Министерство образования и науки РФ Национальный исследовательский Томский политехнический университет

Дисциплина «Методология моделирования систем»

Направление подготовки «Управление качеством»

Разработчик : доцент каф. ФМПК, к.т.н. Плотникова И.В.

Лекция 3

Имитационное моделирование

Имитационное моделирование (симуляция)

- это распространенная разновидность аналогового моделирования, реализуемого с помощью набора математических средств, специальных компьютерных программсимуляторов и особых ІТ, позволяющих создавать в памяти компьютера процессыаналоги, с помощью которых можно провести целенаправленное исследование структуры и функций реальной системы в режиме ее «имитации», осуществить оптимизацию некоторых ее параметров.

Что отражает модель?

Имитационная модель должна отражать логику и закономерности поведения моделируемого объекта во времени (временная динамика) и пространстве (пространственная динамика).

Имитационная модель создается:

- для управления сложными бизнес-процессами, чтобы определить их характерные особенности;
- при проведении экспериментов над объектами в экстренных ситуациях, связанных с рисками, в случаях, когда натуральное моделирование нежелательно или невозможно.

Типовые примеры имитационных моделей

- Управление размещением предприятий, оказывающих однородные услуги;
- Управление процессом реализации инвестиционного проекта на различных этапах его жизненного цикла с учетом возможных рисков;
- Прогнозирование финансовых результатов деятельности предприятия;
- Моделирование процессов логистики для определения временных и стоимостных параметров;

Типовые примеры имитационных моделей

- Бизнес-реинжениринт несостоятельного предприятия (изменение структуры и ресурсов);
- Анализ работы автотранспортных предприятий;
- Моделирование обслуживания клиентов предприятиями сферы услуг;
- Модели работы информационных систем и сложных вычислительных систем (аналоги с устройствами обслуживания клиентов);
- И т.д.

Программное обеспечение

Особенные характеристики программного обеспечения имитационного моделирования:

- Способность моделирования и отслеживание в общем модельном времени различных потоков (материальных, информационных, денежных и пр.);
- Возможность уточнения параметров и ведения экстремального эксперимента.

Виды программного обеспечения

- Пакет программ Microsoft Office (особенно, Excel) часто используют для проведения расчетов имитационной модели;
- Система GPSS (General Purpose Simulation System) (1967 г) используется в основном для моделирования систем массового обслуживания;
- Специальные современные имитационные пакеты, реализующие разные подходы к моделированию и имеющие средства визуализации (например, Any Logic).

Истоки имитационного моделирования

Имитационное моделирование возникло для поддержки решения и исследования задач массового обслуживания (задачи об очередях). Цель исследования очередей – оптимизация издержек:

• Что выгоднее, принять на работу несколько сотрудников, чтобы уменьшить время ожидания клиентов в очереди, либо сэкономить на заработной плате сотрудников, уменьшив их количество.

Система массового обслуживания

В системе массового обслуживания каждая заявка проходит несколько этапов:

- 1) появление заявки на входе в систему;
- 2) ожидание в очереди;
- 3) процесс обслуживания, после которого заявка покидает систему.

Первый и третий этап характеризуются случайными величинами.

Появление заявок

Обычно заявки появляются в заданном темпе (например, два клиента в час или четыре грузовика в минуту). В этом случае для его характеристики используют дискретное распределение Пуассона:

$$p(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$
 для $x = 0, 1, ...,$

где р (x) — вероятность поступления x заявок в единицу времени;

х — число заявок в единицу времени;

 — среднее число заявок в единицу времени (темп поступления заявок);

Характеристики очереди

При моделировании очереди нужно учесть:

- Длину очереди;
- Правило обслуживания (например, FIFO, или очередь с приоритетами);
- В более сложных случаях, можно моделировать извлечение заявки из очереди без обслуживания, когда время ожидания превысило определенный уровень.

Обслуживание заявок

Конфигурация системы обслуживания:

- Одноканальная или многоканальная система обслуживания;
- Однофазное или многофазная система обслуживания;
- Случайное или детерминированное время обслуживания.

Если время обслуживания является случайной величиной, часто оно подчиняется экспоненциальному закону распределения:

- $F(t) = p(\tau < t) = 1 e^{-t\mu}$, где $p(\tau < t)$ вероятность того, что фактическое время τ обслуживания заявки не превысит заданной величины t;
- μ среднее число заявок, обслуживаемых в единицу времени.

