмоткой, как у АД. Стержни этой обмотки укладывают в специальные пазы полюсов.

При пуске ОВ отключают и замыкают на резистор, сопротивление которого в 10-15 раз превышает сопротивление ОВ. Под действием асинхронного момента ротор разгоняется до n близкой к синхронной $(n_2=0.95n)$, а затем OB подключают к источнику постоянного напряжения. Возникает синхронный электромагнитный момент и двигатель втягивается в синхронизм. 23

Обычно пуск СД автоматизирован, что удорожает их, однако при мощностях свыше 100 кВт они оказываются экономически выгоднее асинхронных в основном благодаря способности работать с емкостной мощностью при перевозбуждении.