Модели массового обслуживания

- **Модель А** модель одноканальной системы массового обслуживания с пуассоновским входным потоком заявок и экспоненциальным временем обслуживания.
- Модель В многоканальная система обслуживания. В многоканальной системе для обслуживания открыты два канала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслуживания;
- **Модель С** модель с постоянным временем обслуживания;
- Модель D модель с ограниченной популяцией;
- Модель E модель с ограниченной очередью. Модель отличается от предыдущих тем, что число мест в очереди ограничено. В этом случае заявка, прибывшая в систему, когда все каналы и места в очереди заняты, покидает систему необслуженной, т.е. получает отказ.

Модель массового обслуживания

Смоделируем работу парикмахерской в терминах модели массового обслуживания.

- Имеется обслуживающее устройство парикмахер;
- Имеется механизм формирования очереди комната ожидания;
- Имеется генератор заявок клиенты, которые приходят в парикмахерскую.

Проведение аналогового эксперимента

Работа модели может быть оформлена в виде таблицы:

Порядок клиентов	Время входа	Время начала обслуж-ния	Интервал пост-ния	Интервал обсл-ния	Задержка в очереди
Иванов	14	14	14	20	0
Петров	32	34	18	16	2
Сидоров	42	50	10	25	8
Соколов	47	75	5	15	28
и т.д.					

Проведение аналогового эксперимента

Основные показатели, от которых зависит работа модели, определяются случайными характеристиками:

- Время прихода следующего клиента;
- Время обслуживания клиента парикмахером.

Основные показатели эффективности модели:

- Количество клиентов в очереди;
- Среднее время и отклонение ожидания клиента в очереди;
- Среднее время и отклонение простоя обслуживающего устройства (парикмахера);
- Количество обслуженных клиентов за день;
- и т.д.

Алгоритм симуляции дискретных процессов

Узел модели – элемент, характеризующий конкретное состояние объекта модели (генератор заявок, комната ожидания, устройство обслуживания, окончание обслуживания (узел-терминатор)).

Событие – это факт перехода объекта от одного узла модели в другой.

2 типа событий:

- Текущее связано с объектом с нулевым временем;
- Будущее связано с объектом с положительными временем.

Время объекта – время, в которое для этого объекта должно произойти очередное событие.

Алгоритм симуляции дискретных процессов

Симулятор работает следующим образом:

1. Продвижение объектов.

По всем узлам модели ищется объект с нулевым временем и осуществляется ее продвижение на следующие узлы модели до одного из случаев:

- Объект попадает во времяемкий процесс его время меняется исходя из задержки процесса (например, обслуживание клиента);
- Объект попал в очередь очередь не пуста, или очередь пуста, но обслуживающий узел недоступен.

После продвижения очередного объекта, ищется следующий объект с нулевым временем.

Алгоритм симуляции дискретных процессов

Симулятор работает следующим образом:

2. Модификация.

Если объектов с нулевым временем нет, выбирается объект с минимальным положительным временем (с ним первым должно произойти какое либо событие). Время этого объекта устанавливается в 0, изменяется модельное время на величину смещения и изменяются показатели времени всех других объектов модели.

После переход к стадии Продвижения объектов.

Теоретические основы – метод Монте-Карло

Этот метод называют методом статистических испытаний. Любая сложная система зависит от некоторого набора случайных факторов, имеющих различные законы распределения.

Метод Монте-Карло осуществляет многократный эксперимент и накапливает статистику его результатов.

Вероятность, что средние показатели результатов будут незначительно отличаться от показателей реальной системы, будет мала при большом количестве испытаний.

Этапы имитационного моделирования

Этап 1 Математическая модель

Этап 2 Осуществление имитации

Этап 3 Анализ результатов

Этап 1. Математическая модель

- базовая модель денежных потоков инвестиционного проекта
- - переменные математической модели
- тип распределения вероятностей переменных математической модели
- - ВЗОИМОЗОВИСИМОСТИ

Этап 2. Осуществление имитации

- - генерирование случайных переменных с учетом заданного закона распределения
- расчет интегральных показателей эффективности

Этап 3. Анализ результатов

- исследование свойств гистограммы (по полученному ряду значений показателя эффективности проекта строится вариационный ряд, разбивается на к интервалов для группировки)
- исследование значений показателей эффективности и рискованности проекта

Математическое ожидание NPV (Expected value)

$$EV = \sum_{i=1}^{n} x_i * p_i$$

где x_i - результат при i-ом имитационном эксперименте

 p_i - вероятность получения результата \boldsymbol{x}

n - количество имитационных экспериментов

Ожидаемые потери (Expected Losses)

$$EL = \sum_{i=1}^{m} NPV_i * p_i$$

где NPV_i — отрицательные значения NPV_i p_i - вероятность получения результата NPV_i

Индекс ожидаемых потерь (expected losses ratio - ELR)

$$ELR = \frac{|EL|}{EG + |EL|}$$

где EL – ожидаемые потери (Expected Losses)

EG – ожидаемые выгоды (Expected Ganes)

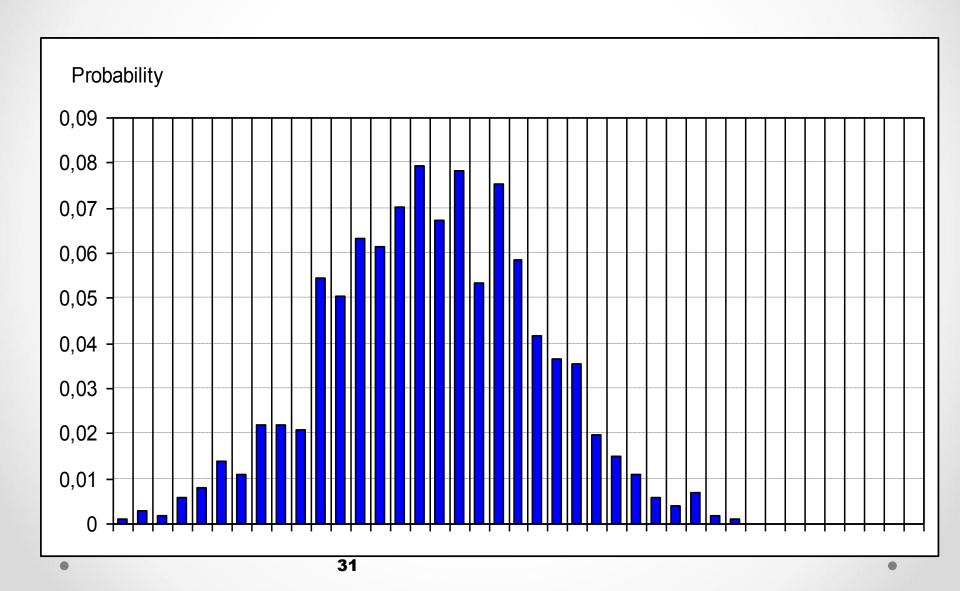
Вероятность реализации неэффективного проекта

$$P(NPV < 0) = \frac{m}{n}$$

где m — число имитационных экспериментов, где NPV < 0

n – общее количество экспериментов

29


критериального показателя ниже порогового уровня

$$P(Criter < Criter*) = \frac{m}{n}$$

где m — число имитационных экспериментов со значением критериального показателя (Criter) ниже порогового уровня (Criter*)

n – общее количество экспериментов

гистограмма распределения вероятностей

Метод сценариев

метод, основанный на построении набора **сценариев** - возможных непротиворечивых комбинаций изменений множества параметров, определяющих результаты реализации проекта.

Метод сценариев

			Пояснения
NPV > 0	NPV > 0	NPV > 0	Проект с низкими рисками
NPV < 0	NPV > 0	NPV > 0	Следует продолжить анализ рисков
NPV < 0	NPV < 0	NPV > 0	Необходимо определить вероятность положительного исхода
NPV < 0	NPV < 0	NPV < 0	Проект "гарантиро- ванно" убыточен

Недостатки

- разработка хорошей имитационной модели часто обходится дороже создания аналитической модели и требует больших временных затрат;
- может оказаться, что имитационная модель неточна (что бывает часто), и мы не в состоянии измерить степень этой неточности;
- зачастую исследователи обращаются к имитационному моделированию, не представляя тех трудностей, с которыми они встретятся и совершают при этом ряд *ошибок* методологического характера.

И, тем не менее, имитационное моделирование является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

И, тем не менее, имитационное моделирование является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

Спасибо за внимание!